Skip to main content
Top
Published in: BMC Gastroenterology 1/2012

Open Access 01-12-2012 | Research article

Adhesion GPCRs are widely expressed throughout the subsections of the gastrointestinal tract

Authors: Luca Badiali, Jonathan Cedernaes, Pawel K Olszewski, Olof Nylander, Anna V Vergoni, Helgi B Schiöth

Published in: BMC Gastroenterology | Issue 1/2012

Login to get access

Abstract

Background

G protein-coupled receptors (GPCRs) represent one of the largest families of transmembrane receptors and the most common drug target. The Adhesion subfamily is the second largest one of GPCRs and its several members are known to mediate neural development and immune system functioning through cell-cell and cell-matrix interactions. The distribution of these receptors has not been characterized in detail in the gastrointestinal (GI) tract. Here we present the first comprehensive anatomical profiling of mRNA expression of all 30 Adhesion GPCRs in the rat GI tract divided into twelve subsegments.

Methods

Using RT-qPCR, we studied the expression of Adhesion GPCRs in the esophagus, the corpus and antrum of the stomach, the proximal and distal parts of the duodenum, ileum, jejunum and colon, and the cecum.

Results

We found that twenty-one Adhesion GPCRs (70%) had a widespread (expressed in five or more segments) or ubiquitous (expressed in eleven or more segments) distribution, seven (23%) were restricted to a few segments of the GI tract and two were not expressed in any segment. Most notably, almost all Group III members were ubiquitously expressed, while the restricted expression was characteristic for the majority of group VII members, hinting at more specific/localized roles for some of these receptors.

Conclusions

Overall, the distribution of Adhesion GPCRs points to their important role in GI tract functioning and defines them as a potentially crucial target for pharmacological interventions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lagerström MC, Schiöth HB: Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov. 2008, 7 (4): 339-357. 10.1038/nrd2518.CrossRefPubMed Lagerström MC, Schiöth HB: Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov. 2008, 7 (4): 339-357. 10.1038/nrd2518.CrossRefPubMed
2.
go back to reference Fredriksson R, Lagerström MC, Lundin L-G: The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol. 2003, 63 (6): 1256-1272. 10.1124/mol.63.6.1256.CrossRefPubMed Fredriksson R, Lagerström MC, Lundin L-G: The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol. 2003, 63 (6): 1256-1272. 10.1124/mol.63.6.1256.CrossRefPubMed
3.
go back to reference Bjarnadottir TK, Fredriksson R, Schioth HB: The adhesion GPCRs: a unique family of G protein-coupled receptors with important roles in both central and peripheral tissues. Cell Mol Life Sci. 2007, 64 (16): 2104-2119. 10.1007/s00018-007-7067-1.CrossRefPubMed Bjarnadottir TK, Fredriksson R, Schioth HB: The adhesion GPCRs: a unique family of G protein-coupled receptors with important roles in both central and peripheral tissues. Cell Mol Life Sci. 2007, 64 (16): 2104-2119. 10.1007/s00018-007-7067-1.CrossRefPubMed
4.
go back to reference Lin H-H, Chang G-W, Davies JQ, Stacey M, Harris J, Gordon S: Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif. J Biol Chem. 2004, 279 (30): 31823-31832. 10.1074/jbc.M402974200.CrossRefPubMed Lin H-H, Chang G-W, Davies JQ, Stacey M, Harris J, Gordon S: Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif. J Biol Chem. 2004, 279 (30): 31823-31832. 10.1074/jbc.M402974200.CrossRefPubMed
5.
go back to reference Krasnoperov V, Bittner MA, Holz RW, Chepurny O, Petrenko AG: Structural requirements for alpha-latrotoxin binding and alpha-latrotoxin-stimulated secretion. A study with calcium-independent receptor of alpha-latrotoxin (CIRL) deletion mutants. J Biol Chem. 1999, 274 (6): 3590-3596. 10.1074/jbc.274.6.3590.CrossRefPubMed Krasnoperov V, Bittner MA, Holz RW, Chepurny O, Petrenko AG: Structural requirements for alpha-latrotoxin binding and alpha-latrotoxin-stimulated secretion. A study with calcium-independent receptor of alpha-latrotoxin (CIRL) deletion mutants. J Biol Chem. 1999, 274 (6): 3590-3596. 10.1074/jbc.274.6.3590.CrossRefPubMed
6.
go back to reference Yona S, Lin H-H, Siu WO, Gordon S, Stacey M: Adhesion-GPCRs: emerging roles for novel receptors. Trends Biochem Sci. 2008, 33 (10): 491-500. 10.1016/j.tibs.2008.07.005.CrossRefPubMed Yona S, Lin H-H, Siu WO, Gordon S, Stacey M: Adhesion-GPCRs: emerging roles for novel receptors. Trends Biochem Sci. 2008, 33 (10): 491-500. 10.1016/j.tibs.2008.07.005.CrossRefPubMed
7.
go back to reference Bjarnadottir TK, Geirardsdottir K, Ingemansson M, Mirza MA, Fredriksson R, Schioth HB: Identification of novel splice variants of Adhesion G protein-coupled receptors. Gene. 2007, 387 (1–2): 38-48.CrossRefPubMed Bjarnadottir TK, Geirardsdottir K, Ingemansson M, Mirza MA, Fredriksson R, Schioth HB: Identification of novel splice variants of Adhesion G protein-coupled receptors. Gene. 2007, 387 (1–2): 38-48.CrossRefPubMed
8.
go back to reference Lelianova VG, Davletov BA, Sterling A, Rahman MA, Grishin EV, Totty NF, Ushkaryov YA: Alpha-latrotoxin receptor, latrophilin, is a novel member of the secretin family of G protein-coupled receptors. J Biol Chem. 1997, 272 (34): 21504-21508. 10.1074/jbc.272.34.21504.CrossRefPubMed Lelianova VG, Davletov BA, Sterling A, Rahman MA, Grishin EV, Totty NF, Ushkaryov YA: Alpha-latrotoxin receptor, latrophilin, is a novel member of the secretin family of G protein-coupled receptors. J Biol Chem. 1997, 272 (34): 21504-21508. 10.1074/jbc.272.34.21504.CrossRefPubMed
9.
go back to reference Little KD, Hemler ME, Stipp CS: Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-Galpha q/11 association. Mol Biol Cell. 2004, 15 (5): 2375-2387. 10.1091/mbc.E03-12-0886.CrossRefPubMedPubMedCentral Little KD, Hemler ME, Stipp CS: Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-Galpha q/11 association. Mol Biol Cell. 2004, 15 (5): 2375-2387. 10.1091/mbc.E03-12-0886.CrossRefPubMedPubMedCentral
10.
go back to reference Sanger GJ, Lee K: Hormones of the gut-brain axis as targets for the treatment of upper gastrointestinal disorders. Nat Rev Drug Discov. 2008, 7 (3): 241-254. 10.1038/nrd2444.CrossRefPubMed Sanger GJ, Lee K: Hormones of the gut-brain axis as targets for the treatment of upper gastrointestinal disorders. Nat Rev Drug Discov. 2008, 7 (3): 241-254. 10.1038/nrd2444.CrossRefPubMed
11.
go back to reference Gross KJ, Pothoulakis C: Role of neuropeptides in inflammatory bowel disease. Inflamm Bowel Dis. 2007, 13 (7): 918-932. 10.1002/ibd.20129.CrossRefPubMed Gross KJ, Pothoulakis C: Role of neuropeptides in inflammatory bowel disease. Inflamm Bowel Dis. 2007, 13 (7): 918-932. 10.1002/ibd.20129.CrossRefPubMed
12.
go back to reference Round JL, Mazmanian SK: The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009, 9 (5): 313-323. 10.1038/nri2515.CrossRefPubMedPubMedCentral Round JL, Mazmanian SK: The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009, 9 (5): 313-323. 10.1038/nri2515.CrossRefPubMedPubMedCentral
13.
go back to reference Wren AM, Bloom SR: Gut hormones and appetite control. Gastroenterology. 2007, 132 (6): 2116-2130. 10.1053/j.gastro.2007.03.048.CrossRefPubMed Wren AM, Bloom SR: Gut hormones and appetite control. Gastroenterology. 2007, 132 (6): 2116-2130. 10.1053/j.gastro.2007.03.048.CrossRefPubMed
14.
go back to reference Konturek SJ, Konturek JW, Pawlik T, Brzozowski T: Brain-gut axis and its role in the control of food intake. J Physiol Pharmacol. 2004, 55 (1 Pt 2): 137-154.PubMed Konturek SJ, Konturek JW, Pawlik T, Brzozowski T: Brain-gut axis and its role in the control of food intake. J Physiol Pharmacol. 2004, 55 (1 Pt 2): 137-154.PubMed
15.
go back to reference Engelstoft MS, Egerod KL, Holst B, Schwartz TW: A gut feeling for obesity: 7TM sensors on enteroendocrine cells. Cell Metab. 2008, 8 (6): 447-449. 10.1016/j.cmet.2008.11.004.CrossRefPubMed Engelstoft MS, Egerod KL, Holst B, Schwartz TW: A gut feeling for obesity: 7TM sensors on enteroendocrine cells. Cell Metab. 2008, 8 (6): 447-449. 10.1016/j.cmet.2008.11.004.CrossRefPubMed
16.
go back to reference Rayasam GV, Tulasi VK, Davis JA, Bansal VS: Fatty acid receptors as new therapeutic targets for diabetes. Expert Opin Ther Targets. 2007, 11 (5): 661-671. 10.1517/14728222.11.5.661.CrossRefPubMed Rayasam GV, Tulasi VK, Davis JA, Bansal VS: Fatty acid receptors as new therapeutic targets for diabetes. Expert Opin Ther Targets. 2007, 11 (5): 661-671. 10.1517/14728222.11.5.661.CrossRefPubMed
17.
go back to reference Tazoe H, Otomo Y, Kaji I, Tanaka R, Karaki SI, Kuwahara A: Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol. 2008, 59 (Suppl 2): 251-262.PubMed Tazoe H, Otomo Y, Kaji I, Tanaka R, Karaki SI, Kuwahara A: Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol. 2008, 59 (Suppl 2): 251-262.PubMed
18.
go back to reference Zabel BA, Agace WW, Campbell JJ, Heath HM, Parent D, Roberts AI, Ebert EC, Kassam N, Qin S, Zovko M, et al: Human G protein-coupled receptor GPR-9-6/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus-expressed chemokine-mediated chemotaxis. J Exp Med. 1999, 190 (9): 1241-1256. 10.1084/jem.190.9.1241.CrossRefPubMedPubMedCentral Zabel BA, Agace WW, Campbell JJ, Heath HM, Parent D, Roberts AI, Ebert EC, Kassam N, Qin S, Zovko M, et al: Human G protein-coupled receptor GPR-9-6/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus-expressed chemokine-mediated chemotaxis. J Exp Med. 1999, 190 (9): 1241-1256. 10.1084/jem.190.9.1241.CrossRefPubMedPubMedCentral
19.
go back to reference Jarmin DI, Rits M, Bota D, Gerard NP, Graham GJ, Clark-Lewis I, Gerard C: Cutting edge: identification of the orphan receptor G-protein-coupled receptor 2 as CCR10, a specific receptor for the chemokine ESkine. J Immunol. 2000, 164 (7): 3460-3464. Baltimore, Md: 1950CrossRefPubMed Jarmin DI, Rits M, Bota D, Gerard NP, Graham GJ, Clark-Lewis I, Gerard C: Cutting edge: identification of the orphan receptor G-protein-coupled receptor 2 as CCR10, a specific receptor for the chemokine ESkine. J Immunol. 2000, 164 (7): 3460-3464. Baltimore, Md: 1950CrossRefPubMed
20.
go back to reference Isensee J, Meoli L, Zazzu V, Nabzdyk C, Witt H, Soewarto D, Effertz K, Fuchs H, Gailus-Durner V, Busch D, et al: Expression pattern of G protein-coupled receptor 30 in LacZ reporter mice. Endocrinology. 2009, 150 (4): 1722-1730. 10.1210/en.2008-1488.CrossRefPubMed Isensee J, Meoli L, Zazzu V, Nabzdyk C, Witt H, Soewarto D, Effertz K, Fuchs H, Gailus-Durner V, Busch D, et al: Expression pattern of G protein-coupled receptor 30 in LacZ reporter mice. Endocrinology. 2009, 150 (4): 1722-1730. 10.1210/en.2008-1488.CrossRefPubMed
21.
go back to reference McClanahan T, Koseoglu S, Smith K, Grein J, Gustafson E, Black S, Kirschmeier P, Samatar AA: Identification of overexpression of orphan G protein-coupled receptor GPR49 in human colon and ovarian primary tumors. Cancer Biol Ther. 2006, 5 (4): 419-426. 10.4161/cbt.5.4.2521.CrossRefPubMed McClanahan T, Koseoglu S, Smith K, Grein J, Gustafson E, Black S, Kirschmeier P, Samatar AA: Identification of overexpression of orphan G protein-coupled receptor GPR49 in human colon and ovarian primary tumors. Cancer Biol Ther. 2006, 5 (4): 419-426. 10.4161/cbt.5.4.2521.CrossRefPubMed
22.
go back to reference Wobus M, Huber O, Hamann J, Aust G: CD97 overexpression in tumor cells at the invasion front in colorectal cancer (CC) is independently regulated of the canonical Wnt pathway. Mol Carcinog. 2006, 45 (11): 881-886. 10.1002/mc.20262.CrossRefPubMed Wobus M, Huber O, Hamann J, Aust G: CD97 overexpression in tumor cells at the invasion front in colorectal cancer (CC) is independently regulated of the canonical Wnt pathway. Mol Carcinog. 2006, 45 (11): 881-886. 10.1002/mc.20262.CrossRefPubMed
23.
go back to reference Han S-L, Xu C, Wu X-L, Li J-L, Liu Z, Zeng Q-Q: The impact of expressions of CD97 and its ligand CD55 at the invasion front on prognosis of rectal adenocarcinoma. Int J Color Dis. 2010, 25 (6): 695-702. 10.1007/s00384-010-0926-5.CrossRef Han S-L, Xu C, Wu X-L, Li J-L, Liu Z, Zeng Q-Q: The impact of expressions of CD97 and its ligand CD55 at the invasion front on prognosis of rectal adenocarcinoma. Int J Color Dis. 2010, 25 (6): 695-702. 10.1007/s00384-010-0926-5.CrossRef
24.
go back to reference Liu D, Trojanowicz B, Radestock Y, Fu T, Hammje K, Chen L, Hoang-Vu C: Role of CD97 isoforms in gastric carcinoma. Int J Oncol. 2010, 36 (6): 1401-1408.CrossRefPubMed Liu D, Trojanowicz B, Radestock Y, Fu T, Hammje K, Chen L, Hoang-Vu C: Role of CD97 isoforms in gastric carcinoma. Int J Oncol. 2010, 36 (6): 1401-1408.CrossRefPubMed
25.
go back to reference Yona S, Lin H-H, Dri P, Davies JQ, Hayhoe RPG, Lewis SM, Heinsbroek SEM, Brown KA, Perretti M, Hamann J, et al: Ligation of the adhesion-GPCR EMR2 regulates human neutrophil function. FASEB J. 2008, 22 (3): 741-751.CrossRefPubMed Yona S, Lin H-H, Dri P, Davies JQ, Hayhoe RPG, Lewis SM, Heinsbroek SEM, Brown KA, Perretti M, Hamann J, et al: Ligation of the adhesion-GPCR EMR2 regulates human neutrophil function. FASEB J. 2008, 22 (3): 741-751.CrossRefPubMed
26.
go back to reference Guillem PG: How to make a Barrett esophagus: pathophysiology of columnar metaplasia of the esophagus. Dig Dis Sci. 2005, 50 (3): 415-424. 10.1007/s10620-005-2451-x.CrossRefPubMed Guillem PG: How to make a Barrett esophagus: pathophysiology of columnar metaplasia of the esophagus. Dig Dis Sci. 2005, 50 (3): 415-424. 10.1007/s10620-005-2451-x.CrossRefPubMed
28.
go back to reference Xavier RJ, Podolsky DK: Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007, 448 (7152): 427-434. 10.1038/nature06005.CrossRefPubMed Xavier RJ, Podolsky DK: Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007, 448 (7152): 427-434. 10.1038/nature06005.CrossRefPubMed
29.
go back to reference Cedernaes J, Olszewski PK, Almén MS, Stephansson O, Levine AS, Fredriksson R, Nylander O, Schiöth HB: Comprehensive analysis of localization of 78 solute carrier genes throughout the subsections of the rat gastrointestinal tract. Biochem Biophys Res Commun. 2011, 411 (4): 702-707. 10.1016/j.bbrc.2011.07.005.CrossRefPubMed Cedernaes J, Olszewski PK, Almén MS, Stephansson O, Levine AS, Fredriksson R, Nylander O, Schiöth HB: Comprehensive analysis of localization of 78 solute carrier genes throughout the subsections of the rat gastrointestinal tract. Biochem Biophys Res Commun. 2011, 411 (4): 702-707. 10.1016/j.bbrc.2011.07.005.CrossRefPubMed
30.
go back to reference Sreedharan S, Shaik JHA, Olszewski PK, Levine AS, Schiöth HB, Fredriksson R: Glutamate, aspartate and nucleotide transporters in the SLC17 family form four main phylogenetic clusters: evolution and tissue expression. BMC Genomics. 2010, 11: 17-17. 10.1186/1471-2164-11-17.CrossRefPubMedPubMedCentral Sreedharan S, Shaik JHA, Olszewski PK, Levine AS, Schiöth HB, Fredriksson R: Glutamate, aspartate and nucleotide transporters in the SLC17 family form four main phylogenetic clusters: evolution and tissue expression. BMC Genomics. 2010, 11: 17-17. 10.1186/1471-2164-11-17.CrossRefPubMedPubMedCentral
31.
go back to reference Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262. San Diego, CalifCrossRefPubMed Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262. San Diego, CalifCrossRefPubMed
32.
go back to reference Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3 (7): RESEARCH0034-RESEARCH0034.CrossRefPubMedPubMedCentral Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3 (7): RESEARCH0034-RESEARCH0034.CrossRefPubMedPubMedCentral
33.
go back to reference Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH: CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res. 2002, 30 (1): 281-283. 10.1093/nar/30.1.281.CrossRefPubMedPubMedCentral Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH: CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res. 2002, 30 (1): 281-283. 10.1093/nar/30.1.281.CrossRefPubMedPubMedCentral
34.
go back to reference Regard JB, Sato IT, Coughlin SR: Anatomical profiling of G protein-coupled receptor expression. Cell. 2008, 135 (3): 561-571. 10.1016/j.cell.2008.08.040.CrossRefPubMedPubMedCentral Regard JB, Sato IT, Coughlin SR: Anatomical profiling of G protein-coupled receptor expression. Cell. 2008, 135 (3): 561-571. 10.1016/j.cell.2008.08.040.CrossRefPubMedPubMedCentral
35.
go back to reference Ito J, Ito M, Nambu H, Fujikawa T, Tanaka K, Iwaasa H, Tokita S: Anatomical and histological profiling of orphan G-protein-coupled receptor expression in gastrointestinal tract of C57BL/6 J mice. Cell Tissue Res. 2009, 338 (2): 257-269. 10.1007/s00441-009-0859-x.CrossRefPubMed Ito J, Ito M, Nambu H, Fujikawa T, Tanaka K, Iwaasa H, Tokita S: Anatomical and histological profiling of orphan G-protein-coupled receptor expression in gastrointestinal tract of C57BL/6 J mice. Cell Tissue Res. 2009, 338 (2): 257-269. 10.1007/s00441-009-0859-x.CrossRefPubMed
36.
go back to reference Haitina T, Olsson F, Stephansson O, Alsiö J, Roman E, Ebendal T, Schiöth HB, Fredriksson R: Expression profile of the entire family of Adhesion G protein-coupled receptors in mouse and rat. BMC Neurosci. 2008, 9: 43-43. 10.1186/1471-2202-9-43.CrossRefPubMedPubMedCentral Haitina T, Olsson F, Stephansson O, Alsiö J, Roman E, Ebendal T, Schiöth HB, Fredriksson R: Expression profile of the entire family of Adhesion G protein-coupled receptors in mouse and rat. BMC Neurosci. 2008, 9: 43-43. 10.1186/1471-2202-9-43.CrossRefPubMedPubMedCentral
37.
go back to reference Chen G, Yang L, Begum S, Xu L: GPR56 is essential for testis development and male fertility in mice. Dev Dyn. 2010, 239 (12): 3358-3367. 10.1002/dvdy.22468.CrossRefPubMedPubMedCentral Chen G, Yang L, Begum S, Xu L: GPR56 is essential for testis development and male fertility in mice. Dev Dyn. 2010, 239 (12): 3358-3367. 10.1002/dvdy.22468.CrossRefPubMedPubMedCentral
38.
go back to reference Iguchi T, Sakata K, Yoshizaki K, Tago K, Mizuno N, Itoh H: Orphan G Protein-coupled Receptor GPR56 Regulates Neural Progenitor Cell Migration via a Gα12/13 and Rho Pathway. J Biol Chem. 2008, 283 (21): 14469-14478. 10.1074/jbc.M708919200.CrossRefPubMed Iguchi T, Sakata K, Yoshizaki K, Tago K, Mizuno N, Itoh H: Orphan G Protein-coupled Receptor GPR56 Regulates Neural Progenitor Cell Migration via a Gα12/13 and Rho Pathway. J Biol Chem. 2008, 283 (21): 14469-14478. 10.1074/jbc.M708919200.CrossRefPubMed
39.
go back to reference Koirala S, Jin Z, Piao X, Corfas G: GPR56-Regulated Granule Cell Adhesion Is Essential for Rostral Cerebellar Development. J Neurosci. 2009, 29 (23): 7439-7449. 10.1523/JNEUROSCI.1182-09.2009.CrossRefPubMedPubMedCentral Koirala S, Jin Z, Piao X, Corfas G: GPR56-Regulated Granule Cell Adhesion Is Essential for Rostral Cerebellar Development. J Neurosci. 2009, 29 (23): 7439-7449. 10.1523/JNEUROSCI.1182-09.2009.CrossRefPubMedPubMedCentral
40.
go back to reference Sud N, Sharma R, Ray R, Chattopadhyay TK, Ralhan R: Differential expression of G-protein coupled receptor 56 in human esophageal squamous cell carcinoma. Cancer Lett. 2006, 233 (2): 265-270. 10.1016/j.canlet.2005.03.018.CrossRefPubMed Sud N, Sharma R, Ray R, Chattopadhyay TK, Ralhan R: Differential expression of G-protein coupled receptor 56 in human esophageal squamous cell carcinoma. Cancer Lett. 2006, 233 (2): 265-270. 10.1016/j.canlet.2005.03.018.CrossRefPubMed
41.
go back to reference Hamann J, Vogel B, van Schijndel GM, van Lier RA: The seven-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF). J Exp Med. 1996, 184 (3): 1185-1189. 10.1084/jem.184.3.1185.CrossRefPubMed Hamann J, Vogel B, van Schijndel GM, van Lier RA: The seven-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF). J Exp Med. 1996, 184 (3): 1185-1189. 10.1084/jem.184.3.1185.CrossRefPubMed
42.
go back to reference Hoek RM, de Launay D, Kop EN, Yilmaz-Elis AS, Lin F, Reedquist KA, Verbeek JS, Medof ME, Tak PP, Hamann J: Deletion of either CD55 or CD97 ameliorates arthritis in mouse models. Arthritis Rheum. 2010, 62 (4): 1036-1042. 10.1002/art.27347.CrossRefPubMed Hoek RM, de Launay D, Kop EN, Yilmaz-Elis AS, Lin F, Reedquist KA, Verbeek JS, Medof ME, Tak PP, Hamann J: Deletion of either CD55 or CD97 ameliorates arthritis in mouse models. Arthritis Rheum. 2010, 62 (4): 1036-1042. 10.1002/art.27347.CrossRefPubMed
43.
go back to reference Visser L, de Vos AF, Hamann J, Melief MJ, van Meurs M, van Lier RA, Laman JD, Hintzen RQ: Expression of the EGF-TM7 receptor CD97 and its ligand CD55 (DAF) in multiple sclerosis. J Neuroimmunol. 2002, 132 (1–2): 156-163.CrossRefPubMed Visser L, de Vos AF, Hamann J, Melief MJ, van Meurs M, van Lier RA, Laman JD, Hintzen RQ: Expression of the EGF-TM7 receptor CD97 and its ligand CD55 (DAF) in multiple sclerosis. J Neuroimmunol. 2002, 132 (1–2): 156-163.CrossRefPubMed
44.
go back to reference Jaspars LH, Vos W, Aust G, Van Lier RA, Hamann J: Tissue distribution of the human CD97 EGF-TM7 receptor. Tissue Antigens. 2001, 57 (4): 325-331. 10.1034/j.1399-0039.2001.057004325.x.CrossRefPubMed Jaspars LH, Vos W, Aust G, Van Lier RA, Hamann J: Tissue distribution of the human CD97 EGF-TM7 receptor. Tissue Antigens. 2001, 57 (4): 325-331. 10.1034/j.1399-0039.2001.057004325.x.CrossRefPubMed
45.
go back to reference Veninga H, Becker S, Hoek RM, Wobus M, Wandel E, van der Kaa J, van der Valk M, de Vos AF, Haase H, Owens B, et al: Analysis of CD97 expression and manipulation: antibody treatment but not gene targeting curtails granulocyte migration. J Immunol. 2008, 181 (9): 6574-6583. Baltimore, Md: 1950CrossRefPubMed Veninga H, Becker S, Hoek RM, Wobus M, Wandel E, van der Kaa J, van der Valk M, de Vos AF, Haase H, Owens B, et al: Analysis of CD97 expression and manipulation: antibody treatment but not gene targeting curtails granulocyte migration. J Immunol. 2008, 181 (9): 6574-6583. Baltimore, Md: 1950CrossRefPubMed
46.
go back to reference van Hogezand RA, Witte AM, Veenendaal RA, Wagtmans MJ, Lamers CB: Proximal Crohn's disease: review of the clinicopathologic features and therapy. Inflamm Bowel Dis. 2001, 7 (4): 328-337. 10.1097/00054725-200111000-00010.CrossRefPubMed van Hogezand RA, Witte AM, Veenendaal RA, Wagtmans MJ, Lamers CB: Proximal Crohn's disease: review of the clinicopathologic features and therapy. Inflamm Bowel Dis. 2001, 7 (4): 328-337. 10.1097/00054725-200111000-00010.CrossRefPubMed
47.
go back to reference Danese S, Sans M, de la Motte C, Graziani C, West G, Phillips MH, Pola R, Rutella S, Willis J, Gasbarrini A, et al: Angiogenesis as a novel component of inflammatory bowel disease pathogenesis. Gastroenterology. 2006, 130 (7): 2060-2073. 10.1053/j.gastro.2006.03.054.CrossRefPubMed Danese S, Sans M, de la Motte C, Graziani C, West G, Phillips MH, Pola R, Rutella S, Willis J, Gasbarrini A, et al: Angiogenesis as a novel component of inflammatory bowel disease pathogenesis. Gastroenterology. 2006, 130 (7): 2060-2073. 10.1053/j.gastro.2006.03.054.CrossRefPubMed
48.
go back to reference Koutroubakis IE, Tsiolakidou G, Karmiris K, Kouroumalis EA: Role of angiogenesis in inflammatory bowel disease. Inflamm Bowel Dis. 2006, 12 (6): 515-523. 10.1097/00054725-200606000-00012.CrossRefPubMed Koutroubakis IE, Tsiolakidou G, Karmiris K, Kouroumalis EA: Role of angiogenesis in inflammatory bowel disease. Inflamm Bowel Dis. 2006, 12 (6): 515-523. 10.1097/00054725-200606000-00012.CrossRefPubMed
49.
go back to reference Davies B, Behnen M, Cappallo-Obermann H, Spiess A-N, Theuring F, Kirchhoff C: Novel epididymis-specific mRNAs downregulated by HE6/Gpr64 receptor gene disruption. Mol Reprod Dev. 2007, 74 (5): 539-553. 10.1002/mrd.20636.CrossRefPubMed Davies B, Behnen M, Cappallo-Obermann H, Spiess A-N, Theuring F, Kirchhoff C: Novel epididymis-specific mRNAs downregulated by HE6/Gpr64 receptor gene disruption. Mol Reprod Dev. 2007, 74 (5): 539-553. 10.1002/mrd.20636.CrossRefPubMed
