Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2018

01-02-2018 | Clinical trial

Adipose tissue inflammation in breast cancer survivors: effects of a 16-week combined aerobic and resistance exercise training intervention

Authors: Christina M. Dieli-Conwright, Jean-Hugues Parmentier, Nathalie Sami, Kyuwan Lee, Darcy Spicer, Wendy J. Mack, Fred Sattler, Steven D. Mittelman

Published in: Breast Cancer Research and Treatment | Issue 1/2018

Login to get access

Abstract

Purpose

Obesity is a leading modifiable contributor to breast cancer mortality due to its association with increased recurrence and decreased overall survival rate. Obesity stimulates cancer progression through chronic, low-grade inflammation in white adipose tissue, leading to accumulation of adipose tissue macrophages (ATMs), in particular, the pro-inflammatory M1 phenotype macrophage. Exercise has been shown to reduce M1 ATMs and increase the more anti-inflammatory M2 ATMs in obese adults. The purpose of this study was to determine whether a 16-week exercise intervention would positively alter ATM phenotype in obese postmenopausal breast cancer survivors.

Methods

Twenty obese postmenopausal breast cancer survivors were randomized to a 16-week aerobic and resistance exercise (EX) intervention or delayed intervention control (CON). The EX group participated in 16 weeks of supervised exercise sessions 3 times/week. Participants provided fasting blood, dual-energy X-ray absorptiometry (DXA), and superficial subcutaneous abdominal adipose tissue biopsies at baseline and following the 16-week study period.

Results

EX participants experienced significant improvements in body composition, cardiometabolic biomarkers, and systemic inflammation (all p < 0.03 vs. CON). Adipose tissue from EX participants showed a significant decrease in ATM M1 (p < 0.001), an increase in ATM M2 (p < 0.001), increased adipose tissue secretion of anti-inflammatory cytokines such as adiponectin, and decreased secretion of the pro-inflammatory cytokines IL-6 and TNF- α (all p < 0.055).

Conclusions

A 16-week aerobic and resistance exercise intervention attenuates adipose tissue inflammation in obese postmenopausal breast cancer survivors. Future large randomized trials are warranted to investigate the impact of exercise-induced reductions in adipose tissue inflammation and breast cancer recurrence.
Literature
1.
2.
go back to reference Protani M, Coory M, Martin JH (2010) Effect of obesity on survival of women with breast cancer: systematic review and meta-analysis. Breast Cancer Res Treat 123(3):627–635CrossRefPubMed Protani M, Coory M, Martin JH (2010) Effect of obesity on survival of women with breast cancer: systematic review and meta-analysis. Breast Cancer Res Treat 123(3):627–635CrossRefPubMed
3.
go back to reference Iyengar NM, Hudis CA, Dannenberg AJ (2013) Obesity and inflammation: new insights into breast cancer development and progression. American Society of Clinical Oncology educational book/ASCO American Society of Clinical Oncology Meeting:46–51 Iyengar NM, Hudis CA, Dannenberg AJ (2013) Obesity and inflammation: new insights into breast cancer development and progression. American Society of Clinical Oncology educational book/ASCO American Society of Clinical Oncology Meeting:46–51
4.
go back to reference Campbell KL, Makar KW, Kratz M, Foster-Schubert KE, McTiernan A, Ulrich CM (2009) A pilot study of sampling subcutaneous adipose tissue to examine biomarkers of cancer risk. Cancer Prev Res (Phila) 2(1):37–42CrossRef Campbell KL, Makar KW, Kratz M, Foster-Schubert KE, McTiernan A, Ulrich CM (2009) A pilot study of sampling subcutaneous adipose tissue to examine biomarkers of cancer risk. Cancer Prev Res (Phila) 2(1):37–42CrossRef
5.
go back to reference Campbell KL, Foster-Schubert KE, Makar KW, Kratz M, Hagman D, Schur EA et al (2013) Gene expression changes in adipose tissue with diet- and/or exercise-induced weight loss. Cancer Prev Res (Phila) 6(3):217–231CrossRef Campbell KL, Foster-Schubert KE, Makar KW, Kratz M, Hagman D, Schur EA et al (2013) Gene expression changes in adipose tissue with diet- and/or exercise-induced weight loss. Cancer Prev Res (Phila) 6(3):217–231CrossRef
7.
8.
go back to reference Fujisaka S, Usui I, Bukhari A, Ikutani M, Oya T, Kanatani Y et al (2009) Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes 58(11):2574–2582CrossRefPubMedPubMedCentral Fujisaka S, Usui I, Bukhari A, Ikutani M, Oya T, Kanatani Y et al (2009) Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes 58(11):2574–2582CrossRefPubMedPubMedCentral
9.
go back to reference Cao Y (2010) Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov 9(2):107–115CrossRefPubMed Cao Y (2010) Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov 9(2):107–115CrossRefPubMed
10.
go back to reference Mayi TH, Daoudi M, Derudas B, Gross B, Bories G, Wouters K et al (2012) Human adipose tissue macrophages display activation of cancer-related pathways. J Biol Chem 287(26):21904–21913CrossRefPubMedPubMedCentral Mayi TH, Daoudi M, Derudas B, Gross B, Bories G, Wouters K et al (2012) Human adipose tissue macrophages display activation of cancer-related pathways. J Biol Chem 287(26):21904–21913CrossRefPubMedPubMedCentral
11.
go back to reference Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444CrossRefPubMed Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444CrossRefPubMed
12.
go back to reference Auerbach P, Nordby P, Bendtsen LQ, Mehlsen JL, Basnet SK, Vestergaard H et al (2013) Differential effects of endurance training and weight loss on plasma adiponectin multimers and adipose tissue macrophages in younger, moderately overweight men. Am J Physiol Regul Integr Comp Physiol 305(5):R490–R498CrossRefPubMed Auerbach P, Nordby P, Bendtsen LQ, Mehlsen JL, Basnet SK, Vestergaard H et al (2013) Differential effects of endurance training and weight loss on plasma adiponectin multimers and adipose tissue macrophages in younger, moderately overweight men. Am J Physiol Regul Integr Comp Physiol 305(5):R490–R498CrossRefPubMed
13.
go back to reference Ahmadizad S, Ghorbani S, Ghasemikaram M, Bahmanzadeh M (2014) Effects of short-term nonperiodized, linear periodized and daily undulating periodized resistance training on plasma adiponectin, leptin and insulin resistance. Clin Biochem 47(6):417–422CrossRefPubMed Ahmadizad S, Ghorbani S, Ghasemikaram M, Bahmanzadeh M (2014) Effects of short-term nonperiodized, linear periodized and daily undulating periodized resistance training on plasma adiponectin, leptin and insulin resistance. Clin Biochem 47(6):417–422CrossRefPubMed
14.
go back to reference Kang DW, Lee J, Suh SH, Ligibel J, Courneya KS, Jeon JY (2017) Effects of exercise on insulin, igf axis, adipocytokines, and inflammatory markers in breast cancer survivors: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 26(3):355–365CrossRefPubMed Kang DW, Lee J, Suh SH, Ligibel J, Courneya KS, Jeon JY (2017) Effects of exercise on insulin, igf axis, adipocytokines, and inflammatory markers in breast cancer survivors: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 26(3):355–365CrossRefPubMed
15.
go back to reference Meneses-Echavez JF, Correa-Bautista JE, Gonzalez-Jimenez E, Schmidt Rio-Valle J, Elkins MR, Lobelo F et al (2016) The effect of exercise training on mediators of inflammation in breast cancer survivors: a systematic review with meta-analysis. Cancer Epidemiol Biomarkers Prev 25(7):1009–1017CrossRefPubMed Meneses-Echavez JF, Correa-Bautista JE, Gonzalez-Jimenez E, Schmidt Rio-Valle J, Elkins MR, Lobelo F et al (2016) The effect of exercise training on mediators of inflammation in breast cancer survivors: a systematic review with meta-analysis. Cancer Epidemiol Biomarkers Prev 25(7):1009–1017CrossRefPubMed
16.
go back to reference Ebbeling CB, Ward A, Puleo EM, Widrick J, Rippe JM (1991) Development of a single-stage submaximal treadmill walking test. Med Sci Sports Exerc 23(8):966–973CrossRefPubMed Ebbeling CB, Ward A, Puleo EM, Widrick J, Rippe JM (1991) Development of a single-stage submaximal treadmill walking test. Med Sci Sports Exerc 23(8):966–973CrossRefPubMed
17.
go back to reference Brzycki M (1993) Strength testing: predicting a one-rep max from repetition-to-fatigue. JOHPERD 64:88–90 Brzycki M (1993) Strength testing: predicting a one-rep max from repetition-to-fatigue. JOHPERD 64:88–90
18.
go back to reference Rock CL, Doyle C, Demark-Wahnefried W, Meyerhardt J, Courneya KS, Schwartz AL et al (2012) Nutrition and physical activity guidelines for cancer survivors. CA Cancer J Clin 62(4):243–274CrossRefPubMed Rock CL, Doyle C, Demark-Wahnefried W, Meyerhardt J, Courneya KS, Schwartz AL et al (2012) Nutrition and physical activity guidelines for cancer survivors. CA Cancer J Clin 62(4):243–274CrossRefPubMed
19.
go back to reference Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvao DA, Pinto BM et al (2010) American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc 42(7):1409–1426CrossRefPubMed Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvao DA, Pinto BM et al (2010) American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc 42(7):1409–1426CrossRefPubMed
20.
go back to reference Alderete TL, Sattler FR, Richey JM, Allayee H, Mittelman SD, Sheng X et al (2015) Salsalate treatment improves glycemia without altering adipose tissue in nondiabetic obese hispanics. Obesity (Silver Spring) 23(3):543–551CrossRef Alderete TL, Sattler FR, Richey JM, Allayee H, Mittelman SD, Sheng X et al (2015) Salsalate treatment improves glycemia without altering adipose tissue in nondiabetic obese hispanics. Obesity (Silver Spring) 23(3):543–551CrossRef
21.
go back to reference Oliveira AG, Araujo TG, Carvalho BM, Guadagnini D, Rocha GZ, Bagarolli RA et al (2013) Acute exercise induces a phenotypic switch in adipose tissue macrophage polarization in diet-induced obese rats. Obesity 21(12):2545–2556CrossRefPubMed Oliveira AG, Araujo TG, Carvalho BM, Guadagnini D, Rocha GZ, Bagarolli RA et al (2013) Acute exercise induces a phenotypic switch in adipose tissue macrophage polarization in diet-induced obese rats. Obesity 21(12):2545–2556CrossRefPubMed
22.
go back to reference Kawanishi N, Yano H, Yokogawa Y, Suzuki K (2010) Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exerc Immunol Rev 16:105–118PubMed Kawanishi N, Yano H, Yokogawa Y, Suzuki K (2010) Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exerc Immunol Rev 16:105–118PubMed
23.
go back to reference Linden MA, Pincu Y, Martin SA, Woods JA, Baynard T (2014) Moderate exercise training provides modest protection against adipose tissue inflammatory gene expression in response to high-fat feeding. Physiol Rep 2(7):e12071CrossRefPubMedPubMedCentral Linden MA, Pincu Y, Martin SA, Woods JA, Baynard T (2014) Moderate exercise training provides modest protection against adipose tissue inflammatory gene expression in response to high-fat feeding. Physiol Rep 2(7):e12071CrossRefPubMedPubMedCentral
24.
go back to reference Rogers LQ, Fogleman A, Trammell R, Hopkins-Price P, Vicari S, Rao K et al (2013) Effects of a physical activity behavior change intervention on inflammation and related health outcomes in breast cancer survivors: pilot randomized trial. Integr Cancer Ther 12(4):323–335CrossRefPubMed Rogers LQ, Fogleman A, Trammell R, Hopkins-Price P, Vicari S, Rao K et al (2013) Effects of a physical activity behavior change intervention on inflammation and related health outcomes in breast cancer survivors: pilot randomized trial. Integr Cancer Ther 12(4):323–335CrossRefPubMed
25.
go back to reference Ergun M, Eyigor S, Karaca B, Kisim A, Uslu R (2013) Effects of exercise on angiogenesis and apoptosis-related molecules, quality of life, fatigue and depression in breast cancer patients. Eur J Cancer Care (Engl) 22(5):626–637CrossRef Ergun M, Eyigor S, Karaca B, Kisim A, Uslu R (2013) Effects of exercise on angiogenesis and apoptosis-related molecules, quality of life, fatigue and depression in breast cancer patients. Eur J Cancer Care (Engl) 22(5):626–637CrossRef
26.
go back to reference Hutnick NA, Williams NI, Kraemer WJ, Orsega-Smith E, Dixon RH, Bleznak AD et al (2005) Exercise and lymphocyte activation following chemotherapy for breast cancer. Med Sci Sports Exerc 37(11):1827–1835CrossRefPubMed Hutnick NA, Williams NI, Kraemer WJ, Orsega-Smith E, Dixon RH, Bleznak AD et al (2005) Exercise and lymphocyte activation following chemotherapy for breast cancer. Med Sci Sports Exerc 37(11):1827–1835CrossRefPubMed
27.
go back to reference Gomez AM, Martinez C, Fiuza-Luces C, Herrero F, Perez M, Madero L et al (2011) Exercise training and cytokines in breast cancer survivors. Int J Sports Med 32(6):461–467CrossRefPubMed Gomez AM, Martinez C, Fiuza-Luces C, Herrero F, Perez M, Madero L et al (2011) Exercise training and cytokines in breast cancer survivors. Int J Sports Med 32(6):461–467CrossRefPubMed
28.
go back to reference Goodwin PJ, Ennis M, Pritchard KI, Trudeau ME, Koo J, Madarnas Y et al (2002) Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J Clin Oncol 20(1):42–51CrossRefPubMed Goodwin PJ, Ennis M, Pritchard KI, Trudeau ME, Koo J, Madarnas Y et al (2002) Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J Clin Oncol 20(1):42–51CrossRefPubMed
29.
go back to reference Barone BB, Yeh HC, Snyder CF, Peairs KS, Stein KB, Derr RL et al (2008) Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: a systematic review and meta-analysis. JAMA 300(23):2754–2764CrossRefPubMedPubMedCentral Barone BB, Yeh HC, Snyder CF, Peairs KS, Stein KB, Derr RL et al (2008) Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: a systematic review and meta-analysis. JAMA 300(23):2754–2764CrossRefPubMedPubMedCentral
30.
go back to reference Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK et al (2009) American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc 41(2):459–471CrossRefPubMed Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK et al (2009) American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc 41(2):459–471CrossRefPubMed
Metadata
Title
Adipose tissue inflammation in breast cancer survivors: effects of a 16-week combined aerobic and resistance exercise training intervention
Authors
Christina M. Dieli-Conwright
Jean-Hugues Parmentier
Nathalie Sami
Kyuwan Lee
Darcy Spicer
Wendy J. Mack
Fred Sattler
Steven D. Mittelman
Publication date
01-02-2018
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2018
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-017-4576-y

Other articles of this Issue 1/2018

Breast Cancer Research and Treatment 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine