Skip to main content
Top
Published in: European Journal of Applied Physiology 7/2018

01-07-2018 | Original Article

Aerobic fitness alters the capacity of mononuclear cells to produce pentraxin 3 following maximal exercise

Authors: Aaron L. Slusher, Tiffany M. Zúñiga, Edmund O. Acevedo

Published in: European Journal of Applied Physiology | Issue 7/2018

Login to get access

Abstract

Purpose

Pentraxin 3 (PTX3) is a vital regulator of innate immune function. Although plasma PTX3 concentrations are elevated with aerobic fitness, the cellular functions of PTX3 remain unknown in aerobically trained and untrained subjects.

Methods

Thirty individuals (aerobically trained = 15 and untrained = 15) participated in a maximal exercise protocol to examine ex vivo PTX3 production from isolated peripheral blood mononuclear cells (PBMCs) exposed to LPS or palmitate. The capacity of PTX3 to stimulate inflammatory cytokine production ex vivo was also examined.

Results

Elevated plasma PTX3 concentrations prior to exercise were positively associated with the percent change (pre to post exercise) in plasma PTX3 concentrations in all subjects, independent of cardiorespiratory fitness (VO2max). In addition, elevated plasma PTX3 concentrations in aerobically trained subjects at rest predicted changes in the LPS- and palmitate-stimulated PTX3 production from isolated PBMCs following acute exercise. In response to PTX3 simulation, the capacity of PBMCs to produce the anti-inflammatory cytokine IL-10 was decreased following acute exercise in all subject (no changes in IL-6, TGF-β1, and TNF-α observed). However, the percent change in IL-6 production was positively associated with VO2max in all subjects, and in aerobically trained subjects only, positively associated with elevated plasma PTX3 concentrations at rest and in response to acute exercise.

Conclusion

These results suggest that aerobic training enhances the utilization of plasma PTX3 concentrations to predict the capacity of mononuclear cells to produce PTX3, and potentially, its reciprocal role of PTX3 as an initiator of the innate immune response following maximal exercise.
Literature
go back to reference Alles VV, Bottazzi B, Peri G, Golay J, Introna M, Mantovani A (1994) Inducible expression of PTX3, a new member of the pentraxin family, in human mononuclear phagocytes. Blood 84:3483–3493PubMed Alles VV, Bottazzi B, Peri G, Golay J, Introna M, Mantovani A (1994) Inducible expression of PTX3, a new member of the pentraxin family, in human mononuclear phagocytes. Blood 84:3483–3493PubMed
go back to reference Breviario F, d’Aniello EM, Golay J, Peri G, Bottazzi B, Bairoch A, Saccone S, Marzella R, Predazzi V, Rocchi M, Della Valle G, Dejana E, Mantovani A, Introna M (1992) Interleukin-1-inducible genes in endothelial cells. J Biol Chem 267:22190–22197PubMed Breviario F, d’Aniello EM, Golay J, Peri G, Bottazzi B, Bairoch A, Saccone S, Marzella R, Predazzi V, Rocchi M, Della Valle G, Dejana E, Mantovani A, Introna M (1992) Interleukin-1-inducible genes in endothelial cells. J Biol Chem 267:22190–22197PubMed
go back to reference Deban L, Russo RC, Sironi M, Moalli F, Scanziani M, Zambelli V, Cuccovillo I, Bastone A, Gobbi M, Valentino S, Doni A, Garlanda C, Danese S, Salvatori G, Sassano M, Evangelista V, Rossi B, Zenaro E, Constantin G, Laudanna C, Bottazzi B, Mantovani A (2010) Regulation of leukocyte recruitment by the long pentraxin PTX3. Nat Immunol 11:328–334. https://doi.org/10.1038/ni.1854 CrossRefPubMed Deban L, Russo RC, Sironi M, Moalli F, Scanziani M, Zambelli V, Cuccovillo I, Bastone A, Gobbi M, Valentino S, Doni A, Garlanda C, Danese S, Salvatori G, Sassano M, Evangelista V, Rossi B, Zenaro E, Constantin G, Laudanna C, Bottazzi B, Mantovani A (2010) Regulation of leukocyte recruitment by the long pentraxin PTX3. Nat Immunol 11:328–334. https://​doi.​org/​10.​1038/​ni.​1854 CrossRefPubMed
go back to reference Fattori E, Cappelletti M, Costa P, Semtto C, Cantoni L, Careui M, Faggioni R, Fantuzzi G, Ghezzi P, Poli V (1994) Defective inflammatory response in interleukin 6-deficient mice. J Exp Med 180:1243–1250CrossRefPubMed Fattori E, Cappelletti M, Costa P, Semtto C, Cantoni L, Careui M, Faggioni R, Fantuzzi G, Ghezzi P, Poli V (1994) Defective inflammatory response in interleukin 6-deficient mice. J Exp Med 180:1243–1250CrossRefPubMed
go back to reference Lancaster GI, Langley KG, Berglund NA, Kammoun HL, Reibe S, Estevez E, Weir J, Mellett NA, Pernes G, Conway JRW, Lee MKS, Timpson P, Murphy AJ, Masters SL, Gerondakis S, Bartonicek N, Kaczorowski DC, Dinger ME, Meikle PJ, Bond PJ, Febbraio MA (2018) Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism. Cell Metab 27(5):1096–1110.e5CrossRefPubMed Lancaster GI, Langley KG, Berglund NA, Kammoun HL, Reibe S, Estevez E, Weir J, Mellett NA, Pernes G, Conway JRW, Lee MKS, Timpson P, Murphy AJ, Masters SL, Gerondakis S, Bartonicek N, Kaczorowski DC, Dinger ME, Meikle PJ, Bond PJ, Febbraio MA (2018) Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism. Cell Metab 27(5):1096–1110.e5CrossRefPubMed
go back to reference Mauer J, Chaurasia B, Goldau J, Vogt MC, Ruud J, Nguyen KD, Theurich S, Hausen AC, Schmitz J, Brönneke HS, Estevez E, Allen TL, Mesaros A, Partridge L, Febbraio MA, Chawla A, Wunderlich FT, Brüning JC (2014) Interlukin-6 signaling promotes alternative macrophage activation to limit obesity-associate insulin resistance and endotoxemia. Nat Immunol 15:423–430. https://doi.org/10.1038/ni.2865 CrossRefPubMedPubMedCentral Mauer J, Chaurasia B, Goldau J, Vogt MC, Ruud J, Nguyen KD, Theurich S, Hausen AC, Schmitz J, Brönneke HS, Estevez E, Allen TL, Mesaros A, Partridge L, Febbraio MA, Chawla A, Wunderlich FT, Brüning JC (2014) Interlukin-6 signaling promotes alternative macrophage activation to limit obesity-associate insulin resistance and endotoxemia. Nat Immunol 15:423–430. https://​doi.​org/​10.​1038/​ni.​2865 CrossRefPubMedPubMedCentral
go back to reference Nakajima T, Kurano M, Hasegawa T, Takano H, Iida H, Yasuda T, Fukuda T, Madarame H, Uno K, Meguro K, Shiga T, Sagara M, Nagata T, Maemura K, Hirata Y, Yamasoba T, Nagai R (2010) Pentraxin3 and high-sensitive C-reactive protein are independent inflammatory markers released during high-intensity exercise. Eur J Appl Physiol 110:905–913. https://doi.org/10.1007/s00421-010-1572-x CrossRefPubMed Nakajima T, Kurano M, Hasegawa T, Takano H, Iida H, Yasuda T, Fukuda T, Madarame H, Uno K, Meguro K, Shiga T, Sagara M, Nagata T, Maemura K, Hirata Y, Yamasoba T, Nagai R (2010) Pentraxin3 and high-sensitive C-reactive protein are independent inflammatory markers released during high-intensity exercise. Eur J Appl Physiol 110:905–913. https://​doi.​org/​10.​1007/​s00421-010-1572-x CrossRefPubMed
Metadata
Title
Aerobic fitness alters the capacity of mononuclear cells to produce pentraxin 3 following maximal exercise
Authors
Aaron L. Slusher
Tiffany M. Zúñiga
Edmund O. Acevedo
Publication date
01-07-2018
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Applied Physiology / Issue 7/2018
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-018-3882-3

Other articles of this Issue 7/2018

European Journal of Applied Physiology 7/2018 Go to the issue