50.
go back to reference Tissir F, Qu Y, Montcouquiol M, Zhou L, Komatsu K, Shi D, Fujimori T, Labeau J, Tyteca D, Courtoy P, et al: Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nat Neurosci. 2010, 13 (6): 700-707. 10.1038/nn.2555.CrossRefPubMed Tissir F, Qu Y, Montcouquiol M, Zhou L, Komatsu K, Shi D, Fujimori T, Labeau J, Tyteca D, Courtoy P, et al: Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nat Neurosci. 2010, 13 (6): 700-707. 10.1038/nn.2555.CrossRefPubMed
51.
go back to reference Yates LL, Schnatwinkel C, Murdoch JN, Bogani D, Formstone CJ, Townsend S, Greenfield A, Niswander LA, Dean CH: The PCP genes Celsr1 and Vangl2 are required for normal lung branching morphogenesis. Hum Mol Genet. 2010, 19 (11): 2251-2267. 10.1093/hmg/ddq104.CrossRefPubMedPubMedCentral Yates LL, Schnatwinkel C, Murdoch JN, Bogani D, Formstone CJ, Townsend S, Greenfield A, Niswander LA, Dean CH: The PCP genes Celsr1 and Vangl2 are required for normal lung branching morphogenesis. Hum Mol Genet. 2010, 19 (11): 2251-2267. 10.1093/hmg/ddq104.CrossRefPubMedPubMedCentral
52.
go back to reference Leja J, Essaghir A, Essand M, Wester K, Oberg K, Tötterman TH, Lloyd R, Vasmatzis G, Demoulin J-B, Giandomenico V: Novel markers for enterochromaffin cells and gastrointestinal neuroendocrine carcinomas. Mod Pathol. 2009, 22 (2): 261-272. 10.1038/modpathol.2008.174.CrossRefPubMed Leja J, Essaghir A, Essand M, Wester K, Oberg K, Tötterman TH, Lloyd R, Vasmatzis G, Demoulin J-B, Giandomenico V: Novel markers for enterochromaffin cells and gastrointestinal neuroendocrine carcinomas. Mod Pathol. 2009, 22 (2): 261-272. 10.1038/modpathol.2008.174.CrossRefPubMed
53.
go back to reference Spiller R: Serotonin and GI clinical disorders. Neuropharmacology. 2008, 55 (6): 1072-1080. 10.1016/j.neuropharm.2008.07.016.CrossRefPubMed Spiller R: Serotonin and GI clinical disorders. Neuropharmacology. 2008, 55 (6): 1072-1080. 10.1016/j.neuropharm.2008.07.016.CrossRefPubMed
54.
go back to reference Kidd M, Modlin IM, Gustafsson BI, Drozdov I, Hauso O, Pfragner R: Luminal regulation of normal and neoplastic human EC cell serotonin release is mediated by bile salts, amines, tastants, and olfactants. Am J Physiol Gastrointest Liver Physiol. 2008, 295 (2): G260-272. 10.1152/ajpgi.00056.2008.CrossRefPubMed Kidd M, Modlin IM, Gustafsson BI, Drozdov I, Hauso O, Pfragner R: Luminal regulation of normal and neoplastic human EC cell serotonin release is mediated by bile salts, amines, tastants, and olfactants. Am J Physiol Gastrointest Liver Physiol. 2008, 295 (2): G260-272. 10.1152/ajpgi.00056.2008.CrossRefPubMed
55.
go back to reference Kang X, Xiao X, Harata M, Bai Y, Nakazaki Y, Soda Y, Kurita R, Tanaka T, Komine F, Izawa K, et al: Antiangiogenic activity of BAI1 in vivo: implications for gene therapy of human glioblastomas. Cancer Gene Ther. 2006, 13 (4): 385-392. 10.1038/sj.cgt.7700898.CrossRefPubMed Kang X, Xiao X, Harata M, Bai Y, Nakazaki Y, Soda Y, Kurita R, Tanaka T, Komine F, Izawa K, et al: Antiangiogenic activity of BAI1 in vivo: implications for gene therapy of human glioblastomas. Cancer Gene Ther. 2006, 13 (4): 385-392. 10.1038/sj.cgt.7700898.CrossRefPubMed
56.
go back to reference Das S, Owen KA, Ly KT, Park D, Black SG, Wilson JM, Sifri CD, Ravichandran KS, Ernst PB, Casanova JE: Brain angiogenesis inhibitor 1 (BAI1) is a pattern recognition receptor that mediates macrophage binding and engulfment of Gram-negative bacteria. Proc Natl Acad Sci. 2011, 108 (5): 2136-2141. 10.1073/pnas.1014775108.CrossRefPubMedPubMedCentral Das S, Owen KA, Ly KT, Park D, Black SG, Wilson JM, Sifri CD, Ravichandran KS, Ernst PB, Casanova JE: Brain angiogenesis inhibitor 1 (BAI1) is a pattern recognition receptor that mediates macrophage binding and engulfment of Gram-negative bacteria. Proc Natl Acad Sci. 2011, 108 (5): 2136-2141. 10.1073/pnas.1014775108.CrossRefPubMedPubMedCentral
57.
go back to reference Oostdijk EA, de Smet AM, Kesecioglu J, Bonten MJ: The role of intestinal colonization with gram-negative bacteria as a source for intensive care unit-acquired bacteremia. Crit Care Med. 2011, 39 (5): 961-966. 10.1097/CCM.0b013e318208ee26.CrossRefPubMed Oostdijk EA, de Smet AM, Kesecioglu J, Bonten MJ: The role of intestinal colonization with gram-negative bacteria as a source for intensive care unit-acquired bacteremia. Crit Care Med. 2011, 39 (5): 961-966. 10.1097/CCM.0b013e318208ee26.CrossRefPubMed
58.
59.
go back to reference Monk KR, Oshima K, Jörs S, Heller S, Talbot WS: Gpr126 is essential for peripheral nerve development and myelination in mammals. Development. 2011, 138 (13): 2673-2680. 10.1242/dev.062224. Cambridge, EnglandCrossRefPubMedPubMedCentral Monk KR, Oshima K, Jörs S, Heller S, Talbot WS: Gpr126 is essential for peripheral nerve development and myelination in mammals. Development. 2011, 138 (13): 2673-2680. 10.1242/dev.062224. Cambridge, EnglandCrossRefPubMedPubMedCentral
60.
go back to reference Ebermann I, Wiesen MHJ, Zrenner E, Lopez I, Pigeon R, Kohl S, Löwenheim H, Koenekoop RK, Bolz HJ: GPR98 mutations cause Usher syndrome type 2 in males. J Med Genet. 2009, 46 (4): 277-280. 10.1136/jmg.2008.059626.CrossRefPubMed Ebermann I, Wiesen MHJ, Zrenner E, Lopez I, Pigeon R, Kohl S, Löwenheim H, Koenekoop RK, Bolz HJ: GPR98 mutations cause Usher syndrome type 2 in males. J Med Genet. 2009, 46 (4): 277-280. 10.1136/jmg.2008.059626.CrossRefPubMed
61.
go back to reference Nikkila H, McMillan DR, Nunez BS, Pascoe L, Curnow KM, White PC: Sequence similarities between a novel putative G protein-coupled receptor and Na+/Ca2+ exchangers define a cation binding domain. Mol Endocrinol. 2000, 14 (9): 1351-1364. 10.1210/me.14.9.1351. Baltimore, MdCrossRefPubMed Nikkila H, McMillan DR, Nunez BS, Pascoe L, Curnow KM, White PC: Sequence similarities between a novel putative G protein-coupled receptor and Na+/Ca2+ exchangers define a cation binding domain. Mol Endocrinol. 2000, 14 (9): 1351-1364. 10.1210/me.14.9.1351. Baltimore, MdCrossRefPubMed
62.
go back to reference Lum AM, Wang BB, Beck-Engeser GB, Li L, Channa N, Wabl M: Orphan receptor GPR110, an oncogene overexpressed in lung and prostate cancer. BMC Cancer. 2010, 10: 40-40. 10.1186/1471-2407-10-40.CrossRefPubMedPubMedCentral Lum AM, Wang BB, Beck-Engeser GB, Li L, Channa N, Wabl M: Orphan receptor GPR110, an oncogene overexpressed in lung and prostate cancer. BMC Cancer. 2010, 10: 40-40. 10.1186/1471-2407-10-40.CrossRefPubMedPubMedCentral
63.
go back to reference Smedby KE, Akerman M, Hildebrand H, Glimelius B, Ekbom A, Askling J: Malignant lymphomas in coeliac disease: evidence of increased risks for lymphoma types other than enteropathy-type T cell lymphoma. Gut. 2005, 54 (1): 54-59. 10.1136/gut.2003.032094.CrossRefPubMedPubMedCentral Smedby KE, Akerman M, Hildebrand H, Glimelius B, Ekbom A, Askling J: Malignant lymphomas in coeliac disease: evidence of increased risks for lymphoma types other than enteropathy-type T cell lymphoma. Gut. 2005, 54 (1): 54-59. 10.1136/gut.2003.032094.CrossRefPubMedPubMedCentral
64.
go back to reference Greenbaum D, Colangelo C, Williams K, Gerstein M: Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 2003, 4 (9): 117-10.1186/gb-2003-4-9-117.CrossRefPubMedPubMedCentral Greenbaum D, Colangelo C, Williams K, Gerstein M: Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 2003, 4 (9): 117-10.1186/gb-2003-4-9-117.CrossRefPubMedPubMedCentral
65.
go back to reference Kislinger T, Cox B, Kannan A, Chung C, Hu P, Ignatchenko A, Scott MS, Gramolini AO, Morris Q, Hallett MT, et al: Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell. 2006, 125 (1): 173-186. 10.1016/j.cell.2006.01.044.CrossRefPubMed Kislinger T, Cox B, Kannan A, Chung C, Hu P, Ignatchenko A, Scott MS, Gramolini AO, Morris Q, Hallett MT, et al: Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell. 2006, 125 (1): 173-186. 10.1016/j.cell.2006.01.044.CrossRefPubMed
66.
go back to reference Rask-Andersen M, Almén MS, Schiöth HB: Trends in the exploitation of novel drug targets. Nat Rev Drug Discov. 2011, 10 (8): 579-590. 10.1038/nrd3478.CrossRefPubMed Rask-Andersen M, Almén MS, Schiöth HB: Trends in the exploitation of novel drug targets. Nat Rev Drug Discov. 2011, 10 (8): 579-590. 10.1038/nrd3478.CrossRefPubMed
Metadata
Title
Adhesion GPCRs are widely expressed throughout the subsections of the gastrointestinal tract
Authors
Luca Badiali
Jonathan Cedernaes
Pawel K Olszewski
Olof Nylander
Anna V Vergoni
Helgi B Schiöth
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Gastroenterology / Issue 1/2012
Electronic ISSN: 1471-230X
DOI
https://doi.org/10.1186/1471-230X-12-134

Other articles of this Issue 1/2012

BMC Gastroenterology 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.