Skip to main content
Top
Published in: Journal of Translational Medicine 1/2012

Open Access 01-12-2012 | Research

Adipose derived mesenchymal stem cells transplantation via portal vein improves microcirculation and ameliorates liver fibrosis induced by CCl4 in rats

Authors: Yu Wang, Fan Lian, Jiaping Li, Wenzhe Fan, Hanshi Xu, Xiuyan Yang, Liuqin Liang, Wei Chen, Jianyong Yang

Published in: Journal of Translational Medicine | Issue 1/2012

Login to get access

Abstract

Introduction

Adipose derived mesenchymal stem cells (ADMSCs), carrying the similar characteristics to bone marrow mesenchymal stem cells, only much more abundant and easier to obtain, may be a promising treatment for liver fibrosis. We aim to investigate the therapeutic potential of ADMSCs transplantation in liver fibrosis caused by carbon tetrachloride (CCl4) in rats as well as its underlying mechanism, and to further explore the appropriate infusion pathway.

Methods

ADMSCs were isolated, cultured and identified. Placebo and ADMSCs were transplanted via portal vein and tail vein respectively into carbon tetrachloride (CCl4)-induced liver fibrosis rats. Computed tomography (CT) perfusion scan and microvessel counts were performed to measure the alteration of liver microcirculation after therapy. Liver function tests and histological findings were estimated.

Results

CT perfusion scan shown significant decrease of hepatic arterial perfusion index, significant increased portal vein perfusion, total liver perfusion in rats receiving ADMSCs from portal vein, and Factor VIII (FVIII) immunohistochemical staining shown significant decrease of microvessels in rats receiving ADMSCs from portal vein, indicating microcirculation improvement in portal vein group. Vascular endothelial growth Factor (VEGF) was significantly up-regulated in fibrosis models, and decreased after ADMSCs intraportal transplantation. A significant improvement of liver functional test and histological findings in portal vein group were observed. No significance was found in rats receiving ADMSCs from tail vein.

Conclusions

ADMSCs have a therapeutic effect against CCl4-mediated liver fibrosis. ADMSCs may benefit the fibrotic liver through alteration of microcirculation, evidenced by CT perfusion scan and down-regulation of VEGF. Intraportal transplantation is a better pathway than tail vein transplantation.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Gines P, Cardenas A, Arroyo V: Management of cirrhosis and ascites. N Engl J Med. 2004, 350: 1646-1654.CrossRefPubMed Gines P, Cardenas A, Arroyo V: Management of cirrhosis and ascites. N Engl J Med. 2004, 350: 1646-1654.CrossRefPubMed
3.
4.
go back to reference Fallowfield JA, Iredale JP: Targeted treatments for cirrhosis. Expert Opin Ther Targets. 2004, 8: 423-425.CrossRefPubMed Fallowfield JA, Iredale JP: Targeted treatments for cirrhosis. Expert Opin Ther Targets. 2004, 8: 423-425.CrossRefPubMed
5.
go back to reference Ortiz LA, Gambelli F, McBride C: Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A. 2003, 100 (14): 8407-8411.CrossRefPubMedPubMedCentral Ortiz LA, Gambelli F, McBride C: Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A. 2003, 100 (14): 8407-8411.CrossRefPubMedPubMedCentral
6.
go back to reference Sakaida I, Terai S, Yamamoto N: Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Hepatology. 2004, 40 (6): 1304-1311.CrossRefPubMed Sakaida I, Terai S, Yamamoto N: Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Hepatology. 2004, 40 (6): 1304-1311.CrossRefPubMed
7.
go back to reference Deans RJ, Moseley AB: Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol. 2000, 28: 875-884.CrossRefPubMed Deans RJ, Moseley AB: Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol. 2000, 28: 875-884.CrossRefPubMed
8.
go back to reference Liang L, Ma T, Chen W: Therapeutic potential and related signal pathway of adipose-derived stem cell transplantation for rat liver injury. Hepatol Res. 2009, 39 (8): 822-832.CrossRefPubMed Liang L, Ma T, Chen W: Therapeutic potential and related signal pathway of adipose-derived stem cell transplantation for rat liver injury. Hepatol Res. 2009, 39 (8): 822-832.CrossRefPubMed
9.
go back to reference Schaffler A, Buchler C: Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies. Stem Cells. 2007, 25 (4): 818-827.CrossRefPubMed Schaffler A, Buchler C: Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies. Stem Cells. 2007, 25 (4): 818-827.CrossRefPubMed
10.
go back to reference Khan WS, Adesida AB, Tew SR: The epitope characterization and the osteogenic differentiation potential of human fat pad-derived stem cells is maintained with ageing in later life. Injury. 2009, 40 (2): 150-157.CrossRefPubMed Khan WS, Adesida AB, Tew SR: The epitope characterization and the osteogenic differentiation potential of human fat pad-derived stem cells is maintained with ageing in later life. Injury. 2009, 40 (2): 150-157.CrossRefPubMed
11.
go back to reference Oedayrajsingh-Varma MJ, van Ham SM, Knippenberg M: Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy. 2006, 8: 166-177.CrossRefPubMed Oedayrajsingh-Varma MJ, van Ham SM, Knippenberg M: Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy. 2006, 8: 166-177.CrossRefPubMed
12.
go back to reference Safford KM, Hicok KC, Safford SD: Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun. 2002, 294: 371-379.CrossRefPubMed Safford KM, Hicok KC, Safford SD: Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun. 2002, 294: 371-379.CrossRefPubMed
13.
go back to reference Mitchell JB, Mclntosh K, Zvonic S: Immnophenotype of Human Adipose-Derived Cells: Temporal Changes in Stromal-Associated and Stem Cell-Associated Markers. Stem Cells. 2006, 24: 376-385.CrossRefPubMed Mitchell JB, Mclntosh K, Zvonic S: Immnophenotype of Human Adipose-Derived Cells: Temporal Changes in Stromal-Associated and Stem Cell-Associated Markers. Stem Cells. 2006, 24: 376-385.CrossRefPubMed
14.
go back to reference Aurich H, Sgodda M, Kaltwasser P: Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut. 2009, 58 (4): 570-581.CrossRefPubMed Aurich H, Sgodda M, Kaltwasser P: Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut. 2009, 58 (4): 570-581.CrossRefPubMed
15.
go back to reference Liu F, Liu ZD, Wu N: Transplanted endothelial progenitor cells ameliorate carbon tetrachloride-induced liver cirrhosis in rats. Liver Transpl. 2009, 15 (9): 1092-1100.CrossRefPubMed Liu F, Liu ZD, Wu N: Transplanted endothelial progenitor cells ameliorate carbon tetrachloride-induced liver cirrhosis in rats. Liver Transpl. 2009, 15 (9): 1092-1100.CrossRefPubMed
16.
go back to reference Dong MX, Jia Y, Zhang YB: Emodin protects rat liver from CCl4-induced fibrogenesis via inhibition of hepatic stellate cells activation. World J Gastroenterol. 2009, 15 (38): 4753-4762.CrossRefPubMedPubMedCentral Dong MX, Jia Y, Zhang YB: Emodin protects rat liver from CCl4-induced fibrogenesis via inhibition of hepatic stellate cells activation. World J Gastroenterol. 2009, 15 (38): 4753-4762.CrossRefPubMedPubMedCentral
17.
go back to reference Varga F, Mehes G, Molnar Z: Reversibility of hepatic fibrosis induced by carbon tetrachloride in the rat. Acta Physiol Acad Sci Hung. 1996, 29: 69-74. Varga F, Mehes G, Molnar Z: Reversibility of hepatic fibrosis induced by carbon tetrachloride in the rat. Acta Physiol Acad Sci Hung. 1996, 29: 69-74.
18.
go back to reference Materne R, Van Beers BE, Smith AM: Non-invasive quantification of liver perfusion with dynamic computed tomography and a dual-input one-compartmental model. Clin Sci (Lond). 2000, 99: 517-525.CrossRef Materne R, Van Beers BE, Smith AM: Non-invasive quantification of liver perfusion with dynamic computed tomography and a dual-input one-compartmental model. Clin Sci (Lond). 2000, 99: 517-525.CrossRef
19.
go back to reference Van Beers BE, Leconte I, Materne R: Hepatic perfusion parameters in chronic liver disease: dynamic CT measurements correlated with disease severity. Am J Roentgenol. 2001, 176: 667-673.CrossRef Van Beers BE, Leconte I, Materne R: Hepatic perfusion parameters in chronic liver disease: dynamic CT measurements correlated with disease severity. Am J Roentgenol. 2001, 176: 667-673.CrossRef
20.
go back to reference Yang ZF, Ho DW, Chu AC: Linking inflammation in small-for-size allografts: the potential role of early macrophage activation. Am J Transplant. 2004, 4: 196-CrossRefPubMed Yang ZF, Ho DW, Chu AC: Linking inflammation in small-for-size allografts: the potential role of early macrophage activation. Am J Transplant. 2004, 4: 196-CrossRefPubMed
21.
go back to reference Liu MY, Poellinger L, Walker CL: Up-regulation of hypoxia-inducible factor 2alpha in renal cell carcinoma associated with loss of Tsc-2 tumor suppressor gene. Cancer Res. 2003, 63: 2675-2680.PubMed Liu MY, Poellinger L, Walker CL: Up-regulation of hypoxia-inducible factor 2alpha in renal cell carcinoma associated with loss of Tsc-2 tumor suppressor gene. Cancer Res. 2003, 63: 2675-2680.PubMed
22.
go back to reference Gandhi CR, Kuddus RH, Nemoto EM: Endotoxin treatment causes an up-regulation of the endothelin system in the liver: Amelioration of increased portal resistance by endothelin receptor antagonism. J Gastroenterol Hepatol. 2001, 16: 61-69.CrossRefPubMed Gandhi CR, Kuddus RH, Nemoto EM: Endotoxin treatment causes an up-regulation of the endothelin system in the liver: Amelioration of increased portal resistance by endothelin receptor antagonism. J Gastroenterol Hepatol. 2001, 16: 61-69.CrossRefPubMed
23.
go back to reference Sun CK, Chang CL, Lin YC: Systemic administration of autologous adipose-derived mesenchymal stem cells alleviates hepatic ischemia-reperfusion injury in rats. Crit Care Med. 2012, 40 (4): 1279-1290.CrossRefPubMed Sun CK, Chang CL, Lin YC: Systemic administration of autologous adipose-derived mesenchymal stem cells alleviates hepatic ischemia-reperfusion injury in rats. Crit Care Med. 2012, 40 (4): 1279-1290.CrossRefPubMed
24.
go back to reference Yukawa H, Noguchi H, Oishi K: Cell transplantation of adipose tissue-derived stem cells in combination with heparin attenuated acute liver failure in mice. Cell Transplant. 2009, 18 (5): 611-618.PubMed Yukawa H, Noguchi H, Oishi K: Cell transplantation of adipose tissue-derived stem cells in combination with heparin attenuated acute liver failure in mice. Cell Transplant. 2009, 18 (5): 611-618.PubMed
25.
go back to reference Abdel aziz MT, EI Asmar MF, Atta HM: Efficacy of mesenchymal stem cells in suppression of hepatocarcinorigenesis in rats: possible role of Wnt signaling. J Exp Clin Cancer Res. 2011, 30: 49-CrossRefPubMedPubMedCentral Abdel aziz MT, EI Asmar MF, Atta HM: Efficacy of mesenchymal stem cells in suppression of hepatocarcinorigenesis in rats: possible role of Wnt signaling. J Exp Clin Cancer Res. 2011, 30: 49-CrossRefPubMedPubMedCentral
26.
go back to reference Baertschiger RM, Bosco D, Morel P: Mesenchymal stem cells derived from human exocrine pancreas express transcription factors implicated in beta-cell development. Pancreas. 2008, 37 (1): 75-84.CrossRefPubMed Baertschiger RM, Bosco D, Morel P: Mesenchymal stem cells derived from human exocrine pancreas express transcription factors implicated in beta-cell development. Pancreas. 2008, 37 (1): 75-84.CrossRefPubMed
27.
go back to reference Meyerrowe TE, De Ugarte DA, Hofling AA: In vivo distribution of human adipose-derived mesenchymal stem cells in novel xenotransplantation models. Stem Cells. 2007, 25 (1): 220-227.CrossRef Meyerrowe TE, De Ugarte DA, Hofling AA: In vivo distribution of human adipose-derived mesenchymal stem cells in novel xenotransplantation models. Stem Cells. 2007, 25 (1): 220-227.CrossRef
28.
go back to reference Ren H, Zhao Q, Cheng T: No contribution of umbilical cord mesenchymal stromal cells to capillarization and venularization of hepatic sinusoids accompanied by hepatic differentiation in carbon tetrachloride-induced mouse liver fibrosis. Cytotherapy. 2010, 12 (3): 371-383.CrossRefPubMed Ren H, Zhao Q, Cheng T: No contribution of umbilical cord mesenchymal stromal cells to capillarization and venularization of hepatic sinusoids accompanied by hepatic differentiation in carbon tetrachloride-induced mouse liver fibrosis. Cytotherapy. 2010, 12 (3): 371-383.CrossRefPubMed
29.
go back to reference Lee KD, Kuo TK, Whang-Peng J: In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology. 2004, 40 (6): 1275-1284.CrossRefPubMed Lee KD, Kuo TK, Whang-Peng J: In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology. 2004, 40 (6): 1275-1284.CrossRefPubMed
30.
go back to reference Oyagi S, Hirose M, Kojima M: Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CCl4-injured rats. J Hepatol. 2006, 44 (4): 742-748.CrossRefPubMed Oyagi S, Hirose M, Kojima M: Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CCl4-injured rats. J Hepatol. 2006, 44 (4): 742-748.CrossRefPubMed
31.
go back to reference Aquino JB, Bolontrade MF, García MG: Mesenchymal stem cells as therapeutic tools and gene carriers in liver fibrosis and hepatocellular carcinoma. Gene Ther. 2010, 17 (6): 692-708.CrossRefPubMed Aquino JB, Bolontrade MF, García MG: Mesenchymal stem cells as therapeutic tools and gene carriers in liver fibrosis and hepatocellular carcinoma. Gene Ther. 2010, 17 (6): 692-708.CrossRefPubMed
32.
go back to reference Ishikawa T, Terai S, Urata Y: Administration of fibroblast growth factor 2 in combination with bone marrow transplantation synergistically improves carbon-tetrachloride-induced liver fibrosis in mice. Cell Tissue Res. 2007, 327 (3): 463-470.CrossRefPubMed Ishikawa T, Terai S, Urata Y: Administration of fibroblast growth factor 2 in combination with bone marrow transplantation synergistically improves carbon-tetrachloride-induced liver fibrosis in mice. Cell Tissue Res. 2007, 327 (3): 463-470.CrossRefPubMed
33.
go back to reference Kamada Y, Yoshida Y, Saji Y: Transplantation of basic fibroblast growth factor-pretreated adipose tissue-derived stromal cells enhances regression of liver fibrosis in mice. Am J Physiol Gastrointest Liver Physiol. 2009, 296 (2): G157-G167.CrossRefPubMed Kamada Y, Yoshida Y, Saji Y: Transplantation of basic fibroblast growth factor-pretreated adipose tissue-derived stromal cells enhances regression of liver fibrosis in mice. Am J Physiol Gastrointest Liver Physiol. 2009, 296 (2): G157-G167.CrossRefPubMed
34.
go back to reference Rabani V, Shahsavani M, Gharavi M: Mesenchymal stem cell infusion therapy in a carbon tetrachloride-induced liver fibrosis model affects matrix metalloproteinase expression. Cell Biol Int. 2010, 34 (6): 601-605.CrossRefPubMed Rabani V, Shahsavani M, Gharavi M: Mesenchymal stem cell infusion therapy in a carbon tetrachloride-induced liver fibrosis model affects matrix metalloproteinase expression. Cell Biol Int. 2010, 34 (6): 601-605.CrossRefPubMed
35.
go back to reference Miles KA, Hayball MP, Dixon AK: Functional images of hepatic perfusion obtained with dynamic CT. Radiology. 1993, 88: 405-411.CrossRef Miles KA, Hayball MP, Dixon AK: Functional images of hepatic perfusion obtained with dynamic CT. Radiology. 1993, 88: 405-411.CrossRef
36.
go back to reference Pulavendran S, Vignesh J, Rose C: Differential anti-inflammatory and anti-fibrotic activity of transplanted mesenchymal vs. hematopoietic stem cells in carbon tetrachloride-induced liver injury in mice. Int Immunopharmacol. 2010, 10 (4): 513-519.CrossRefPubMed Pulavendran S, Vignesh J, Rose C: Differential anti-inflammatory and anti-fibrotic activity of transplanted mesenchymal vs. hematopoietic stem cells in carbon tetrachloride-induced liver injury in mice. Int Immunopharmacol. 2010, 10 (4): 513-519.CrossRefPubMed
37.
go back to reference Moioli EK, Paul A: Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues. PLoS One. 2008, 31 (12): e3922-CrossRef Moioli EK, Paul A: Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues. PLoS One. 2008, 31 (12): e3922-CrossRef
38.
go back to reference Kestendjieva S, Kyukchiev D, Tsvetkova G: Characterization of mesenchymal stem cells isolated from the human umbilical cord. Cell Biol Int. 2008, 32: 724-732.CrossRefPubMed Kestendjieva S, Kyukchiev D, Tsvetkova G: Characterization of mesenchymal stem cells isolated from the human umbilical cord. Cell Biol Int. 2008, 32: 724-732.CrossRefPubMed
39.
go back to reference Yue WM, Liu W, Bi YW: Mesenchymal stem cells differentiate into an endothelial phenotype, reduce neointimal formation, and enhance endothelial function in a rat vein grafting model. Stem Cells Dev. 2008, 17: 785-794.CrossRefPubMed Yue WM, Liu W, Bi YW: Mesenchymal stem cells differentiate into an endothelial phenotype, reduce neointimal formation, and enhance endothelial function in a rat vein grafting model. Stem Cells Dev. 2008, 17: 785-794.CrossRefPubMed
40.
go back to reference Tang J, Xie Q, Pan G: Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. Eur J Cardiothorac Surg. 2006, 30: 353-361.CrossRefPubMed Tang J, Xie Q, Pan G: Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. Eur J Cardiothorac Surg. 2006, 30: 353-361.CrossRefPubMed
41.
go back to reference Rosmorduc O, Wendum D, Corpechot C: Hepatocellular hypoxia-induced vascular endothelial growth factor expression and angiogenesis in experimental biliary cirrhosis. Am J Pathol. 1999, 155: 1065-1073.CrossRefPubMedPubMedCentral Rosmorduc O, Wendum D, Corpechot C: Hepatocellular hypoxia-induced vascular endothelial growth factor expression and angiogenesis in experimental biliary cirrhosis. Am J Pathol. 1999, 155: 1065-1073.CrossRefPubMedPubMedCentral
42.
go back to reference Cui S, Hano H, Sakata A: Enhanced CD34 expression of sinusoid-like vascular endothelial cells in hepatocellular carcinoma. Pathol Int. 1996, 46: 751-756.CrossRefPubMed Cui S, Hano H, Sakata A: Enhanced CD34 expression of sinusoid-like vascular endothelial cells in hepatocellular carcinoma. Pathol Int. 1996, 46: 751-756.CrossRefPubMed
43.
go back to reference Ishikawa K, Mochida S, Mashiba S: Expressions of vascular endothelial growth factor in nonparenchymal as well as parenchymal cells in rat liver after necrosis. Biochem Biophys Res Commun. 1999, 254: 587-593.CrossRefPubMed Ishikawa K, Mochida S, Mashiba S: Expressions of vascular endothelial growth factor in nonparenchymal as well as parenchymal cells in rat liver after necrosis. Biochem Biophys Res Commun. 1999, 254: 587-593.CrossRefPubMed
44.
go back to reference Arthur MJ, Mann DA, Iredale JP: Tissue inhibitors of metalloproteinases, hepatic stellate cells and liver fibrosis. J Gastroenterol Hepatol. 1998, 13 (suppl): S33-S38.PubMed Arthur MJ, Mann DA, Iredale JP: Tissue inhibitors of metalloproteinases, hepatic stellate cells and liver fibrosis. J Gastroenterol Hepatol. 1998, 13 (suppl): S33-S38.PubMed
45.
go back to reference Ankoma-Sey V, Wang Y, Dai Z: Hypoxic stimulation of vascular endothelial growth factor expression in activated rat hepatic stellate cells. Hepatology. 2000, 31: 141-148.CrossRefPubMed Ankoma-Sey V, Wang Y, Dai Z: Hypoxic stimulation of vascular endothelial growth factor expression in activated rat hepatic stellate cells. Hepatology. 2000, 31: 141-148.CrossRefPubMed
46.
go back to reference Raleigh JA, Calkins-Adams DP, Rinker LH: Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res. 1998, 58: 3765-3768.PubMed Raleigh JA, Calkins-Adams DP, Rinker LH: Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res. 1998, 58: 3765-3768.PubMed
47.
go back to reference Shi BM, Wang XY, Mu QL: Expression of vascular endothelial growth factor in cirrhotic tissues and their relations to proto-oncogene c-fos, c-myc. Hepatobiliary Pancreat Dis Int. 2002, 1 (3): 388-391.PubMed Shi BM, Wang XY, Mu QL: Expression of vascular endothelial growth factor in cirrhotic tissues and their relations to proto-oncogene c-fos, c-myc. Hepatobiliary Pancreat Dis Int. 2002, 1 (3): 388-391.PubMed
48.
go back to reference Kim SJ, Park KC, Lee JU: Therapeutic potential of adipose tissue-derived stem cells for liver failure according to the transplantation routes. J Korean Surg Soc. 2011, 81 (3): 176-186.CrossRefPubMedPubMedCentral Kim SJ, Park KC, Lee JU: Therapeutic potential of adipose tissue-derived stem cells for liver failure according to the transplantation routes. J Korean Surg Soc. 2011, 81 (3): 176-186.CrossRefPubMedPubMedCentral
49.
go back to reference Bos C, Delmas Y, Desmouliere : In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology. 2004, 233: 781-789.CrossRefPubMed Bos C, Delmas Y, Desmouliere : In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology. 2004, 233: 781-789.CrossRefPubMed
50.
go back to reference Yu Y, Lu L, Qian X: Antifibrotic effect of hepatocyte growth factor expressing mesenchymal stem cells in a smal-for-size liver transplant rats. Stem Cells Dev. 2010, 19 (6): 93-03-14-CrossRef Yu Y, Lu L, Qian X: Antifibrotic effect of hepatocyte growth factor expressing mesenchymal stem cells in a smal-for-size liver transplant rats. Stem Cells Dev. 2010, 19 (6): 93-03-14-CrossRef
51.
go back to reference Chang YJ, Liu JW, Lin PC: Mesenchymal stem cells facilitate recovery from chemically induced liver damage and decrease liver fibrosis. Life Sci. 2009, 85 (13–14): 517-525.CrossRefPubMed Chang YJ, Liu JW, Lin PC: Mesenchymal stem cells facilitate recovery from chemically induced liver damage and decrease liver fibrosis. Life Sci. 2009, 85 (13–14): 517-525.CrossRefPubMed
Metadata
Title
Adipose derived mesenchymal stem cells transplantation via portal vein improves microcirculation and ameliorates liver fibrosis induced by CCl4 in rats
Authors
Yu Wang
Fan Lian
Jiaping Li
Wenzhe Fan
Hanshi Xu
Xiuyan Yang
Liuqin Liang
Wei Chen
Jianyong Yang
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2012
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/1479-5876-10-133

Other articles of this Issue 1/2012

Journal of Translational Medicine 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.