Skip to main content
Top
Published in: Endocrine 2/2018

Open Access 01-05-2018 | Original Article

Adipose tissue, but not skeletal muscle, sirtuin 1 expression is decreased in obesity and related to insulin sensitivity

Authors: Magdalena Stefanowicz, Agnieszka Nikołajuk, Natalia Matulewicz, Monika Karczewska-Kupczewska

Published in: Endocrine | Issue 2/2018

Login to get access

Abstract

Purpose

Sirtuin 1 may regulate glucose and lipid metabolism. We aimed to assess adipose tissue and skeletal muscle sirtuin 1 expression in relation to insulin sensitivity, the expression of proinflammatory and metabolic genes, and to study the regulation of sirtuin 1 expression by hyperinsulinemia and circulating free fatty acids elevation.

Methods

We examined 60 normal-weight, 42 overweight and 15 obese young subjects. The hyperinsulinemic-euglycemic clamp technique was applied throughout to measure insulin sensitivity. In 20 subjects, two 6 h clamps were performed, one of them with concurrent Intralipid/heparin infusion. Biopsies of subcutaneous adipose tissue and skeletal muscle were collected for the measurement of gene and protein expression.

Results

Obese subjects had lower adipose sirtuin 1 in comparison with normal-weight and overweight participants. Muscle sirtuin 1 did not differ between the groups. Adipose tissue sirtuin 1 was related to insulin sensitivity, adipose tissue SLC2A4. The relationship between adipose tissue sirtuin 1 and insulin sensitivity was still present after controlling for BMI, however, it disappeared after controlling for adipose tissue SLC2A4. Muscle sirtuin 1 was not related to insulin sensitivity. Hyperisulinemia decreased adipose tissue and increased muscle sirtuin 1 expression. Intralipid/heparin infusion negated these effects.

Conclusions

Adipose tissue, but not muscle, sirtuin 1 is associated with insulin sensitivity in humans, possibly because of its correlation with adipose tissue SLC2A4 expression. Insulin differentially regulates adipose tissue and skeletal muscle sirtuin 1 expression in the short-term and circulating free fatty acids elevation negates these effects, which may be associated with lipid-induced insulin resistance.
Appendix
Available only for authorised users
Literature
1.
go back to reference S. Imai, C.M. Armstrong, M. Kaeberlein, L. Guarente, Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000)CrossRefPubMed S. Imai, C.M. Armstrong, M. Kaeberlein, L. Guarente, Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795–800 (2000)CrossRefPubMed
2.
go back to reference S. Mariani, D. Fiore, S. Basciani, A. Persichetti, S. Contini, C. Lubrano, L. Salvatori, A. Lenzi, L. Gnessi, Plasma levels of SIRT1 associate with non-alcoholic fatty liver diseases in obese patients. Endocrine 49, 711–716 (2015)CrossRefPubMed S. Mariani, D. Fiore, S. Basciani, A. Persichetti, S. Contini, C. Lubrano, L. Salvatori, A. Lenzi, L. Gnessi, Plasma levels of SIRT1 associate with non-alcoholic fatty liver diseases in obese patients. Endocrine 49, 711–716 (2015)CrossRefPubMed
3.
go back to reference F. Liang, S. Kume, D. Koya, SIRT1 and insulin resistance. Nat. Rev. Endocrinol. 5, 367–373 (2009)CrossRefPubMed F. Liang, S. Kume, D. Koya, SIRT1 and insulin resistance. Nat. Rev. Endocrinol. 5, 367–373 (2009)CrossRefPubMed
4.
go back to reference S. Fröjdö, C. Durand, L. Molin, A.L. Carey, A. El-Osta, B.A. Kingwell, M.A. Febbraio, F. Solari, H. Vidal, L. Pirola, Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1. Mol. Cell. Endocrinol. 335, 166–176 (2011)CrossRefPubMed S. Fröjdö, C. Durand, L. Molin, A.L. Carey, A. El-Osta, B.A. Kingwell, M.A. Febbraio, F. Solari, H. Vidal, L. Pirola, Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1. Mol. Cell. Endocrinol. 335, 166–176 (2011)CrossRefPubMed
5.
go back to reference C. Sun, F. Zhang, X. Ge, T. Yan, X. Chen, X. Shi, Q. Zhai, SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell. Metab. 6, 307–319 (2007)CrossRefPubMed C. Sun, F. Zhang, X. Ge, T. Yan, X. Chen, X. Shi, Q. Zhai, SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell. Metab. 6, 307–319 (2007)CrossRefPubMed
6.
go back to reference J. Zhang, The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation. J. Biol. Chem. 282, 34356–34364 (2007)CrossRefPubMed J. Zhang, The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation. J. Biol. Chem. 282, 34356–34364 (2007)CrossRefPubMed
7.
go back to reference M.P. Gillum, M.E. Kotas, D.M. Erion, R. Kursawe, P. Chatterjee, K.T. Nead, E.S. Muise, J.J. Hsiao, D.W. Frederick, S. Yonemitsu, A.S. Banks, L. Qiang, S. Bhanot, J.M. Olefsky, D.D. Sears, S. Caprio, G.I. Shulman, SirT1 regulates adipose tissue inflammation. Diabetes 60, 3235–3245 (2011)CrossRefPubMedPubMedCentral M.P. Gillum, M.E. Kotas, D.M. Erion, R. Kursawe, P. Chatterjee, K.T. Nead, E.S. Muise, J.J. Hsiao, D.W. Frederick, S. Yonemitsu, A.S. Banks, L. Qiang, S. Bhanot, J.M. Olefsky, D.D. Sears, S. Caprio, G.I. Shulman, SirT1 regulates adipose tissue inflammation. Diabetes 60, 3235–3245 (2011)CrossRefPubMedPubMedCentral
8.
go back to reference T. Yoshizaki, J.C. Milne, T. Imamura, S. Schenk, N. Sonoda, J.L. Babendure, J.C. Lu, J.J. Smith, M.R. Jirousek, J.M. Olefsky, SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol. Cell. Biol. 29, 1363–1374 (2009)CrossRefPubMed T. Yoshizaki, J.C. Milne, T. Imamura, S. Schenk, N. Sonoda, J.L. Babendure, J.C. Lu, J.J. Smith, M.R. Jirousek, J.M. Olefsky, SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol. Cell. Biol. 29, 1363–1374 (2009)CrossRefPubMed
9.
go back to reference A.S. Banks, N. Kon, C. Knight, M. Matsumoto, R. Gutiérrez-Juárez, L. Rossetti, W. Gu, D. Accilli, SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell. Metab. 8, 333–341 (2008)CrossRefPubMedPubMedCentral A.S. Banks, N. Kon, C. Knight, M. Matsumoto, R. Gutiérrez-Juárez, L. Rossetti, W. Gu, D. Accilli, SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell. Metab. 8, 333–341 (2008)CrossRefPubMedPubMedCentral
10.
go back to reference Z. Gerhart-Hines, J.T. Rodgers, O. Bare, C. Lerin, S.H. Kim, R. Mostoslavsky, F.W. Alt, Z. Wu, P. Puigserver, Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. Embo. J. 26, 1913–1923 (2007)CrossRefPubMedPubMedCentral Z. Gerhart-Hines, J.T. Rodgers, O. Bare, C. Lerin, S.H. Kim, R. Mostoslavsky, F.W. Alt, Z. Wu, P. Puigserver, Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. Embo. J. 26, 1913–1923 (2007)CrossRefPubMedPubMedCentral
11.
go back to reference S. Schenk, C.E. McCurdy, A. Philp, M.Z. Chen, M.J. Holliday, G.K. Bandyopadhyay, O. Osborn, K. Baar, J.M. Olefsky, Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. J. Clin. Invest. 121, 4281–4288 (2011)CrossRefPubMedPubMedCentral S. Schenk, C.E. McCurdy, A. Philp, M.Z. Chen, M.J. Holliday, G.K. Bandyopadhyay, O. Osborn, K. Baar, J.M. Olefsky, Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. J. Clin. Invest. 121, 4281–4288 (2011)CrossRefPubMedPubMedCentral
12.
go back to reference J.N. Feige, M. Lagouge, C. Canto, A. Strehle, S.M. Houten, J.C. Milne, P.D. Lambert, C. Mataki, P.J. Elliott, J. Auwerx, Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 8, 347–358 (2008)CrossRefPubMed J.N. Feige, M. Lagouge, C. Canto, A. Strehle, S.M. Houten, J.C. Milne, P.D. Lambert, C. Mataki, P.J. Elliott, J. Auwerx, Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 8, 347–358 (2008)CrossRefPubMed
13.
go back to reference J.C. Milne, P.D. Lambert, S. Schenk, D.P. Carney, J.J. Smith, D.J. Gagne, L. Jin, O. Boss, R.B. Perni, C.B. Vu, J.E. Bemis, R. Xie, J.S. Disch, P.Y. Ng, J.J. Nunes, A.V. Lynch, H. Yang, H. Galonek, K. Israelian, W. Choy, A. Iffland, S. Lavu, O. Medvedik, D.A. Sinclair, J.M. Olefsky, M.R. Jirousek, P.J. Elliott, C.H. Westphal, Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712–716 (2007)CrossRefPubMedPubMedCentral J.C. Milne, P.D. Lambert, S. Schenk, D.P. Carney, J.J. Smith, D.J. Gagne, L. Jin, O. Boss, R.B. Perni, C.B. Vu, J.E. Bemis, R. Xie, J.S. Disch, P.Y. Ng, J.J. Nunes, A.V. Lynch, H. Yang, H. Galonek, K. Israelian, W. Choy, A. Iffland, S. Lavu, O. Medvedik, D.A. Sinclair, J.M. Olefsky, M.R. Jirousek, P.J. Elliott, C.H. Westphal, Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712–716 (2007)CrossRefPubMedPubMedCentral
14.
go back to reference M. Lagouge, C. Argmann, Z. Gerhart-Hines, H. Meziane, C. Lerin, F. Daussin, N. Messadeq, J. Milne, P. Lambert, P. Elliott, B. Geny, M. Laakso, P. Puigserver, J. Auwerx, Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127, 1109–1122 (2006)CrossRefPubMed M. Lagouge, C. Argmann, Z. Gerhart-Hines, H. Meziane, C. Lerin, F. Daussin, N. Messadeq, J. Milne, P. Lambert, P. Elliott, B. Geny, M. Laakso, P. Puigserver, J. Auwerx, Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127, 1109–1122 (2006)CrossRefPubMed
15.
go back to reference S. Timmers, E. Konings, L. Bilet, R.H. Houtkooper, T. van de Weijer, G.H. Goossens, J. Hoeks, S. van der Krieken, D. Ryu, S. Kersten, E. Moonen-Kornips, M.K.C. Hesselink, I. Kunz, V.B. Schrauwen-Hinderling, E. Blaak, J. Auwerx, P. Schrauwen., Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 14, 612–622 (2011)CrossRefPubMed S. Timmers, E. Konings, L. Bilet, R.H. Houtkooper, T. van de Weijer, G.H. Goossens, J. Hoeks, S. van der Krieken, D. Ryu, S. Kersten, E. Moonen-Kornips, M.K.C. Hesselink, I. Kunz, V.B. Schrauwen-Hinderling, E. Blaak, J. Auwerx, P. Schrauwen., Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 14, 612–622 (2011)CrossRefPubMed
16.
go back to reference L. Bordone, D. Cohen, A. Robinson, M.C. Motta, E. van Veen, A. Czopik, A.D. Steele, H. Crowe, S. Marmor, J. Luo, W. Gu, L. Guarente, SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6, 759–767 (2007)CrossRefPubMed L. Bordone, D. Cohen, A. Robinson, M.C. Motta, E. van Veen, A. Czopik, A.D. Steele, H. Crowe, S. Marmor, J. Luo, W. Gu, L. Guarente, SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6, 759–767 (2007)CrossRefPubMed
17.
go back to reference P.T. Pfluger, D. Herranz, S. Velasco-Miguel, M. Serrano, M.H. Tschop, Sirt1 protects against high-fat diet-induced metabolic damage. Proc. Natl Acad. Sci. USA 105, 9793–9798 (2008)CrossRefPubMedPubMedCentral P.T. Pfluger, D. Herranz, S. Velasco-Miguel, M. Serrano, M.H. Tschop, Sirt1 protects against high-fat diet-induced metabolic damage. Proc. Natl Acad. Sci. USA 105, 9793–9798 (2008)CrossRefPubMedPubMedCentral
18.
go back to reference M. Karczewska-Kupczewska, I. Kowalska, A. Nikołajuk, A. Adamska, M. Zielińska, N. Kamińska, E. Otziomek, M. Górska, M. Strączkowski, Circulating brain-derived neurotrophic factor concentration is downregulated by intralipid/heparin infusion or high-fat meal in young healthy male subjects. Diabetes Care 35, 358–362 (2012)CrossRefPubMedPubMedCentral M. Karczewska-Kupczewska, I. Kowalska, A. Nikołajuk, A. Adamska, M. Zielińska, N. Kamińska, E. Otziomek, M. Górska, M. Strączkowski, Circulating brain-derived neurotrophic factor concentration is downregulated by intralipid/heparin infusion or high-fat meal in young healthy male subjects. Diabetes Care 35, 358–362 (2012)CrossRefPubMedPubMedCentral
19.
go back to reference M. Karczewska-Kupczewska, M. Stefanowicz, N. Matulewicz, A. Nikołajuk, M. Strączkowski, Wnt signaling genes in adipose tissue and skeletal muscle of humans with different degrees of insulin sensitivity. J. Clin. Endocrinol. Metab. 101, 3079–3087 (2016)CrossRefPubMed M. Karczewska-Kupczewska, M. Stefanowicz, N. Matulewicz, A. Nikołajuk, M. Strączkowski, Wnt signaling genes in adipose tissue and skeletal muscle of humans with different degrees of insulin sensitivity. J. Clin. Endocrinol. Metab. 101, 3079–3087 (2016)CrossRefPubMed
20.
go back to reference E. Rappou, S. Jukarainen, R. Rinnankoski-Tuikka, S. Kaye, S. Heinonen, A. Hakkarainen, J. Lundbom, N. Lundbom, V. Saunavaara, A. Rissanen, K.A. Virtanen, E. Pirinen, K.H. Pietiläinen, Weight loss is associated with increased NAD(+)/SIRT1 expression but reduced PARP activity in white adipose tissue. J. Clin. Endocrinol. Metab. 101, 1263–1273 (2016)CrossRefPubMed E. Rappou, S. Jukarainen, R. Rinnankoski-Tuikka, S. Kaye, S. Heinonen, A. Hakkarainen, J. Lundbom, N. Lundbom, V. Saunavaara, A. Rissanen, K.A. Virtanen, E. Pirinen, K.H. Pietiläinen, Weight loss is associated with increased NAD(+)/SIRT1 expression but reduced PARP activity in white adipose tissue. J. Clin. Endocrinol. Metab. 101, 1263–1273 (2016)CrossRefPubMed
21.
go back to reference S. Jukarainen, S. Heinonen, J.T. Rämö, R. Rinnankoski-Tuikka, E. Rappou, M. Tummers, M. Muniandy, A. Hakkarainen, J. Lundbom, N. Lundbom, J. Kaprio, A. Rissanen, E. Pirinen, K.H. Pietiläinen, Obesity is associated with low NAD(+)/SIRT pathway expression in adipose tissue of BMI-discordant monozygotic twins. J. Clin. Endocrinol. Metab. 101, 275–283 (2016)CrossRefPubMed S. Jukarainen, S. Heinonen, J.T. Rämö, R. Rinnankoski-Tuikka, E. Rappou, M. Tummers, M. Muniandy, A. Hakkarainen, J. Lundbom, N. Lundbom, J. Kaprio, A. Rissanen, E. Pirinen, K.H. Pietiläinen, Obesity is associated with low NAD(+)/SIRT pathway expression in adipose tissue of BMI-discordant monozygotic twins. J. Clin. Endocrinol. Metab. 101, 275–283 (2016)CrossRefPubMed
22.
go back to reference S.B. Pedersen, J. Ølholm, S.K. Paulsen, M.F. Bennetzen, B. Richelsen, Low Sirt1 expression, which is upregulated by fasting, in human adipose tissue from obese women. Int. J. Obes. 32, 1250–1255 (2008)CrossRef S.B. Pedersen, J. Ølholm, S.K. Paulsen, M.F. Bennetzen, B. Richelsen, Low Sirt1 expression, which is upregulated by fasting, in human adipose tissue from obese women. Int. J. Obes. 32, 1250–1255 (2008)CrossRef
23.
go back to reference Y.S. Song, S.K. Lee, Y.J. Jang, H.S. Park, J.H. Kim, Y.J. Lee, Y.S. Heo, Association between low SIRT1 expression in visceral and subcutaneous adipose tissues and metabolic abnormalities in women with obesity and type 2 diabetes. Diabetes Res. Clin. Pract. 101, 341–348 (2013)CrossRefPubMed Y.S. Song, S.K. Lee, Y.J. Jang, H.S. Park, J.H. Kim, Y.J. Lee, Y.S. Heo, Association between low SIRT1 expression in visceral and subcutaneous adipose tissues and metabolic abnormalities in women with obesity and type 2 diabetes. Diabetes Res. Clin. Pract. 101, 341–348 (2013)CrossRefPubMed
24.
go back to reference S.J. Clark, M. Falchi, B. Olsson, P. Jacobson, S. Cauchi, B. Balkau, M. Marre, O. Lantieri, J.C. Andersson, M. Jernås, T.J. Aitman, S. Richardson, L. Sjöström, H.Y. Wong, L.M. Carlsson, P. Froguel, A.J. Walley, Association of sirtuin 1 (SIRT1) gene SNPs and transcript expression levels with severe obesity. Obesity 20, 178–185 (2012)CrossRefPubMed S.J. Clark, M. Falchi, B. Olsson, P. Jacobson, S. Cauchi, B. Balkau, M. Marre, O. Lantieri, J.C. Andersson, M. Jernås, T.J. Aitman, S. Richardson, L. Sjöström, H.Y. Wong, L.M. Carlsson, P. Froguel, A.J. Walley, Association of sirtuin 1 (SIRT1) gene SNPs and transcript expression levels with severe obesity. Obesity 20, 178–185 (2012)CrossRefPubMed
25.
go back to reference S. Mariani, G. Di Rocco, G. Toietta, M.A. Russo, E. Petrangeli, L. Salvatori, Sirtuins 1-7 expression in human adipose-derived stem cells from subcutaneous and visceral fat depots: influence of obesity and hypoxia. Endocrine 57, 455–463 (2017)CrossRefPubMed S. Mariani, G. Di Rocco, G. Toietta, M.A. Russo, E. Petrangeli, L. Salvatori, Sirtuins 1-7 expression in human adipose-derived stem cells from subcutaneous and visceral fat depots: influence of obesity and hypoxia. Endocrine 57, 455–463 (2017)CrossRefPubMed
26.
go back to reference J. Rutanen, N. Yaluri, S. Modi, J. Pihlajamäki, M. Vänttinen, P. Itkonen, S. Kainulainen, H. Yamamoto, M. Lagouge, D.A. Sinclair, P. Elliott, C. Westphal, J. Auwerx, M. Laakso, SIRT1 mRNA expression may be associated with energy expenditure and insulin sensitivity. Diabetes 59, 829–835 (2010)CrossRefPubMedPubMedCentral J. Rutanen, N. Yaluri, S. Modi, J. Pihlajamäki, M. Vänttinen, P. Itkonen, S. Kainulainen, H. Yamamoto, M. Lagouge, D.A. Sinclair, P. Elliott, C. Westphal, J. Auwerx, M. Laakso, SIRT1 mRNA expression may be associated with energy expenditure and insulin sensitivity. Diabetes 59, 829–835 (2010)CrossRefPubMedPubMedCentral
27.
go back to reference N. Klöting, M. Fasshauer, A. Dietrich, P. Kovacs, M.R. Schön, M. Kern, M. Stumvoll, M. Bluher, Insulin-sensitive obesity. Am. J. Physiol. Endocrinol. Metab. 299, E506–E515 (2010)CrossRefPubMed N. Klöting, M. Fasshauer, A. Dietrich, P. Kovacs, M.R. Schön, M. Kern, M. Stumvoll, M. Bluher, Insulin-sensitive obesity. Am. J. Physiol. Endocrinol. Metab. 299, E506–E515 (2010)CrossRefPubMed
28.
go back to reference T. Nedachi, A. Kadotani, M. Ariga, H. Katagiri, M. Kanzaki, Ambient glucose levels qualify the potency of insulin myogenic actions by regulating SIRT1 and FoxO3a in C2C12 myocytes. Am. J. Physiol. Endocrinol. Metab. 294, E668–E678 (2008)CrossRefPubMed T. Nedachi, A. Kadotani, M. Ariga, H. Katagiri, M. Kanzaki, Ambient glucose levels qualify the potency of insulin myogenic actions by regulating SIRT1 and FoxO3a in C2C12 myocytes. Am. J. Physiol. Endocrinol. Metab. 294, E668–E678 (2008)CrossRefPubMed
29.
go back to reference A.T. White, C.E. McCurdy, A. Philp, D.L. Hamilton, C.D. Johnson, S. Schenk, Skeletal muscle-specific overexpression of SIRT1 does not enhance whole-body energy expenditure or insulin sensitivity in young mice. Diabetologia 56, 1629–1637 (2013)CrossRefPubMedPubMedCentral A.T. White, C.E. McCurdy, A. Philp, D.L. Hamilton, C.D. Johnson, S. Schenk, Skeletal muscle-specific overexpression of SIRT1 does not enhance whole-body energy expenditure or insulin sensitivity in young mice. Diabetologia 56, 1629–1637 (2013)CrossRefPubMedPubMedCentral
30.
go back to reference A.E. Brandon, J. Tid-Ang, L.E. Wright, E. Stuart, E. Suryana, N. Bentley, N. Turner, G.J. Cooney, N.B. Ruderman, E.W. Kraegen, Overexpression of SIRT1 in rat skeletal muscle does not alter glucose induced insulin resistance. PLoS ONE 10, e0121959 (2015)CrossRefPubMedPubMedCentral A.E. Brandon, J. Tid-Ang, L.E. Wright, E. Stuart, E. Suryana, N. Bentley, N. Turner, G.J. Cooney, N.B. Ruderman, E.W. Kraegen, Overexpression of SIRT1 in rat skeletal muscle does not alter glucose induced insulin resistance. PLoS ONE 10, e0121959 (2015)CrossRefPubMedPubMedCentral
31.
go back to reference A.T. White, A. Philp, H.N. Fridolfsson, J.M. Schilling, A.N. Murphy, D.L. Hamilton, C.E. McCurdy, H.H. Patel, S. Schenk, High-fat diet-induced impairment of skeletal muscle insulin sensitivity is not prevented by SIRT1 overexpression. Am. J. Physiol. Endocrinol. Metab. 307, E764–E772 (2014)CrossRefPubMedPubMedCentral A.T. White, A. Philp, H.N. Fridolfsson, J.M. Schilling, A.N. Murphy, D.L. Hamilton, C.E. McCurdy, H.H. Patel, S. Schenk, High-fat diet-induced impairment of skeletal muscle insulin sensitivity is not prevented by SIRT1 overexpression. Am. J. Physiol. Endocrinol. Metab. 307, E764–E772 (2014)CrossRefPubMedPubMedCentral
32.
go back to reference E.D. Abel, O. Peroni, J.K. Kim, Y.B. Kim, O. Boss, E. Hadro, T. Minnemann, G.I. Shulman, B.B. Kahn, Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409, 729–733 (2001)CrossRefPubMed E.D. Abel, O. Peroni, J.K. Kim, Y.B. Kim, O. Boss, E. Hadro, T. Minnemann, G.I. Shulman, B.B. Kahn, Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409, 729–733 (2001)CrossRefPubMed
33.
go back to reference E. Carvalho, K. Kotani, O.D. Peroni, B.B. Kahn, Adipose-specific overexpression of GLUT4 reverses insulin resistance and diabetes in mice lacking GLUT4 selectively in muscle. Am. J. Physiol. Endocrinol. Metab. 289, E551–E561 (2005)CrossRefPubMed E. Carvalho, K. Kotani, O.D. Peroni, B.B. Kahn, Adipose-specific overexpression of GLUT4 reverses insulin resistance and diabetes in mice lacking GLUT4 selectively in muscle. Am. J. Physiol. Endocrinol. Metab. 289, E551–E561 (2005)CrossRefPubMed
34.
go back to reference C. Hofmann, K. Lorenz, J.R. Colca, Glucose transport deficiency in diabetic animals is corrected by treatment with the oral antihyperglycemic agent pioglitazone. Endocrinology 129, 1915–1925 (1991)CrossRefPubMed C. Hofmann, K. Lorenz, J.R. Colca, Glucose transport deficiency in diabetic animals is corrected by treatment with the oral antihyperglycemic agent pioglitazone. Endocrinology 129, 1915–1925 (1991)CrossRefPubMed
35.
go back to reference A.R. Moschen, V. Wieser, R.R. Gerner, A. Bichler, B. Enrich, P. Moser, C.F. Ebenbichler, S. Kaser, H. Tilg, Adipose tissue and liver expression of SIRT1, 3, and 6 increase after extensive weight loss in morbid obesity. J. Hepatol. 59, 1315–1322 (2013)CrossRefPubMed A.R. Moschen, V. Wieser, R.R. Gerner, A. Bichler, B. Enrich, P. Moser, C.F. Ebenbichler, S. Kaser, H. Tilg, Adipose tissue and liver expression of SIRT1, 3, and 6 increase after extensive weight loss in morbid obesity. J. Hepatol. 59, 1315–1322 (2013)CrossRefPubMed
36.
go back to reference H.Y. Cohen, C. Miller, K.J. Bitterman, N.R. Wall, B. Hekking, B. Kessler, K.T. Howitz, M. Gorospe, R. de Cabo, D.A. Sinclair, Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390–392 (2004)CrossRefPubMed H.Y. Cohen, C. Miller, K.J. Bitterman, N.R. Wall, B. Hekking, B. Kessler, K.T. Howitz, M. Gorospe, R. de Cabo, D.A. Sinclair, Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390–392 (2004)CrossRefPubMed
37.
go back to reference A. Chalkiadaki, L. Guarente, High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell Metab. 16, 180–188 (2012)CrossRefPubMedPubMedCentral A. Chalkiadaki, L. Guarente, High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell Metab. 16, 180–188 (2012)CrossRefPubMedPubMedCentral
Metadata
Title
Adipose tissue, but not skeletal muscle, sirtuin 1 expression is decreased in obesity and related to insulin sensitivity
Authors
Magdalena Stefanowicz
Agnieszka Nikołajuk
Natalia Matulewicz
Monika Karczewska-Kupczewska
Publication date
01-05-2018
Publisher
Springer US
Published in
Endocrine / Issue 2/2018
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-018-1544-1

Other articles of this Issue 2/2018

Endocrine 2/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.