Skip to main content
Top
Published in: Virology Journal 1/2023

Open Access 01-12-2023 | Research

Alfalfa vein mottling virus, a novel potyvirid infecting Medicago sativa L.

Authors: Lev G. Nemchinov, Olga A. Postnikova, William M. Wintermantel, John C. Palumbo, Sam Grinstead

Published in: Virology Journal | Issue 1/2023

Login to get access

Abstract

Background

We have recently identified a novel virus detected in alfalfa seed material. The virus was tentatively named alfalfa-associated potyvirus 1, as its genomic fragments bore similarities with potyvirids. In this study, we continued investigating this novel species, expanding information on its genomic features and biological characteristics.

Methods

This research used a wide range of methodology to achieve end results: high throughput sequencing, bioinformatics tools, reverse transcription-polymerase chain reactions, differential diagnostics using indicator plants, virus purification, transmission electron microscopy, and others.

Results

In this study, we obtained a complete genome sequence of the virus and classified it as a tentative species in the new genus, most closely related to the members of the genus Ipomovirus in the family Potyviridae. This assumption is based on the genome sequence and structure, phylogenetic relationships, and transmission electron microscopy investigations. We also demonstrated its mechanical transmission to the indicator plant Nicotiana benthamiana and to the natural host Medicago sativa, both of which developed characteristic symptoms therefore suggesting a pathogenic nature of the disease.

Conclusions

Consistent with symptomatology, the virus was renamed to alfalfa vein mottling virus. A name Alvemovirus was proposed for the new genus in the family Potyviridae, of which alfalfa vein mottling virus is a tentative member.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chen H, Zeng Y, Yang Y, Huang L, Tang B, et al. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat Commun. 2020;11:2494.CrossRefPubMedPubMedCentral Chen H, Zeng Y, Yang Y, Huang L, Tang B, et al. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat Commun. 2020;11:2494.CrossRefPubMedPubMedCentral
2.
go back to reference Postnikova OA, Shao J, Nemchinov LG. Analysis of the alfalfa root transcriptome in response to salinity stress. Plant Cell Physiol. 2013;54:1041–55.CrossRefPubMed Postnikova OA, Shao J, Nemchinov LG. Analysis of the alfalfa root transcriptome in response to salinity stress. Plant Cell Physiol. 2013;54:1041–55.CrossRefPubMed
3.
go back to reference Postnikova OA, Hult M, Shao J, Skantar A, Nemchinov LG. Transcriptome analysis of resistant and susceptible alfalfa cultivars infected with root-knot nematode Meloidogyne incognita. PLoS ONE. 2015;10(3): e0123157.CrossRefPubMed Postnikova OA, Hult M, Shao J, Skantar A, Nemchinov LG. Transcriptome analysis of resistant and susceptible alfalfa cultivars infected with root-knot nematode Meloidogyne incognita. PLoS ONE. 2015;10(3): e0123157.CrossRefPubMed
4.
go back to reference Nemchinov LG, Shao J, Lee MN, Postnikova OA, Samac DA. Resistant and susceptible responses in alfalfa (Medicago sativa) to bacterial stem blight caused by Pseudomonas syringae pv. Syringae PloS One. 2017;12(12): e0189781.CrossRefPubMed Nemchinov LG, Shao J, Lee MN, Postnikova OA, Samac DA. Resistant and susceptible responses in alfalfa (Medicago sativa) to bacterial stem blight caused by Pseudomonas syringae pv. Syringae PloS One. 2017;12(12): e0189781.CrossRefPubMed
5.
go back to reference Vieira P, Mowery J, Eisenback JD, Shao J, Nemchinov LG. Cellular and transcriptional responses of resistant and susceptible cultivars of alfalfa to the root lesion nematode. Pratylenchus penetrans Front Plant Sci. 2019;2019(10):971.CrossRef Vieira P, Mowery J, Eisenback JD, Shao J, Nemchinov LG. Cellular and transcriptional responses of resistant and susceptible cultivars of alfalfa to the root lesion nematode. Pratylenchus penetrans Front Plant Sci. 2019;2019(10):971.CrossRef
6.
go back to reference Yu L-X, Zheng P, Bhamidimarri S, Liu X-P, Main D. The impact of genotyping-by-sequencing pipelines on SNP discovery and identification of markers associated with verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.). Front Plant Sci. 2017;8:89.CrossRefPubMedPubMedCentral Yu L-X, Zheng P, Bhamidimarri S, Liu X-P, Main D. The impact of genotyping-by-sequencing pipelines on SNP discovery and identification of markers associated with verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.). Front Plant Sci. 2017;8:89.CrossRefPubMedPubMedCentral
7.
go back to reference Yu L-X, Zhang F, Culma CM, Lin S, Niu Y, et al. Construction of high-density linkage maps and identification of quantitative trait loci associated with verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.). Plant Dis. 2020;104(5):1439–44.CrossRefPubMed Yu L-X, Zhang F, Culma CM, Lin S, Niu Y, et al. Construction of high-density linkage maps and identification of quantitative trait loci associated with verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.). Plant Dis. 2020;104(5):1439–44.CrossRefPubMed
8.
go back to reference Lin S, Medina CA, Boge B, Hu J, Fransen S, et al. Identification of genetic loci associated with forage quality in response to water deficit in autotetraploid alfalfa (Medicago sativa L.). BMC Plant Biol. 2020;20(1):303.CrossRefPubMedPubMedCentral Lin S, Medina CA, Boge B, Hu J, Fransen S, et al. Identification of genetic loci associated with forage quality in response to water deficit in autotetraploid alfalfa (Medicago sativa L.). BMC Plant Biol. 2020;20(1):303.CrossRefPubMedPubMedCentral
9.
go back to reference Bejerman N, Roumagnac P, Nemchinov LG. High-throughput sequencing for deciphering the virome of alfalfa (Medicago sativa L.). Front Microbiol. 2020;11:553109.CrossRefPubMedPubMedCentral Bejerman N, Roumagnac P, Nemchinov LG. High-throughput sequencing for deciphering the virome of alfalfa (Medicago sativa L.). Front Microbiol. 2020;11:553109.CrossRefPubMedPubMedCentral
10.
go back to reference Nemchinov LG, Irish BM, Grinstead S, Shao J, Vieira P. Diversity of the virome associated with alfalfa (Medicago sativa L.) in the U.S. Pacific Northwest. Sci Rep. 2020;12(1):8726.CrossRef Nemchinov LG, Irish BM, Grinstead S, Shao J, Vieira P. Diversity of the virome associated with alfalfa (Medicago sativa L.) in the U.S. Pacific Northwest. Sci Rep. 2020;12(1):8726.CrossRef
11.
go back to reference Jiang P, Shao J, Nemchinov LG. Identification of emerging viral genomes in transcriptomic datasets of alfalfa (Medicago sativa L.). Virol J. 2019;16:153.CrossRefPubMedPubMedCentral Jiang P, Shao J, Nemchinov LG. Identification of emerging viral genomes in transcriptomic datasets of alfalfa (Medicago sativa L.). Virol J. 2019;16:153.CrossRefPubMedPubMedCentral
13.
go back to reference Vayssier-Taussat M, Albina E, Citti C, Cosson JF, Jacques MA, Lebrun MH, et al. Shifting the paradigm from pathogens to pathobiome: new concepts in the light of meta-omics. Front Cell Infect Microbiol. 2014;4:29.CrossRefPubMedPubMedCentral Vayssier-Taussat M, Albina E, Citti C, Cosson JF, Jacques MA, Lebrun MH, et al. Shifting the paradigm from pathogens to pathobiome: new concepts in the light of meta-omics. Front Cell Infect Microbiol. 2014;4:29.CrossRefPubMedPubMedCentral
14.
go back to reference Nemchinov LG, Irish BM, Uschapovsky IV, Grinstead S, Shao J, Postnikova OA. Composition of the alfalfa pathobiome in commercial fields. Front Microbiol. 2023;14:1225781.CrossRefPubMedPubMedCentral Nemchinov LG, Irish BM, Uschapovsky IV, Grinstead S, Shao J, Postnikova OA. Composition of the alfalfa pathobiome in commercial fields. Front Microbiol. 2023;14:1225781.CrossRefPubMedPubMedCentral
15.
17.
go back to reference Bankevich A, Nurk S, Antipov D, Gurevich A, Dvorkin M, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CrossRefPubMedPubMedCentral Bankevich A, Nurk S, Antipov D, Gurevich A, Dvorkin M, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CrossRefPubMedPubMedCentral
18.
go back to reference Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CrossRefPubMed Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CrossRefPubMed
20.
go back to reference Goh CA, Hahn Y. Analysis of proteolytic processing sites in potyvirus polyproteins revealed differential amino acid preferences of Nia-Pro protease in each of seven cleavage sites. PLoS ONE. 2021;16(1):e0245853.CrossRefPubMedPubMedCentral Goh CA, Hahn Y. Analysis of proteolytic processing sites in potyvirus polyproteins revealed differential amino acid preferences of Nia-Pro protease in each of seven cleavage sites. PLoS ONE. 2021;16(1):e0245853.CrossRefPubMedPubMedCentral
21.
go back to reference Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RaxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–5.CrossRefPubMedPubMedCentral Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RaxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–5.CrossRefPubMedPubMedCentral
22.
go back to reference Lesemann DE, Koenig R, Huth W, Brunt AA, Phillips S, Barton RJ. Poinsettia mosaic virus: a tymovirus? Phytopath Z. 1983;107:250–62.CrossRef Lesemann DE, Koenig R, Huth W, Brunt AA, Phillips S, Barton RJ. Poinsettia mosaic virus: a tymovirus? Phytopath Z. 1983;107:250–62.CrossRef
23.
go back to reference Paysan-Lafosse T, Blum M, Shuguransky S, Grego T, Pinto BL, et al. InterPro in 2022. Nucleic Acids Res. 2023;51(D1):D418–27.CrossRefPubMed Paysan-Lafosse T, Blum M, Shuguransky S, Grego T, Pinto BL, et al. InterPro in 2022. Nucleic Acids Res. 2023;51(D1):D418–27.CrossRefPubMed
25.
go back to reference Hull RM. Plant Virology. 4th ed. Academic Press; 2002. Hull RM. Plant Virology. 4th ed. Academic Press; 2002.
26.
go back to reference Bhat AI, Rao GP 2020 Electron Microscopy and Utramicrotomy. In: Characterization of plant viruses. Methods and Protocols. Humana Press, New York, NY U.S.A. p 173–185 Bhat AI, Rao GP 2020 Electron Microscopy and Utramicrotomy. In: Characterization of plant viruses. Methods and Protocols. Humana Press, New York, NY U.S.A. p 173–185
Metadata
Title
Alfalfa vein mottling virus, a novel potyvirid infecting Medicago sativa L.
Authors
Lev G. Nemchinov
Olga A. Postnikova
William M. Wintermantel
John C. Palumbo
Sam Grinstead
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2023
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-023-02250-5

Other articles of this Issue 1/2023

Virology Journal 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine