Skip to main content
Top
Published in: Cardiovascular Drugs and Therapy 3/2023

13-01-2022 | Alirocumab | Invited Review Article

Cholesterol Lowering Biotechnological Strategies: From Monoclonal Antibodies to Antisense Therapies. A Pre-Clinical Perspective Review

Authors: S. Bellosta, C. Rossi, A. S. Alieva, A. L. Catapano, A. Corsini, A. Baragetti

Published in: Cardiovascular Drugs and Therapy | Issue 3/2023

Login to get access

Abstract

In recent years, the increase in available genetic information and a better understanding of the genetic bases of dyslipidemias has led to the identification of potential new avenues for therapies. Additionally, the development of new technologies has presented the key for developing novel therapeutic strategies targeting not only proteins (e.g., the monoclonal antibodies and vaccines) but also the transcripts (from antisense oligonucleotides (ASOs) to small interfering RNAs) or the genomic sequence (gene therapies). These pharmacological advances have led to successful therapeutic improvements, particularly in the cardiovascular arena because we are now able to treat rare, genetically driven, and previously untreatable conditions (e.g, familial hypertriglyceridemia or hyperchylomicronemia). In this review, the pre-clinical pharmacological development of the major biotechnological cholesterol lowering advances were discussed, describing facts, gaps, potential future steps forward, and therapeutic opportunities.
Literature
1.
go back to reference Collaboration CTT. (CTT) efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet. 2010;376:1670–81.CrossRef Collaboration CTT. (CTT) efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet. 2010;376:1670–81.CrossRef
2.
go back to reference Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to statin therapy after acute coronary syndromes. 2015;372:2387–2397. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to statin therapy after acute coronary syndromes. 2015;372:2387–2397.
3.
go back to reference Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. 2018;380:11–22. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. 2018;380:11–22.
4.
go back to reference Packard C, Chapman MJ, Sibartie M, Laufs U, Masana L. Intensive low-density lipoprotein cholesterol lowering in cardiovascular disease prevention: opportunities and challenges. Heart. 2021;107:1369–75.PubMedCrossRef Packard C, Chapman MJ, Sibartie M, Laufs U, Masana L. Intensive low-density lipoprotein cholesterol lowering in cardiovascular disease prevention: opportunities and challenges. Heart. 2021;107:1369–75.PubMedCrossRef
5.
go back to reference Ghetie V, Ward ES. Multiple roles for the major histocompatibility complex class I-related receptor FcRn. Annu Rev Immunol. 2000;18:739–66.PubMedCrossRef Ghetie V, Ward ES. Multiple roles for the major histocompatibility complex class I-related receptor FcRn. Annu Rev Immunol. 2000;18:739–66.PubMedCrossRef
6.
go back to reference Tabrizi MA, Tseng CML, Roskos LK. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today. 2006;11:81–8.PubMedCrossRef Tabrizi MA, Tseng CML, Roskos LK. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today. 2006;11:81–8.PubMedCrossRef
7.
go back to reference Raghavan M, Bonagura VR, Morrison SL, Bjorkman PJ. Analysis of the pH dependence of the neonatal fc receptor/immunoglobulin G interaction using antibody and receptor variants. Biochemistry. 1995;34:14649–57.PubMedCrossRef Raghavan M, Bonagura VR, Morrison SL, Bjorkman PJ. Analysis of the pH dependence of the neonatal fc receptor/immunoglobulin G interaction using antibody and receptor variants. Biochemistry. 1995;34:14649–57.PubMedCrossRef
8.
go back to reference Foltz IN, Karow M, Wasserman SM. Evolution and emergence of therapeutic monoclonal antibodies what cardiologists need to know. Circulation. 2013;127:2222–30.PubMedCrossRef Foltz IN, Karow M, Wasserman SM. Evolution and emergence of therapeutic monoclonal antibodies what cardiologists need to know. Circulation. 2013;127:2222–30.PubMedCrossRef
9.
go back to reference Regeneron Alirocumab (SRA236553/REGN727). Investigator brochure. 2014. Regeneron Alirocumab (SRA236553/REGN727). Investigator brochure. 2014.
10.
go back to reference Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, Edelberg JM, Goodman SG, Hanotin C, Harrington RA, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379:2097–107.PubMedCrossRef Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, Edelberg JM, Goodman SG, Hanotin C, Harrington RA, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379:2097–107.PubMedCrossRef
11.
go back to reference Guedeney P, Giustino G, Sorrentino S, Claessen BE, Camaj A, Kalkman DN, et al. Efficacy and safety of alirocumab and evolocumab: a systematic review and meta-analysis of randomized controlled trials. Eur Heart J. 2019. Guedeney P, Giustino G, Sorrentino S, Claessen BE, Camaj A, Kalkman DN, et al. Efficacy and safety of alirocumab and evolocumab: a systematic review and meta-analysis of randomized controlled trials. Eur Heart J. 2019.
12.
go back to reference Kühnast S, Van Der Hoorn JWA, Pieterman EJ, Van Den Hoek AM, Sasiela WJ, Gusarova V, Peyman A, Schäfer HL, Schwahn U, Jukema JW, et al. Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin. J Lipid Res. 2014;55:2103–12.PubMedPubMedCentralCrossRef Kühnast S, Van Der Hoorn JWA, Pieterman EJ, Van Den Hoek AM, Sasiela WJ, Gusarova V, Peyman A, Schäfer HL, Schwahn U, Jukema JW, et al. Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin. J Lipid Res. 2014;55:2103–12.PubMedPubMedCentralCrossRef
13.
go back to reference Pouwer MG, Pieterman EJ, Worms N, Keijzer N, Jukema JW, Gromada J, Gusarova V, Princen HMG. Alirocumab, evinacumab, and atorvastatin triple therapy regresses plaque lesions and improves lesion composition in mice. J Lipid Res. 2020;61:365–75.PubMedCrossRef Pouwer MG, Pieterman EJ, Worms N, Keijzer N, Jukema JW, Gromada J, Gusarova V, Princen HMG. Alirocumab, evinacumab, and atorvastatin triple therapy regresses plaque lesions and improves lesion composition in mice. J Lipid Res. 2020;61:365–75.PubMedCrossRef
14.
go back to reference Shen Y, Li H, Zhao L, Li G, Chen B, Guo Q, et al. Increased half-life and enhanced potency of fc-modified human PCSK9 monoclonal antibodies in primates. PLoS One. 2017;12. Shen Y, Li H, Zhao L, Li G, Chen B, Guo Q, et al. Increased half-life and enhanced potency of fc-modified human PCSK9 monoclonal antibodies in primates. PLoS One. 2017;12.
15.
go back to reference Kasichayanula S, Grover A, Emery MG, Gibbs MA, Somaratne R, Wasserman SM, Gibbs JP. Clinical pharmacokinetics and pharmacodynamics of evolocumab, a PCSK9 inhibitor. Clin Pharmacokinet. 2018;57:769–79.PubMedPubMedCentralCrossRef Kasichayanula S, Grover A, Emery MG, Gibbs MA, Somaratne R, Wasserman SM, Gibbs JP. Clinical pharmacokinetics and pharmacodynamics of evolocumab, a PCSK9 inhibitor. Clin Pharmacokinet. 2018;57:769–79.PubMedPubMedCentralCrossRef
16.
go back to reference Chan JCY, Piper DE, Cao Q, Liu D, King C, Wang W, Tang J, Liu Q, Higbee J, Xia Z, et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci. 2009;106:9820–5.PubMedPubMedCentralCrossRef Chan JCY, Piper DE, Cao Q, Liu D, King C, Wang W, Tang J, Liu Q, Higbee J, Xia Z, et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci. 2009;106:9820–5.PubMedPubMedCentralCrossRef
17.
go back to reference Qi Z, Hu L, Zhang J, Yang W, Liu X, Jia D, et al. PCSK9 enhances platelet activation, thrombosis, and myocardial infarct expansion by binding to platelet CD36. Circulation. 2020. Qi Z, Hu L, Zhang J, Yang W, Liu X, Jia D, et al. PCSK9 enhances platelet activation, thrombosis, and myocardial infarct expansion by binding to platelet CD36. Circulation. 2020.
18.
go back to reference Wu Y, Xu MJ, Cao Z, Yang C, Wang J, Wang B, et al. Heterozygous ldlr-deficient hamster as a model to evaluate the efficacy of PCSK9 antibody in hyperlipidemia and atherosclerosis. Int J Mol Sci. 2019;20:5936. Wu Y, Xu MJ, Cao Z, Yang C, Wang J, Wang B, et al. Heterozygous ldlr-deficient hamster as a model to evaluate the efficacy of PCSK9 antibody in hyperlipidemia and atherosclerosis. Int J Mol Sci. 2019;20:5936.
19.
go back to reference Amgen Evolocumab (AMG 145). Investigator brochure. 2014. Amgen Evolocumab (AMG 145). Investigator brochure. 2014.
20.
go back to reference Khoshnejad M, Patel A, Wojtak K, Kudchodkar SB, Humeau L, Lyssenko NN, Rader DJ, Muthumani K, Weiner DB. Development of novel DNA-encoded PCSK9 monoclonal antibodies as lipid-lowering therapeutics. Mol Ther. 2019;27:188–99.PubMedCrossRef Khoshnejad M, Patel A, Wojtak K, Kudchodkar SB, Humeau L, Lyssenko NN, Rader DJ, Muthumani K, Weiner DB. Development of novel DNA-encoded PCSK9 monoclonal antibodies as lipid-lowering therapeutics. Mol Ther. 2019;27:188–99.PubMedCrossRef
22.
go back to reference Desai U, Lee EC, Chung K, Gao C, Gay J, Key B, Hansen G, Machajewski D, Platt KA, Sands AT, et al. Lipid-lowering effects of anti-angiopoietin-like 4 antibody recapitulate the lipid phenotype found in angiopoietin-like 4 knockout mice. Proc Natl Acad Sci U S A. 2007;104:11766–71.PubMedPubMedCentralCrossRef Desai U, Lee EC, Chung K, Gao C, Gay J, Key B, Hansen G, Machajewski D, Platt KA, Sands AT, et al. Lipid-lowering effects of anti-angiopoietin-like 4 antibody recapitulate the lipid phenotype found in angiopoietin-like 4 knockout mice. Proc Natl Acad Sci U S A. 2007;104:11766–71.PubMedPubMedCentralCrossRef
23.
go back to reference Harada-Shiba M, Ali S, Gipe DA, Gasparino E, Son V, Zhang Y, Pordy R, Catapano AL. A randomized study investigating the safety, tolerability, and pharmacokinetics of evinacumab, an ANGPTL3 inhibitor, in healthy Japanese and Caucasian subjects. Atherosclerosis. 2020;314:33–40.PubMedCrossRef Harada-Shiba M, Ali S, Gipe DA, Gasparino E, Son V, Zhang Y, Pordy R, Catapano AL. A randomized study investigating the safety, tolerability, and pharmacokinetics of evinacumab, an ANGPTL3 inhibitor, in healthy Japanese and Caucasian subjects. Atherosclerosis. 2020;314:33–40.PubMedCrossRef
24.
