Skip to main content
Top
Published in: Endocrine 3/2014

01-12-2014 | Original Article

Adiponectin exerts its negative effect on bone metabolism via OPG/RANKL pathway: an in vivo study

Authors: Qing-ping Wang, Xian-ping Li, Min Wang, Li-ling Zhao, Hui Li, Hui Xie, Zhi-yong Lu

Published in: Endocrine | Issue 3/2014

Login to get access

Abstract

To explore the effects of adiponectin on the bone metabolism in vivo. Bone mineral density (BMD), bone microstructure, serum adiponectin levels, and biochemical markers of the bone turnover were measured in 12-week-old male Adipo−/− and WT mice. In addition, the osteoclast formation, osteoprotegerin (OPG), and the receptor activator of nuclear factor-κB ligand (RANKL) expression were examined. The serum adiponectin levels were normal in the WT mice while undetectable in the Adipo−/− mice. Compared with the WT mice, the Adipo−/− mice had higher BMD, more trabecular bone, greater bone volume fraction, and trabecular thickness in the left femur. On the contrary, fewer osteoclasts were observed in the Adipo−/− mice when compared with the WT mice. Meanwhile, the Adipo−/− mice had a significantly decreased serum carboxyl-terminal telopeptide of type 1 collagen (CTX)/osteocalcin (OC) ratio. Interestingly, both the adiponectin and RANKL would cause a significant increase of CTX/OC ratio in the co-culture of the CD14+ peripheral blood mononuclear cells and the osteoblasts from Adipo−/− mice. Further, immunohistochemistry assays in tibias and both the RT-PCR and immunoblot analyses in the cultured osteoblasts showed the Adipo−/− mice expressed lower levels of RANKL but higher levels of OPG. Adiponectin had a negative effect on the bone metabolism, and this negative effect might be mediated, at least in part, by the OPG/RANKL pathway.
Literature
1.
go back to reference P.E. Scherer, S. Williams, M. Fogliano, G. Baldini, H.F. Lodish, A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270(45), 26746–26749 (1995)PubMedCrossRef P.E. Scherer, S. Williams, M. Fogliano, G. Baldini, H.F. Lodish, A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270(45), 26746–26749 (1995)PubMedCrossRef
2.
go back to reference K. Maeda, K. Okubo, I. Shimomura, T. Funahashi, Y. Matsuzawa, K. Matsubara, cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose most abundant gene transcript 1). Biochem. Biophys. Res. Commun. 221(2), 286–289 (1996)PubMedCrossRef K. Maeda, K. Okubo, I. Shimomura, T. Funahashi, Y. Matsuzawa, K. Matsubara, cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose most abundant gene transcript 1). Biochem. Biophys. Res. Commun. 221(2), 286–289 (1996)PubMedCrossRef
3.
go back to reference Y. Nakano, T. Tobe, N.H. Choi-Miura, T. Mazda, M. Tomita, Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J. Biochem. 120(4), 803–812 (1996)PubMedCrossRef Y. Nakano, T. Tobe, N.H. Choi-Miura, T. Mazda, M. Tomita, Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J. Biochem. 120(4), 803–812 (1996)PubMedCrossRef
4.
go back to reference T. Yamauchi, J. Kamon, Y. Ito, A. Tsuchida, T. Yokomizo, S. Kita, T. Sugiyama, M. Miyagishi, K. Hara, M. Tsunoda, K. Murakami, T. Ohteki, S. Uchida, S. Takekawa, H. Waki, N.H. Tsuno, Y. Shibata, Y. Terauchi, P. Froguel, K. Tobe, S. Koyasu, K. Taira, T. Kitamura, T. Shimizu, R. Nagai, T. Kadowaki, Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423(6941), 762–769 (2003)PubMedCrossRef T. Yamauchi, J. Kamon, Y. Ito, A. Tsuchida, T. Yokomizo, S. Kita, T. Sugiyama, M. Miyagishi, K. Hara, M. Tsunoda, K. Murakami, T. Ohteki, S. Uchida, S. Takekawa, H. Waki, N.H. Tsuno, Y. Shibata, Y. Terauchi, P. Froguel, K. Tobe, S. Koyasu, K. Taira, T. Kitamura, T. Shimizu, R. Nagai, T. Kadowaki, Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423(6941), 762–769 (2003)PubMedCrossRef
5.
go back to reference T.P. Combs, A.H. Berg, S. Obici, P.E. Scherer, L. Rossetti, Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J. Clin. Invest. 108(12), 1875–1881 (2001)PubMedCentralPubMedCrossRef T.P. Combs, A.H. Berg, S. Obici, P.E. Scherer, L. Rossetti, Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J. Clin. Invest. 108(12), 1875–1881 (2001)PubMedCentralPubMedCrossRef
6.
go back to reference J. Fruebis, T.S. Tsao, S. Javorschi, D. Ebbets-Reed, M.R. Erickson, F.T. Yen, B.E. Bihain, H.F. Lodish, Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl. Acad. Sci. USA 98(4), 2005–2010 (2001)PubMedCentralPubMedCrossRef J. Fruebis, T.S. Tsao, S. Javorschi, D. Ebbets-Reed, M.R. Erickson, F.T. Yen, B.E. Bihain, H.F. Lodish, Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl. Acad. Sci. USA 98(4), 2005–2010 (2001)PubMedCentralPubMedCrossRef
7.
go back to reference T. Yamauchi, J. Kamon, Y. Minokoshi, Y. Ito, H. Waki, S. Uchida, S. Yamashita, M. Noda, S. Kita, K. Ueki, K. Eto, Y. Akanuma, P. Froguel, F. Foufelle, P. Ferre, D. Carling, S. Kimura, R. Nagai, B.B. Kahn, T. Kadowaki, Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8(11), 1288–1295 (2002)PubMedCrossRef T. Yamauchi, J. Kamon, Y. Minokoshi, Y. Ito, H. Waki, S. Uchida, S. Yamashita, M. Noda, S. Kita, K. Ueki, K. Eto, Y. Akanuma, P. Froguel, F. Foufelle, P. Ferre, D. Carling, S. Kimura, R. Nagai, B.B. Kahn, T. Kadowaki, Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8(11), 1288–1295 (2002)PubMedCrossRef
8.
go back to reference K. Brochu-Gaudreau, C. Rehfeldt, R. Blouin, V. Bordignon, B.D. Murphy, M.F. Palin, Adiponectin action from head to toe. Endocrine 37(1), 11–32 (2010)PubMedCrossRef K. Brochu-Gaudreau, C. Rehfeldt, R. Blouin, V. Bordignon, B.D. Murphy, M.F. Palin, Adiponectin action from head to toe. Endocrine 37(1), 11–32 (2010)PubMedCrossRef
9.
go back to reference H.S. Berner, S.P. Lyngstadaas, A. Spahr, M. Monjo, L. Thommesen, C.A. Drevon, U. Syversen, J.E. Reseland, Adiponectin and its receptors are expressed in bone-forming cells. Bone 35(4), 842–849 (2004)PubMedCrossRef H.S. Berner, S.P. Lyngstadaas, A. Spahr, M. Monjo, L. Thommesen, C.A. Drevon, U. Syversen, J.E. Reseland, Adiponectin and its receptors are expressed in bone-forming cells. Bone 35(4), 842–849 (2004)PubMedCrossRef
10.
go back to reference K.N. Ealey, J. Kaludjerovic, M.C. Archer, W.E. Ward, Adiponectin is a negative regulator of bone mineral and bone strength in growing mice. Exp. Biol. Med. (Maywood) 233(12), 1546–1553 (2008)CrossRef K.N. Ealey, J. Kaludjerovic, M.C. Archer, W.E. Ward, Adiponectin is a negative regulator of bone mineral and bone strength in growing mice. Exp. Biol. Med. (Maywood) 233(12), 1546–1553 (2008)CrossRef
11.
go back to reference G.A. Williams, Y. Wang, K.E. Callon, M. Watson, J.M. Lin, J.B. Lam, J.L. Costa, A. Orpe, N. Broom, D. Naot, I.R. Reid, J. Cornish, In vitro and in vivo effects of adiponectin on bone. Endocrinology 150(8), 3603–3610 (2009)PubMedCrossRef G.A. Williams, Y. Wang, K.E. Callon, M. Watson, J.M. Lin, J.B. Lam, J.L. Costa, A. Orpe, N. Broom, D. Naot, I.R. Reid, J. Cornish, In vitro and in vivo effects of adiponectin on bone. Endocrinology 150(8), 3603–3610 (2009)PubMedCrossRef
12.
go back to reference J. Jurimae, T. Jurimae, Plasma adiponectin concentration in healthy pre- and postmenopausal women: relationship with body composition, bone mineral, and metabolic variables. Am. J. Physiol. Endocrinol. Metab. 293(1), E42–E47 (2007)PubMedCrossRef J. Jurimae, T. Jurimae, Plasma adiponectin concentration in healthy pre- and postmenopausal women: relationship with body composition, bone mineral, and metabolic variables. Am. J. Physiol. Endocrinol. Metab. 293(1), E42–E47 (2007)PubMedCrossRef
13.
go back to reference X.D. Peng, H. Xie, Q. Zhao, X.P. Wu, Z.Q. Sun, E.Y. Liao, Relationships between serum adiponectin, leptin, resistin, visfatin levels and bone mineral density, and bone biochemical markers in Chinese men. Clin. Chim. Acta 387(1–2), 31–35 (2008)PubMedCrossRef X.D. Peng, H. Xie, Q. Zhao, X.P. Wu, Z.Q. Sun, E.Y. Liao, Relationships between serum adiponectin, leptin, resistin, visfatin levels and bone mineral density, and bone biochemical markers in Chinese men. Clin. Chim. Acta 387(1–2), 31–35 (2008)PubMedCrossRef
14.
go back to reference B. Bozic, G. Loncar, N. Prodanovic, Z. Radojicic, V. Cvorovic, S. Dimkovic, V. Popovic-Brkic, Relationship between high circulating adiponectin with bone mineral density and bone metabolism in elderly males with chronic heart failure. J. Card Fail. 16(4), 301–307 (2010)PubMedCrossRef B. Bozic, G. Loncar, N. Prodanovic, Z. Radojicic, V. Cvorovic, S. Dimkovic, V. Popovic-Brkic, Relationship between high circulating adiponectin with bone mineral density and bone metabolism in elderly males with chronic heart failure. J. Card Fail. 16(4), 301–307 (2010)PubMedCrossRef
15.
go back to reference L. Basurto, R. Galvan, N. Cordova, R. Saucedo, C. Vargas, S. Campos, E. Halley, F. Avelar, A. Zarate, Adiponectin is associated with low bone mineral density in elderly men. Eur. J. Endocrinol. 160(2), 289–293 (2009)PubMedCrossRef L. Basurto, R. Galvan, N. Cordova, R. Saucedo, C. Vargas, S. Campos, E. Halley, F. Avelar, A. Zarate, Adiponectin is associated with low bone mineral density in elderly men. Eur. J. Endocrinol. 160(2), 289–293 (2009)PubMedCrossRef
16.
go back to reference X.H. Luo, L.J. Guo, L.Q. Yuan, H. Xie, H.D. Zhou, X.P. Wu, E.Y. Liao, Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp. Cell Res. 309(1), 99–109 (2005)PubMedCrossRef X.H. Luo, L.J. Guo, L.Q. Yuan, H. Xie, H.D. Zhou, X.P. Wu, E.Y. Liao, Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp. Cell Res. 309(1), 99–109 (2005)PubMedCrossRef
17.
go back to reference H.W. Lee, S.Y. Kim, A.Y. Kim, E.J. Lee, J.Y. Choi, J.B. Kim, Adiponectin stimulates osteoblast differentiation through induction of COX2 in mesenchymal progenitor cells. Stem Cells 27(9), 2254–2262 (2009)PubMedCrossRef H.W. Lee, S.Y. Kim, A.Y. Kim, E.J. Lee, J.Y. Choi, J.B. Kim, Adiponectin stimulates osteoblast differentiation through induction of COX2 in mesenchymal progenitor cells. Stem Cells 27(9), 2254–2262 (2009)PubMedCrossRef
18.
go back to reference N. Yamaguchi, T. Kukita, Y.J. Li, J.G. Martinez Argueta, T. Saito, S. Hanazawa, Y. Yamashita, Adiponectin inhibits osteoclast formation stimulated by lipopolysaccharide from Actinobacillus actinomycetemcomitans. FEMS Immunol. Med. Microbiol. 49(1), 28–34 (2007)PubMedCrossRef N. Yamaguchi, T. Kukita, Y.J. Li, J.G. Martinez Argueta, T. Saito, S. Hanazawa, Y. Yamashita, Adiponectin inhibits osteoclast formation stimulated by lipopolysaccharide from Actinobacillus actinomycetemcomitans. FEMS Immunol. Med. Microbiol. 49(1), 28–34 (2007)PubMedCrossRef
19.
go back to reference K. Oshima, A. Nampei, M. Matsuda, M. Iwaki, A. Fukuhara, J. Hashimoto, H. Yoshikawa, I. Shimomura, Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem. Biophys. Res. Commun. 331(2), 520–526 (2005)PubMedCrossRef K. Oshima, A. Nampei, M. Matsuda, M. Iwaki, A. Fukuhara, J. Hashimoto, H. Yoshikawa, I. Shimomura, Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochem. Biophys. Res. Commun. 331(2), 520–526 (2005)PubMedCrossRef
20.
go back to reference X.H. Luo, L.J. Guo, H. Xie, L.Q. Yuan, X.P. Wu, H.D. Zhou, E.Y. Liao, Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J. Bone Miner. Res. 21(10), 1648–1656 (2006)PubMedCrossRef X.H. Luo, L.J. Guo, H. Xie, L.Q. Yuan, X.P. Wu, H.D. Zhou, E.Y. Liao, Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J. Bone Miner. Res. 21(10), 1648–1656 (2006)PubMedCrossRef
21.
22.
go back to reference Q.P. Wang, L. Yang, X.P. Li, H. Xie, E.Y. Liao, M. Wang, X.H. Luo, Effects of 17beta-estradiol on adiponectin regulation of the expression of osteoprotegerin and receptor activator of nuclear factor-kappaB ligand. Bone 51(3), 515–523 (2012)PubMedCrossRef Q.P. Wang, L. Yang, X.P. Li, H. Xie, E.Y. Liao, M. Wang, X.H. Luo, Effects of 17beta-estradiol on adiponectin regulation of the expression of osteoprotegerin and receptor activator of nuclear factor-kappaB ligand. Bone 51(3), 515–523 (2012)PubMedCrossRef
23.
go back to reference A. Geldyyev, N. Koleganova, G. Piecha, H. Sueltmann, K. Finis, M. Ruschaupt, A. Poustka, M.L. Gross, I. Berger, High expression level of bone degrading proteins as a possible inducer of osteolytic features in pigmented villonodular synovitis. Cancer Lett. 255(2), 275–283 (2007)PubMedCrossRef A. Geldyyev, N. Koleganova, G. Piecha, H. Sueltmann, K. Finis, M. Ruschaupt, A. Poustka, M.L. Gross, I. Berger, High expression level of bone degrading proteins as a possible inducer of osteolytic features in pigmented villonodular synovitis. Cancer Lett. 255(2), 275–283 (2007)PubMedCrossRef
24.
go back to reference G. Musso, Non-alcoholic fatty liver, adipose tissue, and the bone: a new triumvirate on the block. Endocrine 42(2), 237–239 (2012)PubMedCrossRef G. Musso, Non-alcoholic fatty liver, adipose tissue, and the bone: a new triumvirate on the block. Endocrine 42(2), 237–239 (2012)PubMedCrossRef
25.
go back to reference H. Zhang, X. Chai, S. Li, Z. Zhang, L. Yuan, H. Xie, H. Zhou, X. Wu, Z. Sheng, E. Liao, Age-related changes in body composition and their relationship with bone mineral density decreasing rates in central south Chinese postmenopausal women. Endocrine 43(3), 643–650 (2013)PubMedCrossRef H. Zhang, X. Chai, S. Li, Z. Zhang, L. Yuan, H. Xie, H. Zhou, X. Wu, Z. Sheng, E. Liao, Age-related changes in body composition and their relationship with bone mineral density decreasing rates in central south Chinese postmenopausal women. Endocrine 43(3), 643–650 (2013)PubMedCrossRef
26.
go back to reference H. Li, H. Xie, W. Liu, R. Hu, B. Huang, Y.F. Tan, K. Xu, Z.F. Sheng, H.D. Zhou, X.P. Wu, X.H. Luo, A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J. Clin. Invest. 119(12), 3666–3677 (2009)PubMedCentralPubMedCrossRef H. Li, H. Xie, W. Liu, R. Hu, B. Huang, Y.F. Tan, K. Xu, Z.F. Sheng, H.D. Zhou, X.P. Wu, X.H. Luo, A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J. Clin. Invest. 119(12), 3666–3677 (2009)PubMedCentralPubMedCrossRef
27.
go back to reference P. Cheng, C. Chen, H.B. He, R. Hu, H.D. Zhou, H. Xie, W. Zhu, R.C. Dai, X.P. Wu, E.Y. Liao, X.H. Luo, miR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B. J. Bone Miner. Res. 28(5), 1180–1190 (2013)PubMedCrossRef P. Cheng, C. Chen, H.B. He, R. Hu, H.D. Zhou, H. Xie, W. Zhu, R.C. Dai, X.P. Wu, E.Y. Liao, X.H. Luo, miR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B. J. Bone Miner. Res. 28(5), 1180–1190 (2013)PubMedCrossRef
28.
go back to reference K. Agbaht, A. Gurlek, J. Karakaya, M. Bayraktar, Circulating adiponectin represents a biomarker of the association between adiposity and bone mineral density. Endocrine 35(3), 371–379 (2009)PubMedCrossRef K. Agbaht, A. Gurlek, J. Karakaya, M. Bayraktar, Circulating adiponectin represents a biomarker of the association between adiposity and bone mineral density. Endocrine 35(3), 371–379 (2009)PubMedCrossRef
29.
go back to reference L. Lenchik, T.C. Register, F.C. Hsu, K. Lohman, B.J. Nicklas, B.I. Freedman, C.D. Langefeld, J.J. Carr, D.W. Bowden, Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone 33(4), 646–651 (2003)PubMedCrossRef L. Lenchik, T.C. Register, F.C. Hsu, K. Lohman, B.J. Nicklas, B.I. Freedman, C.D. Langefeld, J.J. Carr, D.W. Bowden, Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone 33(4), 646–651 (2003)PubMedCrossRef
30.
go back to reference J.B. Richards, A.M. Valdes, K. Burling, U.C. Perks, T.D. Spector, Serum adiponectin and bone mineral density in women. J. Clin. Endocrinol. Metab. 92(4), 1517–1523 (2007)PubMedCrossRef J.B. Richards, A.M. Valdes, K. Burling, U.C. Perks, T.D. Spector, Serum adiponectin and bone mineral density in women. J. Clin. Endocrinol. Metab. 92(4), 1517–1523 (2007)PubMedCrossRef
31.
go back to reference E. Biver, C. Salliot, C. Combescure, L. Gossec, P. Hardouin, I. Legroux-Gerot, B. Cortet, Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 96(9), 2703–2713 (2011)PubMedCrossRef E. Biver, C. Salliot, C. Combescure, L. Gossec, P. Hardouin, I. Legroux-Gerot, B. Cortet, Influence of adipokines and ghrelin on bone mineral density and fracture risk: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 96(9), 2703–2713 (2011)PubMedCrossRef
32.
go back to reference P. Szulc, P.D. Delmas, Biochemical markers of bone turnover: potential use in the investigation and management of postmenopausal osteoporosis. Osteoporos. Int. 19(12), 1683–1704 (2008)PubMedCrossRef P. Szulc, P.D. Delmas, Biochemical markers of bone turnover: potential use in the investigation and management of postmenopausal osteoporosis. Osteoporos. Int. 19(12), 1683–1704 (2008)PubMedCrossRef
34.
go back to reference J.M. Blair, H. Zhou, M.J. Seibel, C.R. Dunstan, Mechanisms of disease: roles of OPG, RANKL and RANK in the pathophysiology of skeletal metastasis. Nat. Clin. Pract. Oncol. 3(1), 41–49 (2006)PubMedCrossRef J.M. Blair, H. Zhou, M.J. Seibel, C.R. Dunstan, Mechanisms of disease: roles of OPG, RANKL and RANK in the pathophysiology of skeletal metastasis. Nat. Clin. Pract. Oncol. 3(1), 41–49 (2006)PubMedCrossRef
35.