go back to reference Raal FJ, Rosenson RS, Reeskamp LF, Hovingh GK, Kastelein JJP, Rubba P, Ali S, Banerjee P, Chan K-C, Gipe DA, et al. Evinacumab for homozygous familial hypercholesterolemia. N Engl J Med. 2020;383:711–20.PubMedCrossRef Raal FJ, Rosenson RS, Reeskamp LF, Hovingh GK, Kastelein JJP, Rubba P, Ali S, Banerjee P, Chan K-C, Gipe DA, et al. Evinacumab for homozygous familial hypercholesterolemia. N Engl J Med. 2020;383:711–20.PubMedCrossRef
25.
go back to reference Gusarova V, Alexa CA, Wang Y, Rafique A, Kim JH, Buckler D, Mintah IJ, Shihanian LM, Cohen JC, Hobbs HH, et al. ANGPTL3 blockade with a human monoclonal antibody reduces plasma lipids in dyslipidemic mice and monkeys. J Lipid Res. 2015;56:1308–17.PubMedPubMedCentralCrossRef Gusarova V, Alexa CA, Wang Y, Rafique A, Kim JH, Buckler D, Mintah IJ, Shihanian LM, Cohen JC, Hobbs HH, et al. ANGPTL3 blockade with a human monoclonal antibody reduces plasma lipids in dyslipidemic mice and monkeys. J Lipid Res. 2015;56:1308–17.PubMedPubMedCentralCrossRef
26.
go back to reference Lee EC, Desai U, Gololobov G, Hong S, Feng X, Yu XC, Gay J, Wilganowski N, Gao C, Du LL, et al. Identification of a new functional domain in angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4) involved in binding and inhibition of lipoprotein lipase (LPL). J Biol Chem. 2009;284:13735–45.PubMedPubMedCentralCrossRef Lee EC, Desai U, Gololobov G, Hong S, Feng X, Yu XC, Gay J, Wilganowski N, Gao C, Du LL, et al. Identification of a new functional domain in angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4) involved in binding and inhibition of lipoprotein lipase (LPL). J Biol Chem. 2009;284:13735–45.PubMedPubMedCentralCrossRef
27.
go back to reference Fattori E, Cappelletti M, Lo Surdo P, Calzetta A, Bendtsen C, Ni YG, Pandit S, Sitlani A, Mesiti G, Carfí A, et al. Immunization against proprotein convertase subtilisin-like/kexin type 9 lowers plasma LDL-cholesterol levels in mice. J Lipid Res. 2012;53:1654–61.PubMedPubMedCentralCrossRef Fattori E, Cappelletti M, Lo Surdo P, Calzetta A, Bendtsen C, Ni YG, Pandit S, Sitlani A, Mesiti G, Carfí A, et al. Immunization against proprotein convertase subtilisin-like/kexin type 9 lowers plasma LDL-cholesterol levels in mice. J Lipid Res. 2012;53:1654–61.PubMedPubMedCentralCrossRef
28.
go back to reference Galabova G, Brunner S, Winsauer G, Juno C, Wanko B, Mairhofer A, Luhrs P, Schneeberger A, von Bonin A, Mattner F, et al. Peptide-based anti-PCSK9 vaccines - an approach for long-term LDLc management. PLoS One. 2014;9:e114469.PubMedPubMedCentralCrossRef Galabova G, Brunner S, Winsauer G, Juno C, Wanko B, Mairhofer A, Luhrs P, Schneeberger A, von Bonin A, Mattner F, et al. Peptide-based anti-PCSK9 vaccines - an approach for long-term LDLc management. PLoS One. 2014;9:e114469.PubMedPubMedCentralCrossRef
29.
go back to reference Landlinger C, Pouwer MG, Juno C, van der Hoorn JWA, Pieterman EJ, Jukema JW, Staffler G, Princen HMG, Galabova G. The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE*3Leiden.CETP mice. Eur Hear J. 2017;38:2499–507.CrossRef Landlinger C, Pouwer MG, Juno C, van der Hoorn JWA, Pieterman EJ, Jukema JW, Staffler G, Princen HMG, Galabova G. The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE*3Leiden.CETP mice. Eur Hear J. 2017;38:2499–507.CrossRef
30.
go back to reference Kawakami R, Nozato Y, Nakagami H, Ikeda Y, Shimamura M, Yoshida S, et al. Development of vaccine for dyslipidemia targeted to a proprotein convertase subtilisin/ kexin type 9 (PCSK9) epitope in mice. PLoS One. 2018;13:e0191895. Kawakami R, Nozato Y, Nakagami H, Ikeda Y, Shimamura M, Yoshida S, et al. Development of vaccine for dyslipidemia targeted to a proprotein convertase subtilisin/ kexin type 9 (PCSK9) epitope in mice. PLoS One. 2018;13:e0191895.
31.
go back to reference Ji H, Wu G, Li Y, Wang K, Xue X, You S, et al. Self-albumin camouflage of carrier protein prevents nontarget antibody production for enhanced LDL-C immunotherapy. Adv Healthc Mater. 2020;9:e1901203. Ji H, Wu G, Li Y, Wang K, Xue X, You S, et al. Self-albumin camouflage of carrier protein prevents nontarget antibody production for enhanced LDL-C immunotherapy. Adv Healthc Mater. 2020;9:e1901203.
32.
go back to reference Crossey E, Amar MJ, Sampson M, Peabody J, Schiller JT, Chackerian B, Remaley AT. A cholesterol-lowering VLP vaccine that targets PCSK9. Vaccine. 2015;33:5747–55.PubMedPubMedCentralCrossRef Crossey E, Amar MJ, Sampson M, Peabody J, Schiller JT, Chackerian B, Remaley AT. A cholesterol-lowering VLP vaccine that targets PCSK9. Vaccine. 2015;33:5747–55.PubMedPubMedCentralCrossRef
34.
go back to reference Wu D, Zhou Y, Pan Y, Li C, Wang Y, Chen F, et al. Vaccine against PCSK9 improved renal fibrosis by regulating fatty acid β-oxidation. J Am Heart Assoc. 2020;9:e014358. Wu D, Zhou Y, Pan Y, Li C, Wang Y, Chen F, et al. Vaccine against PCSK9 improved renal fibrosis by regulating fatty acid β-oxidation. J Am Heart Assoc. 2020;9:e014358.
35.
go back to reference Wu D, Pan Y, Yang S, Li C, Zhou Y, Wang Y, et al. PCSK9Qβ-003 vaccine attenuates atherosclerosis in Apolipoprotein E-deficient mice. Cardiovasc Drugs Ther. 2020;35:141–151. Wu D, Pan Y, Yang S, Li C, Zhou Y, Wang Y, et al. PCSK9Qβ-003 vaccine attenuates atherosclerosis in Apolipoprotein E-deficient mice. Cardiovasc Drugs Ther. 2020;35:141–151.
36.
go back to reference Momtazi-Borojeni AA, Jaafari MR, Badiee A, Banach M, Sahebkar A. Therapeutic effect of nanoliposomal PCSK9 vaccine in a mouse model of atherosclerosis. BMC Med. 2019;17:223.PubMedPubMedCentralCrossRef Momtazi-Borojeni AA, Jaafari MR, Badiee A, Banach M, Sahebkar A. Therapeutic effect of nanoliposomal PCSK9 vaccine in a mouse model of atherosclerosis. BMC Med. 2019;17:223.PubMedPubMedCentralCrossRef
37.
go back to reference Ding Q, Strong A, Patel KM, Ng SL, Gosis BS, Regan SN, Cowan CA, Rader DJ, Musunuru K. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. 2014;115:488–92.PubMedPubMedCentralCrossRef Ding Q, Strong A, Patel KM, Ng SL, Gosis BS, Regan SN, Cowan CA, Rader DJ, Musunuru K. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. 2014;115:488–92.PubMedPubMedCentralCrossRef
38.
go back to reference Unger T, Peleg Y. Recombinant protein expression in the baculovirus-infected insect cell system. Methods Mol Biol. 2012;800:187–99. Unger T, Peleg Y. Recombinant protein expression in the baculovirus-infected insect cell system. Methods Mol Biol. 2012;800:187–99.
39.
go back to reference Silva Lima B, Videira MA. Toxicology and biodistribution: the clinical value of animal biodistribution studies. Mol Ther - Methods Clin Dev. 2018;8:183–97.PubMedPubMedCentralCrossRef Silva Lima B, Videira MA. Toxicology and biodistribution: the clinical value of animal biodistribution studies. Mol Ther - Methods Clin Dev. 2018;8:183–97.PubMedPubMedCentralCrossRef
40.
go back to reference Ferreira V, Petry H, Salmon F. Immune responses to AAV-vectors, the Glybera example from bench to bedside. Front Immunol. 2014;5:82. Ferreira V, Petry H, Salmon F. Immune responses to AAV-vectors, the Glybera example from bench to bedside. Front Immunol. 2014;5:82.
41.
go back to reference Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471:602–7.PubMedPubMedCentralCrossRef Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471:602–7.PubMedPubMedCentralCrossRef
42.
go back to reference Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.PubMedPubMedCentralCrossRef Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.PubMedPubMedCentralCrossRef
43.
go back to reference Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M, Tsai JC, Weissman JS, Dueber JE, Qi LS, et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell. 2015;160:339–50.PubMedCrossRef Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M, Tsai JC, Weissman JS, Dueber JE, Qi LS, et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell. 2015;160:339–50.PubMedCrossRef
44.
45.
go back to reference Zheng J, Huynh HD, Umikawa M, Silvany R, Zhang CC. Angiopoietin-like protein 3 supports the activity of hematopoietic stem cells in the bone marrow niche. Blood. 2011;117:470–9.PubMedPubMedCentralCrossRef Zheng J, Huynh HD, Umikawa M, Silvany R, Zhang CC. Angiopoietin-like protein 3 supports the activity of hematopoietic stem cells in the bone marrow niche. Blood. 2011;117:470–9.PubMedPubMedCentralCrossRef
46.
go back to reference Chadwick AC, Wang X, Musunuru K. In Vivo Base editing of PCSK9 (proprotein convertase subtilisin/kexin type 9) as a therapeutic alternative to genome editing. Arterioscler Thromb Vasc Biol. 2017;37:1741–7.PubMedPubMedCentralCrossRef Chadwick AC, Wang X, Musunuru K. In Vivo Base editing of PCSK9 (proprotein convertase subtilisin/kexin type 9) as a therapeutic alternative to genome editing. Arterioscler Thromb Vasc Biol. 2017;37:1741–7.PubMedPubMedCentralCrossRef
47.
go back to reference Musunuru K, Chadwick AC, Mizoguchi T, Garcia SP, DeNizio JE, Reiss CW, Wang K, Iyer S, Dutta C, Clendaniel V, et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature. 2021;593:429–34.PubMedCrossRef Musunuru K, Chadwick AC, Mizoguchi T, Garcia SP, DeNizio JE, Reiss CW, Wang K, Iyer S, Dutta C, Clendaniel V, et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature. 2021;593:429–34.PubMedCrossRef
48.
go back to reference D’Aloia MM, Zizzari IG, Sacchetti B, Pierelli L, Alimandi M. CAR-T cells: the long and winding road to solid tumors review-article. Cell Death Dis. 2018;9. D’Aloia MM, Zizzari IG, Sacchetti B, Pierelli L, Alimandi M. CAR-T cells: the long and winding road to solid tumors review-article. Cell Death Dis. 2018;9.
49.
go back to reference Henry SP, Narayanan P, Shen L, Bhanot S, Younis HS, Burel SA. Assessment of the effects of 2′-methoxyethyl antisense oligonucleotides on platelet count in cynomolgus nonhuman primates. Nucleic Acid Ther. 2017;27:197–208.PubMedCrossRef Henry SP, Narayanan P, Shen L, Bhanot S, Younis HS, Burel SA. Assessment of the effects of 2′-methoxyethyl antisense oligonucleotides on platelet count in cynomolgus nonhuman primates. Nucleic Acid Ther. 2017;27:197–208.PubMedCrossRef
50.
go back to reference Flierl U, Nero TL, Lim B, Arthur JF, Yao Y, Jung SM, Gitz E, Pollitt AY, Zaldivia MTK, Jandrot-Perrus M, et al. Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators. J Exp Med. 2015;212:129–37.PubMedPubMedCentralCrossRef Flierl U, Nero TL, Lim B, Arthur JF, Yao Y, Jung SM, Gitz E, Pollitt AY, Zaldivia MTK, Jandrot-Perrus M, et al. Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators. J Exp Med. 2015;212:129–37.PubMedPubMedCentralCrossRef
51.
go back to reference Lundberg Slingsby MH, Couldwell G, Vijey P, Terkovich BE, Noetzli L, Okazaki R, Thon JN, Henry SP, Narayanan P, Italiano JE. Investigating potential mechanism(s) by which ASO-based drugs cause thrombocytopenia. Blood. 2018;132:3747.CrossRef Lundberg Slingsby MH, Couldwell G, Vijey P, Terkovich BE, Noetzli L, Okazaki R, Thon JN, Henry SP, Narayanan P, Italiano JE. Investigating potential mechanism(s) by which ASO-based drugs cause thrombocytopenia. Blood. 2018;132:3747.CrossRef
52.
go back to reference Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A, Clausen V, Wijngaard P, Horton JD, Taubel J, Brooks A, et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 2017;376:41–51.PubMedCrossRef Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A, Clausen V, Wijngaard P, Horton JD, Taubel J, Brooks A, et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 2017;376:41–51.PubMedCrossRef
53.
go back to reference Nair JK, Willoughby JLS, Chan A, Charisse K, Alam MR, Wang Q, Hoekstra M, Kandasamy P, Kel’in AV, Milstein S, et al. Multivalent N -Acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc. 2014;136:16958–61.PubMedCrossRef Nair JK, Willoughby JLS, Chan A, Charisse K, Alam MR, Wang Q, Hoekstra M, Kandasamy P, Kel’in AV, Milstein S, et al. Multivalent N -Acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc. 2014;136:16958–61.PubMedCrossRef
54.
go back to reference Warden BA, Duell PB. Inclisiran: a novel agent for lowering Apolipoprotein B–containing lipoproteins. J Cardiovasc Pharmacol. 2021;78:e157–74.PubMedCrossRef Warden BA, Duell PB. Inclisiran: a novel agent for lowering Apolipoprotein B–containing lipoproteins. J Cardiovasc Pharmacol. 2021;78:e157–74.PubMedCrossRef
55.
go back to reference Katzmann JL, Packard CJ, Chapman MJ, Katzmann I, Laufs U. Targeting RNA with antisense oligonucleotides and small interfering RNA in dyslipidemias. J Am Coll Cardiol. 2020;76:563–79.PubMedCrossRef Katzmann JL, Packard CJ, Chapman MJ, Katzmann I, Laufs U. Targeting RNA with antisense oligonucleotides and small interfering RNA in dyslipidemias. J Am Coll Cardiol. 2020;76:563–79.PubMedCrossRef
57.
go back to reference Khvorova A. Oligonucleotide therapeutics — a new class of cholesterol-lowering drugs. N Engl J Med. 2017;376:4–7.PubMedCrossRef Khvorova A. Oligonucleotide therapeutics — a new class of cholesterol-lowering drugs. N Engl J Med. 2017;376:4–7.PubMedCrossRef
58.
go back to reference Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, Liebow A, Bettencourt BR, Sutherland JE, Hutabarat RM, Clausen VA, Karsten V, Cehelsky J, et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet. 2014;383:60–8.PubMedCrossRef Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, Liebow A, Bettencourt BR, Sutherland JE, Hutabarat RM, Clausen VA, Karsten V, Cehelsky J, et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet. 2014;383:60–8.PubMedCrossRef
59.
go back to reference Ray KK, Stoekenbroek RM, Kallend D, Nishikido T, Leiter LA, Landmesser U, Wright RS, Wijngaard PLJ, Kastelein JJP. Effect of 1 or 2 doses of inclisiran on low-density lipoprotein cholesterol levels: one-year follow-up of the ORION-1 randomized clinical trial. JAMA Cardiol. 2019;4:1067–75.PubMedPubMedCentralCrossRef Ray KK, Stoekenbroek RM, Kallend D, Nishikido T, Leiter LA, Landmesser U, Wright RS, Wijngaard PLJ, Kastelein JJP. Effect of 1 or 2 doses of inclisiran on low-density lipoprotein cholesterol levels: one-year follow-up of the ORION-1 randomized clinical trial. JAMA Cardiol. 2019;4:1067–75.PubMedPubMedCentralCrossRef
61.
go back to reference Wright RS, Collins MG, Stoekenbroek RM, Robson R, Wijngaard PLJ, Landmesser U, Leiter LA, Kastelein JJP, Ray KK, Kallend D. Effects of renal impairment on the pharmacokinetics, efficacy, and safety of Inclisiran: an analysis of the ORION-7 and ORION-1 studies. Mayo Clin Proc. 2020;95:77–89.PubMedCrossRef Wright RS, Collins MG, Stoekenbroek RM, Robson R, Wijngaard PLJ, Landmesser U, Leiter LA, Kastelein JJP, Ray KK, Kallend D. Effects of renal impairment on the pharmacokinetics, efficacy, and safety of Inclisiran: an analysis of the ORION-7 and ORION-1 studies. Mayo Clin Proc. 2020;95:77–89.PubMedCrossRef
62.
go back to reference Frank-Kamenetsky M, Grefhorst A, Anderson NN, Racie TS, Bramlage B, Akinc A, Butler D, Charisse K, Dorkin R, Fan Y, et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci U S A. 2008;105:11915–20.PubMedPubMedCentralCrossRef Frank-Kamenetsky M, Grefhorst A, Anderson NN, Racie TS, Bramlage B, Akinc A, Butler D, Charisse K, Dorkin R, Fan Y, et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci U S A. 2008;105:11915–20.PubMedPubMedCentralCrossRef
63.
go back to reference Banerjee Y, Pantea Stoian A, Cicero AFG, Fogacci F, Nikolic D, Sachinidis A, et al. Inclisiran: a small interfering RNA strategy targeting PCSK9 to treat hypercholesterolemia. Expert Opin Drug Saf. 2021. Banerjee Y, Pantea Stoian A, Cicero AFG, Fogacci F, Nikolic D, Sachinidis A, et al. Inclisiran: a small interfering RNA strategy targeting PCSK9 to treat hypercholesterolemia. Expert Opin Drug Saf. 2021.
64.
go back to reference Ray KK, Wright RS, Kallend D, Koenig W, Leiter LA, Raal FJ, Bisch JA, Richardson T, Jaros M, Wijngaard PLJ, et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med. 2020;382:1507–19.PubMedCrossRef Ray KK, Wright RS, Kallend D, Koenig W, Leiter LA, Raal FJ, Bisch JA, Richardson T, Jaros M, Wijngaard PLJ, et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med. 2020;382:1507–19.PubMedCrossRef
65.
go back to reference Ray KK, Corral P, Morales E, Nicholls SJ. Pharmacological lipid-modification therapies for prevention of ischaemic heart disease: current and future options. Lancet. 2019;394:697–708.PubMedCrossRef Ray KK, Corral P, Morales E, Nicholls SJ. Pharmacological lipid-modification therapies for prevention of ischaemic heart disease: current and future options. Lancet. 2019;394:697–708.PubMedCrossRef
66.
go back to reference Landmesser U, Haghikia A, Leiter LA, Wright RS, Kallend D, Wijngaard P, et al. Effect of inclisiran, the small-interfering RNA against proprotein convertase subtilisin/kexin type 9, on platelets, immune cells, and immunological biomarkers: a pre-specified analysis from ORION-1. Cardiovasc Res. 2020. Landmesser U, Haghikia A, Leiter LA, Wright RS, Kallend D, Wijngaard P, et al. Effect of inclisiran, the small-interfering RNA against proprotein convertase subtilisin/kexin type 9, on platelets, immune cells, and immunological biomarkers: a pre-specified analysis from ORION-1. Cardiovasc Res. 2020.
67.
go back to reference Ray KK, Landmesser U, Leiter LA, Kallend D, Dufour R, Karakas M, Hall T, Troquay RP, Turner T, Visseren FL, et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med. 2017;376:1430–40.PubMedCrossRef Ray KK, Landmesser U, Leiter LA, Kallend D, Dufour R, Karakas M, Hall T, Troquay RP, Turner T, Visseren FL, et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med. 2017;376:1430–40.PubMedCrossRef
68.
go back to reference Chi X, Gatti P, Papoian T. Safety of antisense oligonucleotide and siRNA-based therapeutics. Drug Discov Today. 2017;22:823–33.PubMedCrossRef Chi X, Gatti P, Papoian T. Safety of antisense oligonucleotide and siRNA-based therapeutics. Drug Discov Today. 2017;22:823–33.PubMedCrossRef
69.
go back to reference Dolgin E. Lp(a)-lowering drugs bolster cardiovascular pipeline. Nat Rev Drug Discov. 2020;19:154–5.PubMedCrossRef Dolgin E. Lp(a)-lowering drugs bolster cardiovascular pipeline. Nat Rev Drug Discov. 2020;19:154–5.PubMedCrossRef
70.
go back to reference Melquist S, Wakefield D, Hamilton H, et al. Abstract 17167: Targeting apolipoprotein(a) with a novel RNAi delivery platform as a prophylactic treatment to reduce risk of cardiovascular events in individuals with elevated lipoprotein (a). Circulation. 2016;134:A17167 Melquist S, Wakefield D, Hamilton H, et al. Abstract 17167: Targeting apolipoprotein(a) with a novel RNAi delivery platform as a prophylactic treatment to reduce risk of cardiovascular events in individuals with elevated lipoprotein (a). Circulation. 2016;134:A17167
71.
go back to reference Merki E, Graham M, Taleb A, Leibundgut G, Yang X, Miller ER, Fu W, Mullick AE, Lee R, Willeit P, et al. Antisense oligonucleotide lowers plasma levels of apolipoprotein (a) and lipoprotein (a) in transgenic mice. J Am Coll Cardiol. 2011;57:1611–21.PubMedCrossRef Merki E, Graham M, Taleb A, Leibundgut G, Yang X, Miller ER, Fu W, Mullick AE, Lee R, Willeit P, et al. Antisense oligonucleotide lowers plasma levels of apolipoprotein (a) and lipoprotein (a) in transgenic mice. J Am Coll Cardiol. 2011;57:1611–21.PubMedCrossRef
72.
go back to reference Tsimikas S, Karwatowska-Prokopczuk E, Gouni-Berthold I, Tardif J-C, Baum SJ, Steinhagen-Thiessen E, Shapiro MD, Stroes ES, Moriarty PM, Nordestgaard BG, et al. Lipoprotein(a) reduction in persons with cardiovascular disease. N Engl J Med. 2020;382:244–55.PubMedCrossRef Tsimikas S, Karwatowska-Prokopczuk E, Gouni-Berthold I, Tardif J-C, Baum SJ, Steinhagen-Thiessen E, Shapiro MD, Stroes ES, Moriarty PM, Nordestgaard BG, et al. Lipoprotein(a) reduction in persons with cardiovascular disease. N Engl J Med. 2020;382:244–55.PubMedCrossRef
73.
go back to reference Yu RZ, Grundy JS, Geary RS. Clinical pharmacokinetics of second generation antisense oligonucleotides. Expert Opin Drug Metab Toxicol. 2013;9:169–82.PubMedCrossRef Yu RZ, Grundy JS, Geary RS. Clinical pharmacokinetics of second generation antisense oligonucleotides. Expert Opin Drug Metab Toxicol. 2013;9:169–82.PubMedCrossRef
74.
go back to reference Loscalzo J, Weinfeld M, Fless GM, Scanu AM. Lipoprotein(a), fibrin binding, and plasminogen activation. Arteriosclerosis. 1990;10:240–5.PubMedCrossRef Loscalzo J, Weinfeld M, Fless GM, Scanu AM. Lipoprotein(a), fibrin binding, and plasminogen activation. Arteriosclerosis. 1990;10:240–5.PubMedCrossRef
75.
go back to reference Rouy D, Grailhe P, Nigon F, Chapman J, Angles-Cano E. Lipoprotein(a) impairs generation of plasmin by fibrin-bound tissue-type plasminogen activator: in vitro studies in a plasma milieu. In proceedings of the arteriosclerosis and thrombosis. Arterioscler Thromb. 1991;11:629–38.PubMedCrossRef Rouy D, Grailhe P, Nigon F, Chapman J, Angles-Cano E. Lipoprotein(a) impairs generation of plasmin by fibrin-bound tissue-type plasminogen activator: in vitro studies in a plasma milieu. In proceedings of the arteriosclerosis and thrombosis. Arterioscler Thromb. 1991;11:629–38.PubMedCrossRef
76.
go back to reference Palabrica TM, Liu AC, Aronovitz MJ, Furie B, Lawn RM, Furie BC. Antifibrinolytic activity of apolipoprotein(a) in vivo: human apolipoprotein(a) transgenic mice are resistant to tissue plasminogen activator-mediated thrombolysis. Nat Med. 1995;1:256–9.PubMedCrossRef Palabrica TM, Liu AC, Aronovitz MJ, Furie B, Lawn RM, Furie BC. Antifibrinolytic activity of apolipoprotein(a) in vivo: human apolipoprotein(a) transgenic mice are resistant to tissue plasminogen activator-mediated thrombolysis. Nat Med. 1995;1:256–9.PubMedCrossRef
77.
go back to reference Biemond BJ, Friederich PW, Koschinsky ML, Levi M, Sangrar W, Xia J, Büller HR, Ten Cate JW. Apolipoprotein(a) attenuates endogenous fibrinolysis in the rabbit jugular vein thrombosis model in vivo. Circulation. 1997;96:1612–5.PubMedCrossRef Biemond BJ, Friederich PW, Koschinsky ML, Levi M, Sangrar W, Xia J, Büller HR, Ten Cate JW. Apolipoprotein(a) attenuates endogenous fibrinolysis in the rabbit jugular vein thrombosis model in vivo. Circulation. 1997;96:1612–5.PubMedCrossRef
78.
go back to reference Boffa MB, Marar TT, Yeang C, Viney NJ, Xia S, Witztum JL, Koschinsky ML, Tsimikas S. Potent reduction of plasma lipoprotein (a) with an antisense oligonucleotide in human subjects does not affect ex vivo fibrinolysis. J Lipid Res. 2019;60:2082–9.PubMedPubMedCentralCrossRef Boffa MB, Marar TT, Yeang C, Viney NJ, Xia S, Witztum JL, Koschinsky ML, Tsimikas S. Potent reduction of plasma lipoprotein (a) with an antisense oligonucleotide in human subjects does not affect ex vivo fibrinolysis. J Lipid Res. 2019;60:2082–9.PubMedPubMedCentralCrossRef
79.
go back to reference Helgadottir A, Gretarsdottir S, Thorleifsson G, Holm H, Patel RS, Gudnason T, Jones GT, Van Rij AM, Eapen DJ, Baas AF, et al. Apolipoprotein(a) genetic sequence variants associated with systemic atherosclerosis and coronary atherosclerotic burden but not with venous thromboembolism. J Am Coll Cardiol. 2012;60:722–9.PubMedCrossRef Helgadottir A, Gretarsdottir S, Thorleifsson G, Holm H, Patel RS, Gudnason T, Jones GT, Van Rij AM, Eapen DJ, Baas AF, et al. Apolipoprotein(a) genetic sequence variants associated with systemic atherosclerosis and coronary atherosclerotic burden but not with venous thromboembolism. J Am Coll Cardiol. 2012;60:722–9.PubMedCrossRef
80.
go back to reference Kamstrup PR, Tybjærg-Hansen A, Nordestgaard BG. Genetic evidence that lipoprotein(a) associates with atherosclerotic stenosis rather than venous thrombosis. Arterioscler Thromb Vasc Biol. 2012;32:1732–41.PubMedCrossRef Kamstrup PR, Tybjærg-Hansen A, Nordestgaard BG. Genetic evidence that lipoprotein(a) associates with atherosclerotic stenosis rather than venous thrombosis. Arterioscler Thromb Vasc Biol. 2012;32:1732–41.PubMedCrossRef
81.
go back to reference Boffa MB, Koschinsky ML. Oxidized phospholipids as a unifying theory for lipoprotein(a) and cardiovascular disease. Nat Rev Cardiol. 2019;16:305–18.PubMedCrossRef Boffa MB, Koschinsky ML. Oxidized phospholipids as a unifying theory for lipoprotein(a) and cardiovascular disease. Nat Rev Cardiol. 2019;16:305–18.PubMedCrossRef
82.
go back to reference Adam RC, Mintah IJ, Alexa-Braun CA, Shihanian LM, Lee JS, Banerjee P, Hamon SC, Kim HI, Cohen JC, Hobbs HH, et al. Angiopoietin-like protein 3 governs LDL-cholesterol levels through endothelial lipase-dependent VLDL clearance. J Lipid Res. 2020;61:1271–86.PubMedPubMedCentralCrossRef Adam RC, Mintah IJ, Alexa-Braun CA, Shihanian LM, Lee JS, Banerjee P, Hamon SC, Kim HI, Cohen JC, Hobbs HH, et al. Angiopoietin-like protein 3 governs LDL-cholesterol levels through endothelial lipase-dependent VLDL clearance. J Lipid Res. 2020;61:1271–86.PubMedPubMedCentralCrossRef
83.
go back to reference Wu L, Soundarapandian MM, Castoreno AB, Millar JS, Rader DJ. LDL-cholesterol reduction by ANGPTL3 inhibition in mice is dependent on endothelial lipase. Circ Res. 2020;127:1112–4.PubMedPubMedCentralCrossRef Wu L, Soundarapandian MM, Castoreno AB, Millar JS, Rader DJ. LDL-cholesterol reduction by ANGPTL3 inhibition in mice is dependent on endothelial lipase. Circ Res. 2020;127:1112–4.PubMedPubMedCentralCrossRef
84.
go back to reference Graham MJ, Lee RG, Brandt TA, Tai L-J, Fu W, Peralta R, Yu R, Hurh E, Paz E, McEvoy BW, et al. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N Engl J Med. 2017;377:222–32.PubMedCrossRef Graham MJ, Lee RG, Brandt TA, Tai L-J, Fu W, Peralta R, Yu R, Hurh E, Paz E, McEvoy BW, et al. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N Engl J Med. 2017;377:222–32.PubMedCrossRef
85.
go back to reference Graham MJ, Lee RG, Bell TA, Fu W, Mullick AE, Alexander VJ, Singleton W, Viney N, Geary R, Su J, et al. Antisense oligonucleotide inhibition of apolipoprotein c-iii reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ Res. 2013;112:1479–90.PubMedCrossRef Graham MJ, Lee RG, Bell TA, Fu W, Mullick AE, Alexander VJ, Singleton W, Viney N, Geary R, Su J, et al. Antisense oligonucleotide inhibition of apolipoprotein c-iii reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ Res. 2013;112:1479–90.PubMedCrossRef
86.
go back to reference Alexander VJ, Xia S, Hurh E, Hughes SG, O’Dea L, Geary RS, Witztum JL, Tsimikas S. N-acetyl galactosamine-conjugated antisense drug to APOC3 mRNA, triglycerides and atherogenic lipoprotein levels. Eur Heart J. 2019;40:2785–96.PubMedPubMedCentralCrossRef Alexander VJ, Xia S, Hurh E, Hughes SG, O’Dea L, Geary RS, Witztum JL, Tsimikas S. N-acetyl galactosamine-conjugated antisense drug to APOC3 mRNA, triglycerides and atherogenic lipoprotein levels. Eur Heart J. 2019;40:2785–96.PubMedPubMedCentralCrossRef
87.
go back to reference Post N, Yu R, Greenlee S, Gaus H, Hurh E, Matson J, Wang Y. Metabolism and disposition of volanesorsen, a 29-O-(2 methoxyethyl) antisense oligonucleotide, across species. Drug Metab Dispos. 2019;47:1164–73.PubMedCrossRef Post N, Yu R, Greenlee S, Gaus H, Hurh E, Matson J, Wang Y. Metabolism and disposition of volanesorsen, a 29-O-(2 methoxyethyl) antisense oligonucleotide, across species. Drug Metab Dispos. 2019;47:1164–73.PubMedCrossRef
88.
go back to reference Alexander VJ, Digenio A, Xia S, Hurh E, Hughes S, Geary RS, et al. Inhibition pf apolipoprotein CIII with GalNac conjugated antisense drug potently lowers fasting serum apolipoprotein CIII and triglycerides levels in healthy volunteers with elevated triglycerides. JACC. 2018;71:A1724. Alexander VJ, Digenio A, Xia S, Hurh E, Hughes S, Geary RS, et al. Inhibition pf apolipoprotein CIII with GalNac conjugated antisense drug potently lowers fasting serum apolipoprotein CIII and triglycerides levels in healthy volunteers with elevated triglycerides. JACC. 2018;71:A1724.
Metadata
Title
Cholesterol Lowering Biotechnological Strategies: From Monoclonal Antibodies to Antisense Therapies. A Pre-Clinical Perspective Review
Authors
S. Bellosta
C. Rossi
A. S. Alieva
A. L. Catapano
A. Corsini
A. Baragetti
Publication date
13-01-2022
Publisher
Springer US
Keyword
Alirocumab
Published in
Cardiovascular Drugs and Therapy / Issue 3/2023
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-021-07293-w

Other articles of this Issue 3/2023

Cardiovascular Drugs and Therapy 3/2023 Go to the issue