go back to reference L.C. Hofbauer, C.A. Kuhne, V. Viereck, The OPG/RANKL/RANK system in metabolic bone diseases. J. Musculoskelet. Neuronal Interact. 4(3), 268–275 (2004)PubMed L.C. Hofbauer, C.A. Kuhne, V. Viereck, The OPG/RANKL/RANK system in metabolic bone diseases. J. Musculoskelet. Neuronal Interact. 4(3), 268–275 (2004)PubMed
36.
go back to reference A. Rogers, R. Eastell, Circulating osteoprotegerin and receptor activator for nuclear factor kappaB ligand: clinical utility in metabolic bone disease assessment. J. Clin. Endocrinol. Metab. 90(11), 6323–6331 (2005)PubMedCrossRef A. Rogers, R. Eastell, Circulating osteoprotegerin and receptor activator for nuclear factor kappaB ligand: clinical utility in metabolic bone disease assessment. J. Clin. Endocrinol. Metab. 90(11), 6323–6331 (2005)PubMedCrossRef
37.
go back to reference E.M. Lewiecki, RANK ligand inhibition with denosumab for the management of osteoporosis. Expert. Opin. Biol. Ther. 6(10), 1041–1050 (2006)PubMedCrossRef E.M. Lewiecki, RANK ligand inhibition with denosumab for the management of osteoporosis. Expert. Opin. Biol. Ther. 6(10), 1041–1050 (2006)PubMedCrossRef
38.
go back to reference G. Schett, S. Hayer, J. Zwerina, K. Redlich, J.S. Smolen, Mechanisms of disease: the link between RANKL and arthritic bone disease. Nat. Clin. Pract. Rheumatol. 1(1), 47–54 (2005)PubMedCrossRef G. Schett, S. Hayer, J. Zwerina, K. Redlich, J.S. Smolen, Mechanisms of disease: the link between RANKL and arthritic bone disease. Nat. Clin. Pract. Rheumatol. 1(1), 47–54 (2005)PubMedCrossRef
39.
go back to reference S. Kudlacek, B. Schneider, W. Woloszczuk, P. Pietschmann, R. Willvonseder, Serum levels of osteoprotegerin increase with age in a healthy adult population. Bone 32(6), 681–686 (2003)PubMedCrossRef S. Kudlacek, B. Schneider, W. Woloszczuk, P. Pietschmann, R. Willvonseder, Serum levels of osteoprotegerin increase with age in a healthy adult population. Bone 32(6), 681–686 (2003)PubMedCrossRef
40.
go back to reference Y. Shinoda, M. Yamaguchi, N. Ogata, T. Akune, N. Kubota, T. Yamauchi, Y. Terauchi, T. Kadowaki, Y. Takeuchi, S. Fukumoto, T. Ikeda, K. Hoshi, U.I. Chung, K. Nakamura, H. Kawaguchi, Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J. Cell. Biochem. 99(1), 196–208 (2006)PubMedCrossRef Y. Shinoda, M. Yamaguchi, N. Ogata, T. Akune, N. Kubota, T. Yamauchi, Y. Terauchi, T. Kadowaki, Y. Takeuchi, S. Fukumoto, T. Ikeda, K. Hoshi, U.I. Chung, K. Nakamura, H. Kawaguchi, Regulation of bone formation by adiponectin through autocrine/paracrine and endocrine pathways. J. Cell. Biochem. 99(1), 196–208 (2006)PubMedCrossRef
Metadata
Title
Adiponectin exerts its negative effect on bone metabolism via OPG/RANKL pathway: an in vivo study
Authors
Qing-ping Wang
Xian-ping Li
Min Wang
Li-ling Zhao
Hui Li
Hui Xie
Zhi-yong Lu
Publication date
01-12-2014
Publisher
Springer US
Published in
Endocrine / Issue 3/2014
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-014-0216-z

Other articles of this Issue 3/2014

Endocrine 3/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine