Skip to main content
Top
Published in: Journal of Translational Medicine 1/2024

Open Access 01-12-2024 | Acute Respiratory Distress-Syndrome | Review

Translational medicine for acute lung injury

Authors: Jianguo Zhang, Yumeng Guo, Michael Mak, Zhimin Tao

Published in: Journal of Translational Medicine | Issue 1/2024

Login to get access

Abstract

Acute lung injury (ALI) is a complex disease with numerous causes. This review begins with a discussion of disease development from direct or indirect pulmonary insults, as well as varied pathogenesis. The heterogeneous nature of ALI is then elaborated upon, including its epidemiology, clinical manifestations, potential biomarkers, and genetic contributions. Although no medication is currently approved for this devastating illness, supportive care and pharmacological intervention for ALI treatment are summarized, followed by an assessment of the pathophysiological gap between human ALI and animal models. Lastly, current research progress on advanced nanomedicines for ALI therapeutics in preclinical and clinical settings is reviewed, demonstrating new opportunities towards developing an effective treatment for ALI.
Literature
1.
go back to reference Knudsen L, Ochs M. The micromechanics of lung alveoli: structure and function of surfactant and tissue components. Histochem Cell Biol. 2018;150(6):661–76.PubMedPubMedCentralCrossRef Knudsen L, Ochs M. The micromechanics of lung alveoli: structure and function of surfactant and tissue components. Histochem Cell Biol. 2018;150(6):661–76.PubMedPubMedCentralCrossRef
3.
5.
go back to reference Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat A, Herridge M, Randolph AG, Calfee CS. Acute respiratory distress syndrome. Nat Rev Dis Primers. 2019;5(1):18.PubMedPubMedCentralCrossRef Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat A, Herridge M, Randolph AG, Calfee CS. Acute respiratory distress syndrome. Nat Rev Dis Primers. 2019;5(1):18.PubMedPubMedCentralCrossRef
6.
7.
go back to reference Morisawa K, Fujitani S, Taira Y, Kushimoto S, Kitazawa Y, Okuchi K, Ishikura H, Sakamoto T, Tagami T, Yamaguchi J, et al. Difference in pulmonary permeability between indirect and direct acute respiratory distress syndrome assessed by the transpulmonary thermodilution technique: a prospective, observational, multi-institutional study. J Intensive Care. 2014;2(1):24.PubMedPubMedCentralCrossRef Morisawa K, Fujitani S, Taira Y, Kushimoto S, Kitazawa Y, Okuchi K, Ishikura H, Sakamoto T, Tagami T, Yamaguchi J, et al. Difference in pulmonary permeability between indirect and direct acute respiratory distress syndrome assessed by the transpulmonary thermodilution technique: a prospective, observational, multi-institutional study. J Intensive Care. 2014;2(1):24.PubMedPubMedCentralCrossRef
8.
go back to reference Wu A, Song H. Regulation of alveolar type 2 stem/progenitor cells in lung injury and regeneration. Acta Biochim Biophys Sin. 2020;52(7):716–22.PubMedCrossRef Wu A, Song H. Regulation of alveolar type 2 stem/progenitor cells in lung injury and regeneration. Acta Biochim Biophys Sin. 2020;52(7):716–22.PubMedCrossRef
9.
go back to reference Butt Y, Kurdowska A, Allen TC. Acute lung injury: a clinical and molecular review. Arch Pathol Lab Med. 2016;140(4):345–50.PubMedCrossRef Butt Y, Kurdowska A, Allen TC. Acute lung injury: a clinical and molecular review. Arch Pathol Lab Med. 2016;140(4):345–50.PubMedCrossRef
10.
go back to reference Cabrera-Benitez NE, Laffey JG, Parotto M, Spieth PM, Villar J, Zhang H, Slutsky AS. Mechanical ventilation-associated lung fibrosis in acute respiratory distress syndrome: a significant contributor to poor outcome. Anesthesiology. 2014;121(1):189–98.PubMedCrossRef Cabrera-Benitez NE, Laffey JG, Parotto M, Spieth PM, Villar J, Zhang H, Slutsky AS. Mechanical ventilation-associated lung fibrosis in acute respiratory distress syndrome: a significant contributor to poor outcome. Anesthesiology. 2014;121(1):189–98.PubMedCrossRef
11.
go back to reference Cardinal-Fernandez P, Bajwa EK, Dominguez-Calvo A, Menendez JM, Papazian L, Thompson BT. The presence of diffuse alveolar damage on open lung biopsy is associated with mortality in patients with acute respiratory distress syndrome: a systematic review and meta-analysis. Chest. 2016;149(5):1155–64.PubMedCrossRef Cardinal-Fernandez P, Bajwa EK, Dominguez-Calvo A, Menendez JM, Papazian L, Thompson BT. The presence of diffuse alveolar damage on open lung biopsy is associated with mortality in patients with acute respiratory distress syndrome: a systematic review and meta-analysis. Chest. 2016;149(5):1155–64.PubMedCrossRef
12.
go back to reference Thille AW, Esteban A, Fernandez-Segoviano P, Rodriguez JM, Aramburu JA, Penuelas O, Cortes-Puch I, Cardinal-Fernandez P, Lorente JA, Frutos-Vivar F. Comparison of the Berlin definition for acute respiratory distress syndrome with autopsy. Am J Respir Crit Care Med. 2013;187(7):761–7.PubMedCrossRef Thille AW, Esteban A, Fernandez-Segoviano P, Rodriguez JM, Aramburu JA, Penuelas O, Cortes-Puch I, Cardinal-Fernandez P, Lorente JA, Frutos-Vivar F. Comparison of the Berlin definition for acute respiratory distress syndrome with autopsy. Am J Respir Crit Care Med. 2013;187(7):761–7.PubMedCrossRef
13.
go back to reference Coppola S, Froio S, Marino A, Brioni M, Cesana BM, Cressoni M, Gattinoni L, Chiumello D. Respiratory mechanics, lung recruitability, and gas exchange in pulmonary and extrapulmonary acute respiratory distress syndrome. Crit Care Med. 2019;47(6):792–9.PubMedCrossRef Coppola S, Froio S, Marino A, Brioni M, Cesana BM, Cressoni M, Gattinoni L, Chiumello D. Respiratory mechanics, lung recruitability, and gas exchange in pulmonary and extrapulmonary acute respiratory distress syndrome. Crit Care Med. 2019;47(6):792–9.PubMedCrossRef
14.
go back to reference Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, LeGall JR, Morris A, Spragg R. Report of the American-European Consensus conference on acute respiratory distress syndrome: definitions, mechanisms, relevant outcomes, and clinical trial coordination. consensus committee. J Crit Care. 1994;9(1):72–81.PubMedCrossRef Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, LeGall JR, Morris A, Spragg R. Report of the American-European Consensus conference on acute respiratory distress syndrome: definitions, mechanisms, relevant outcomes, and clinical trial coordination. consensus committee. J Crit Care. 1994;9(1):72–81.PubMedCrossRef
15.
go back to reference Force ADT, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307(23):2526–33. Force ADT, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307(23):2526–33.
16.
go back to reference Papazian L, Aubron C, Brochard L, Chiche JD, Combes A, Dreyfuss D, Forel JM, Guerin C, Jaber S, Mekontso-Dessap A, et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care. 2019;9(1):69.PubMedPubMedCentralCrossRef Papazian L, Aubron C, Brochard L, Chiche JD, Combes A, Dreyfuss D, Forel JM, Guerin C, Jaber S, Mekontso-Dessap A, et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care. 2019;9(1):69.PubMedPubMedCentralCrossRef
17.
go back to reference Griffiths MJD, McAuley DF, Perkins GD, Barrett N, Blackwood B, Boyle A, Chee N, Connolly B, Dark P, Finney S, et al. Guidelines on the management of acute respiratory distress syndrome. BMJ Open Respir Res. 2019;6(1): e000420.PubMedPubMedCentralCrossRef Griffiths MJD, McAuley DF, Perkins GD, Barrett N, Blackwood B, Boyle A, Chee N, Connolly B, Dark P, Finney S, et al. Guidelines on the management of acute respiratory distress syndrome. BMJ Open Respir Res. 2019;6(1): e000420.PubMedPubMedCentralCrossRef
18.
go back to reference Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.PubMedCrossRef Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.PubMedCrossRef
20.
go back to reference Lew TW, Kwek TK, Tai D, Earnest A, Loo S, Singh K, Kwan KM, Chan Y, Yim CF, Bek SL, et al. Acute respiratory distress syndrome in critically ill patients with severe acute respiratory syndrome. JAMA. 2003;290(3):374–80.PubMedCrossRef Lew TW, Kwek TK, Tai D, Earnest A, Loo S, Singh K, Kwan KM, Chan Y, Yim CF, Bek SL, et al. Acute respiratory distress syndrome in critically ill patients with severe acute respiratory syndrome. JAMA. 2003;290(3):374–80.PubMedCrossRef
21.
go back to reference Zhang J, Huang X, Ding D, Zhang J, Xu L, Hu Z, Xu W, Tao Z. Comparative study of acute lung injury in COVID-19 and non-COVID-19 patients. Front Med. 2021;8(1173): 666629.CrossRef Zhang J, Huang X, Ding D, Zhang J, Xu L, Hu Z, Xu W, Tao Z. Comparative study of acute lung injury in COVID-19 and non-COVID-19 patients. Front Med. 2021;8(1173): 666629.CrossRef
22.
go back to reference Kido T, Muramatsu K, Yatera K, Asakawa T, Otsubo H, Kubo T, Fujino Y, Matsuda S, Mayumi T, Mukae H. Efficacy of early sivelestat administration on acute lung injury and acute respiratory distress syndrome. Respirology. 2017;22(4):708–13.PubMedCrossRef Kido T, Muramatsu K, Yatera K, Asakawa T, Otsubo H, Kubo T, Fujino Y, Matsuda S, Mayumi T, Mukae H. Efficacy of early sivelestat administration on acute lung injury and acute respiratory distress syndrome. Respirology. 2017;22(4):708–13.PubMedCrossRef
24.
go back to reference Taylor RW, Zimmerman JL, Dellinger RP, Straube RC, Criner GJ, Davis K, Kelly KM, Smith TC, Small RJ. Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. JAMA. 2004;291(13):1603–9.PubMedCrossRef Taylor RW, Zimmerman JL, Dellinger RP, Straube RC, Criner GJ, Davis K, Kelly KM, Smith TC, Small RJ. Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. JAMA. 2004;291(13):1603–9.PubMedCrossRef
25.
go back to reference Spragg RG, Lewis JF, Walmrath H-D, Johannigman J, Bellingan G, Laterre P-F, Witte MC, Richards GA, Rippin G, Rathgeb F, et al. Effect of recombinant surfactant protein C-based surfactant on the acute respiratory distress syndrome. N Engl J Med. 2004;351(9):884–92.PubMedCrossRef Spragg RG, Lewis JF, Walmrath H-D, Johannigman J, Bellingan G, Laterre P-F, Witte MC, Richards GA, Rippin G, Rathgeb F, et al. Effect of recombinant surfactant protein C-based surfactant on the acute respiratory distress syndrome. N Engl J Med. 2004;351(9):884–92.PubMedCrossRef
26.
go back to reference Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment. JAMA. 2018;319(7):698–710.PubMedCrossRef Fan E, Brodie D, Slutsky AS. Acute respiratory distress syndrome: advances in diagnosis and treatment. JAMA. 2018;319(7):698–710.PubMedCrossRef
27.
go back to reference Taccone P, Pesenti A, Latini R, Polli F, Vagginelli F, Mietto C, Caspani L, Raimondi F, Bordone G, Iapichino G, et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2009;302(18):1977–84.PubMedCrossRef Taccone P, Pesenti A, Latini R, Polli F, Vagginelli F, Mietto C, Caspani L, Raimondi F, Bordone G, Iapichino G, et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2009;302(18):1977–84.PubMedCrossRef
28.
go back to reference Combes A, Hajage D, Capellier G, Demoule A, Lavoué S, Guervilly C, Da Silva D, Zafrani L, Tirot P, Veber B, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378(21):1965–75.PubMedCrossRef Combes A, Hajage D, Capellier G, Demoule A, Lavoué S, Guervilly C, Da Silva D, Zafrani L, Tirot P, Veber B, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378(21):1965–75.PubMedCrossRef
29.
go back to reference Matthay MA, Zimmerman GA, Esmon C, Bhattacharya J, Coller B, Doerschuk CM, Floros J, Gimbrone MA Jr, Hoffman E, Hubmayr RD, et al. Future research directions in acute lung injury: summary of a national heart, lung, and blood institute working group. Am J Respir Crit Care Med. 2003;167(7):1027–35.PubMedCrossRef Matthay MA, Zimmerman GA, Esmon C, Bhattacharya J, Coller B, Doerschuk CM, Floros J, Gimbrone MA Jr, Hoffman E, Hubmayr RD, et al. Future research directions in acute lung injury: summary of a national heart, lung, and blood institute working group. Am J Respir Crit Care Med. 2003;167(7):1027–35.PubMedCrossRef
30.
go back to reference Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R. The American-european consensus ARDS definitions mechanisms relevant outcomes, and clinical trial coordination. Am J Respiratory Crit Care Med. 1994;1994(149):818–24.CrossRef Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, Legall JR, Morris A, Spragg R. The American-european consensus ARDS definitions mechanisms relevant outcomes, and clinical trial coordination. Am J Respiratory Crit Care Med. 1994;1994(149):818–24.CrossRef
32.
go back to reference Janz DR, Ware LB. Biomarkers of ALI/ARDS: pathogenesis, discovery, and relevance to clinical trials. Semin Respir Crit Care Med. 2013;34(4):537–48.PubMedCrossRef Janz DR, Ware LB. Biomarkers of ALI/ARDS: pathogenesis, discovery, and relevance to clinical trials. Semin Respir Crit Care Med. 2013;34(4):537–48.PubMedCrossRef
34.
go back to reference Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM. Acute lung injury in animals study G: an official American thoracic society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 2011;44(5):725–38.PubMedPubMedCentralCrossRef Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM. Acute lung injury in animals study G: an official American thoracic society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 2011;44(5):725–38.PubMedPubMedCentralCrossRef
35.
go back to reference Kabir K, Gelinas JP, Chen M, Chen D, Zhang D, Luo X, Yang JH, Carter D, Rabinovici R. Characterization of a murine model of endotoxin-induced acute lung injury. Shock. 2002;17(4):300–3.PubMedCrossRef Kabir K, Gelinas JP, Chen M, Chen D, Zhang D, Luo X, Yang JH, Carter D, Rabinovici R. Characterization of a murine model of endotoxin-induced acute lung injury. Shock. 2002;17(4):300–3.PubMedCrossRef
36.
go back to reference van Helden HP, Kuijpers WC, Steenvoorden D, Go C, Bruijnzeel PL, van Eijk M, Haagsman HP. Intratracheal aerosolization of endotoxin (LPS) in the rat: a comprehensive animal model to study adult (acute) respiratory distress syndrome. Exp Lung Res. 1997;23(4):297–316.PubMedCrossRef van Helden HP, Kuijpers WC, Steenvoorden D, Go C, Bruijnzeel PL, van Eijk M, Haagsman HP. Intratracheal aerosolization of endotoxin (LPS) in the rat: a comprehensive animal model to study adult (acute) respiratory distress syndrome. Exp Lung Res. 1997;23(4):297–316.PubMedCrossRef
37.
go back to reference Rojas M, Woods CR, Mora AL, Xu J, Brigham KL. Endotoxin-induced lung injury in mice: structural, functional, and biochemical responses. Am J Physiol Lung Cell Mol Physiol. 2005;288(2):L333-341.PubMedCrossRef Rojas M, Woods CR, Mora AL, Xu J, Brigham KL. Endotoxin-induced lung injury in mice: structural, functional, and biochemical responses. Am J Physiol Lung Cell Mol Physiol. 2005;288(2):L333-341.PubMedCrossRef
38.
go back to reference Altemeier WA, Hung CF, Matute-Bello G. Mouse models of acute lung injury. In: Schnapp LM, Feghali-Bostwick C, editors. Acute lung injury and repair scientific fundamentals and methods. Berlin: Springer International Publishing; 2017. Altemeier WA, Hung CF, Matute-Bello G. Mouse models of acute lung injury. In: Schnapp LM, Feghali-Bostwick C, editors. Acute lung injury and repair scientific fundamentals and methods. Berlin: Springer International Publishing; 2017.
39.
go back to reference Lima Trajano ET, Sternberg C, Caetano M, Santos Silva MA, Porto LC, Santos JC, Ribeiro ML, Magalhães CB, Zin WA, Benjamim CF, et al. Endotoxin-induced acute lung injury is dependent upon oxidative response. Inhalation Toxicol. 2011;23(14):918–26.CrossRef Lima Trajano ET, Sternberg C, Caetano M, Santos Silva MA, Porto LC, Santos JC, Ribeiro ML, Magalhães CB, Zin WA, Benjamim CF, et al. Endotoxin-induced acute lung injury is dependent upon oxidative response. Inhalation Toxicol. 2011;23(14):918–26.CrossRef
40.
go back to reference Rittirsch D, Flierl MA, Day DE, Nadeau BA, McGuire SR, Hoesel LM, Ipaktchi K, Zetoune FS, Sarma JV, Leng L, et al. Acute lung injury induced by lipopolysaccharide is independent of complement activation. J Immunol. 2008;180(11):7664–72.PubMedCrossRef Rittirsch D, Flierl MA, Day DE, Nadeau BA, McGuire SR, Hoesel LM, Ipaktchi K, Zetoune FS, Sarma JV, Leng L, et al. Acute lung injury induced by lipopolysaccharide is independent of complement activation. J Immunol. 2008;180(11):7664–72.PubMedCrossRef
41.
go back to reference Guo B, Bai Y, Ma Y, Liu C, Wang S, Zhao R, Dong J, Ji HL. Preclinical and clinical studies of smoke-inhalation-induced acute lung injury: update on both pathogenesis and innovative therapy. Ther Adv Respir Dis. 2019;13:1753466619847901.PubMedPubMedCentralCrossRef Guo B, Bai Y, Ma Y, Liu C, Wang S, Zhao R, Dong J, Ji HL. Preclinical and clinical studies of smoke-inhalation-induced acute lung injury: update on both pathogenesis and innovative therapy. Ther Adv Respir Dis. 2019;13:1753466619847901.PubMedPubMedCentralCrossRef
42.
go back to reference Bauer TT, Ewig S, Rodloff AC, Müller EE. Acute respiratory distress syndrome and pneumonia: a comprehensive review of clinical data. Clin Infect Dis. 2006;43(6):748–56.PubMedCrossRef Bauer TT, Ewig S, Rodloff AC, Müller EE. Acute respiratory distress syndrome and pneumonia: a comprehensive review of clinical data. Clin Infect Dis. 2006;43(6):748–56.PubMedCrossRef
43.
go back to reference Mizgerd JP, Skerrett SJ. Animal models of human pneumonia. Am J Physiol Lung Cell Mol Physiol. 2008;294(3):L387-398.PubMedCrossRef Mizgerd JP, Skerrett SJ. Animal models of human pneumonia. Am J Physiol Lung Cell Mol Physiol. 2008;294(3):L387-398.PubMedCrossRef
44.
go back to reference Dietert K, Gutbier B, Wienhold SM, Reppe K, Jiang X, Yao L, Chaput C, Naujoks J, Brack M, Kupke A, et al. Spectrum of pathogen- and model-specific histopathologies in mouse models of acute pneumonia. PLoS ONE. 2017;12(11): e0188251.PubMedPubMedCentralCrossRef Dietert K, Gutbier B, Wienhold SM, Reppe K, Jiang X, Yao L, Chaput C, Naujoks J, Brack M, Kupke A, et al. Spectrum of pathogen- and model-specific histopathologies in mouse models of acute pneumonia. PLoS ONE. 2017;12(11): e0188251.PubMedPubMedCentralCrossRef
45.
go back to reference Mizgerd JP, Skerrett SJ. Animal models of human pneumonia. Am J Physiol Lung Cell Mol Physiol. 2008;294(3):L387–98.PubMedCrossRef Mizgerd JP, Skerrett SJ. Animal models of human pneumonia. Am J Physiol Lung Cell Mol Physiol. 2008;294(3):L387–98.PubMedCrossRef
47.
go back to reference Fornefett J, Krause J, Klose K, Fingas F, Hassert R, Benga L, Grunwald T, Müller U, Schrödl W, Baums CG. Comparative analysis of humoral immune responses and pathologies of BALB/c and C57BL/6 wildtype mice experimentally infected with a highly virulent Rodentibacter pneumotropicus (Pasteurella pneumotropica) strain. BMC Microbiol. 2018;18(1):45.PubMedPubMedCentralCrossRef Fornefett J, Krause J, Klose K, Fingas F, Hassert R, Benga L, Grunwald T, Müller U, Schrödl W, Baums CG. Comparative analysis of humoral immune responses and pathologies of BALB/c and C57BL/6 wildtype mice experimentally infected with a highly virulent Rodentibacter pneumotropicus (Pasteurella pneumotropica) strain. BMC Microbiol. 2018;18(1):45.PubMedPubMedCentralCrossRef
48.
go back to reference Hong W, Yang J, Bi Z, He C, Lei H, Yu W, Yang Y, Fan C, Lu S, Peng X, et al. A mouse model for SARS-CoV-2-induced acute respiratory distress syndrome. Signal Transduct Target Ther. 2021;6(1):1.PubMedPubMedCentralCrossRef Hong W, Yang J, Bi Z, He C, Lei H, Yu W, Yang Y, Fan C, Lu S, Peng X, et al. A mouse model for SARS-CoV-2-induced acute respiratory distress syndrome. Signal Transduct Target Ther. 2021;6(1):1.PubMedPubMedCentralCrossRef
49.
go back to reference Patel BV, Wilson MR, Takata M. Resolution of acute lung injury and inflammation: a translational mouse model. Eur Respir J. 2012;39(5):1162–70.PubMedCrossRef Patel BV, Wilson MR, Takata M. Resolution of acute lung injury and inflammation: a translational mouse model. Eur Respir J. 2012;39(5):1162–70.PubMedCrossRef
50.
go back to reference Modelska K, Pittet JF, Folkesson HG, Courtney Broaddus V, Matthay MA. Acid-induced lung injury. Protective effect of anti-interleukin-8 pretreatment on alveolar epithelial barrier function in rabbits. Am J RESPIRATORY Critical Care Med. 1999;160:1450–6.CrossRef Modelska K, Pittet JF, Folkesson HG, Courtney Broaddus V, Matthay MA. Acid-induced lung injury. Protective effect of anti-interleukin-8 pretreatment on alveolar epithelial barrier function in rabbits. Am J RESPIRATORY Critical Care Med. 1999;160:1450–6.CrossRef
51.
go back to reference Maniatis NA, Sfika A, Nikitopoulou I, Vassiliou AG, Magkou C, Armaganidis A, Roussos C, Kollias G, Orfanos SE, Kotanidou A. Acid-induced acute lung injury in mice is associated with P44/42 and c-Jun N-terminal kinase activation and requires the function of tumor necrosis factor α receptor I. Shock. 2012;38(4):381–6.PubMedCrossRef Maniatis NA, Sfika A, Nikitopoulou I, Vassiliou AG, Magkou C, Armaganidis A, Roussos C, Kollias G, Orfanos SE, Kotanidou A. Acid-induced acute lung injury in mice is associated with P44/42 and c-Jun N-terminal kinase activation and requires the function of tumor necrosis factor α receptor I. Shock. 2012;38(4):381–6.PubMedCrossRef
53.
go back to reference Pakulla MA, Seidel D, Obal D, Loer SA. Hydrochloric acid-induced lung injury: effects of early partial liquid ventilation on survival rate, gas exchange, and pulmonary neutrophil accumulation. Intensive Care Med. 2004;30(11):2110–9.PubMedCrossRef Pakulla MA, Seidel D, Obal D, Loer SA. Hydrochloric acid-induced lung injury: effects of early partial liquid ventilation on survival rate, gas exchange, and pulmonary neutrophil accumulation. Intensive Care Med. 2004;30(11):2110–9.PubMedCrossRef
54.
go back to reference Puig F, Herrero R, Guillamat-Prats R, Gomez MN, Tijero J, Chimenti L, Stelmakh O, Blanch L, Serrano-Mollar A, Matthay MA, et al. A new experimental model of acid—and endotoxin-induced acute lung injury in rats. Am J Physiol Lung Cell Mol Physiol. 2016;311(2):L229-237.PubMedPubMedCentralCrossRef Puig F, Herrero R, Guillamat-Prats R, Gomez MN, Tijero J, Chimenti L, Stelmakh O, Blanch L, Serrano-Mollar A, Matthay MA, et al. A new experimental model of acid—and endotoxin-induced acute lung injury in rats. Am J Physiol Lung Cell Mol Physiol. 2016;311(2):L229-237.PubMedPubMedCentralCrossRef
55.
go back to reference Azambuja E, Fleck JF, Batista RG, Menna Barreto SS. Bleomycin lung toxicity: who are the patients with increased risk? Pulm Pharmacol Ther. 2005;18(5):363–6.PubMedCrossRef Azambuja E, Fleck JF, Batista RG, Menna Barreto SS. Bleomycin lung toxicity: who are the patients with increased risk? Pulm Pharmacol Ther. 2005;18(5):363–6.PubMedCrossRef
56.
go back to reference Bm Lawson B, Oury WE, Sisson TD, Raghavendran TH, Hogaboam K. Animal models of fibrotic lung disease. Am J Respir Cell Mol Biol. 2013;49(2):167–79.CrossRef Bm Lawson B, Oury WE, Sisson TD, Raghavendran TH, Hogaboam K. Animal models of fibrotic lung disease. Am J Respir Cell Mol Biol. 2013;49(2):167–79.CrossRef
57.
58.
go back to reference Nguyen RY, Xiao H, Gong X, Arroyo A, Cabral AT, Fischer TT, Flores KM, Zhang X, Robert ME, Ehrlich BE, et al. Cytoskeletal dynamics regulates stromal invasion behavior of distinct liver cancer subtypes. Commun Biol. 2022;5(1):202.PubMedPubMedCentralCrossRef Nguyen RY, Xiao H, Gong X, Arroyo A, Cabral AT, Fischer TT, Flores KM, Zhang X, Robert ME, Ehrlich BE, et al. Cytoskeletal dynamics regulates stromal invasion behavior of distinct liver cancer subtypes. Commun Biol. 2022;5(1):202.PubMedPubMedCentralCrossRef
59.
go back to reference Xiao H, Nguyen RY, LaRanger R, Herzog EL, Mak M. Integrated computational and experimental pipeline for quantifying local cell-matrix interactions. Sci Rep. 2021;11(1):16465.PubMedPubMedCentralCrossRef Xiao H, Nguyen RY, LaRanger R, Herzog EL, Mak M. Integrated computational and experimental pipeline for quantifying local cell-matrix interactions. Sci Rep. 2021;11(1):16465.PubMedPubMedCentralCrossRef
60.
go back to reference Tashiro J, Rubio GA, Limper AH, Williams K, Elliot SJ, Ninou I, Aidinis V, Tzouvelekis A, Glassberg MK. Exploring animal models that resemble idiopathic pulmonary fibrosis. Front Med. 2017;4:118.CrossRef Tashiro J, Rubio GA, Limper AH, Williams K, Elliot SJ, Ninou I, Aidinis V, Tzouvelekis A, Glassberg MK. Exploring animal models that resemble idiopathic pulmonary fibrosis. Front Med. 2017;4:118.CrossRef
61.
go back to reference Schuster DP. ARDS: clinical lessons from the oleic acid model of acute lung injury. Am J Respir Crit Care Med. 1994;149(1):245–60.PubMedCrossRef Schuster DP. ARDS: clinical lessons from the oleic acid model of acute lung injury. Am J Respir Crit Care Med. 1994;149(1):245–60.PubMedCrossRef
62.
go back to reference Gonçalves-de-Albuquerque CF, Silva AR, Burth P, Castro-Faria MV, Castro-Faria-Neto HC. Acute respiratory distress syndrome: role of oleic acid-triggered lung injury and inflammation. Mediators Inflamm. 2015;2015: 260465.PubMedPubMedCentralCrossRef Gonçalves-de-Albuquerque CF, Silva AR, Burth P, Castro-Faria MV, Castro-Faria-Neto HC. Acute respiratory distress syndrome: role of oleic acid-triggered lung injury and inflammation. Mediators Inflamm. 2015;2015: 260465.PubMedPubMedCentralCrossRef
63.
go back to reference Ballard-Croft C, Wang D, Sumpter LR, Zhou X, Zwischenberger JB. Large-animal models of acute respiratory distress syndrome. Ann Thorac Surg. 2012;93(4):1331–9.PubMedCrossRef Ballard-Croft C, Wang D, Sumpter LR, Zhou X, Zwischenberger JB. Large-animal models of acute respiratory distress syndrome. Ann Thorac Surg. 2012;93(4):1331–9.PubMedCrossRef
64.
go back to reference Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195(4):438–42.PubMedCrossRef Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017;195(4):438–42.PubMedCrossRef
67.
70.
go back to reference Helmerhorst HJF, Schouten LRA, Wagenaar GTM, Juffermans NP, Roelofs JJTH, Schultz MJ, de Jonge E, van Westerloo DJ. Hyperoxia provokes a time- and dose-dependent inflammatory response in mechanically ventilated mice, irrespective of tidal volumes. Intensive Care Med Exp. 2017;5(1):27.PubMedPubMedCentralCrossRef Helmerhorst HJF, Schouten LRA, Wagenaar GTM, Juffermans NP, Roelofs JJTH, Schultz MJ, de Jonge E, van Westerloo DJ. Hyperoxia provokes a time- and dose-dependent inflammatory response in mechanically ventilated mice, irrespective of tidal volumes. Intensive Care Med Exp. 2017;5(1):27.PubMedPubMedCentralCrossRef
71.
go back to reference Dabjan MB, Buck CMS, Jackson IL, Vujaskovic Z, Marples B, Down JD. A survey of changing trends in modelling radiation lung injury in mice: bringing out the good, the bad, and the uncertain. Lab Invest. 2016;96(9):936–49.PubMedCrossRef Dabjan MB, Buck CMS, Jackson IL, Vujaskovic Z, Marples B, Down JD. A survey of changing trends in modelling radiation lung injury in mice: bringing out the good, the bad, and the uncertain. Lab Invest. 2016;96(9):936–49.PubMedCrossRef
72.
74.
go back to reference Hengst WAd, Gielis JF, Lin JY, Schil PEV, Windt LJD, Moens AL. Lung ischemia-reperfusion injury: a molecular and clinical view on a complex pathophysiological process. Am J Physiol-Heart Circulatory Physiol. 2010;299(5):1283–99.CrossRef Hengst WAd, Gielis JF, Lin JY, Schil PEV, Windt LJD, Moens AL. Lung ischemia-reperfusion injury: a molecular and clinical view on a complex pathophysiological process. Am J Physiol-Heart Circulatory Physiol. 2010;299(5):1283–99.CrossRef
75.
go back to reference Fard N, Saffari A, Emami G, Hofer S, Kauczor HU, Mehrabi A. Acute respiratory distress syndrome induction by pulmonary ischemia-reperfusion injury in large animal models. J Surg Res. 2014;189(2):274–84.PubMedCrossRef Fard N, Saffari A, Emami G, Hofer S, Kauczor HU, Mehrabi A. Acute respiratory distress syndrome induction by pulmonary ischemia-reperfusion injury in large animal models. J Surg Res. 2014;189(2):274–84.PubMedCrossRef
76.
go back to reference Vlaar AP, Juffermans NP. Transfusion-related acute lung injury: a clinical review. Lancet. 2013;382(9896):984–94.PubMedCrossRef Vlaar AP, Juffermans NP. Transfusion-related acute lung injury: a clinical review. Lancet. 2013;382(9896):984–94.PubMedCrossRef
77.
go back to reference Vlaar APJ, Toy P, Fung M, Looney MR, Juffermans NP, Bux J, Bolton-Maggs P, Peters AL, Silliman CC, Kor DJ, et al. A consensus redefinition of transfusion-related acute lung injury. Transfusion. 2019;59(7):2465–76.PubMedPubMedCentralCrossRef Vlaar APJ, Toy P, Fung M, Looney MR, Juffermans NP, Bux J, Bolton-Maggs P, Peters AL, Silliman CC, Kor DJ, et al. A consensus redefinition of transfusion-related acute lung injury. Transfusion. 2019;59(7):2465–76.PubMedPubMedCentralCrossRef
78.
go back to reference Looney MR, Matthay MA. Animal models of transfusion-related acute lung injury. Crit Care Med. 2006;34(5 Suppl):S132-136.PubMedCrossRef Looney MR, Matthay MA. Animal models of transfusion-related acute lung injury. Crit Care Med. 2006;34(5 Suppl):S132-136.PubMedCrossRef
79.
go back to reference Elder ASF, Saccone GTP, Dixon D-L. Lung injury in acute pancreatitis: mechanisms underlying augmented secondary injury. Pancreatology. 2012;12(1):49–56.PubMedCrossRef Elder ASF, Saccone GTP, Dixon D-L. Lung injury in acute pancreatitis: mechanisms underlying augmented secondary injury. Pancreatology. 2012;12(1):49–56.PubMedCrossRef
80.
go back to reference Pastor CM, Matthay MA, Frossard J-L. Pancreatitis-associated acute lung injury: new insights. Chest. 2003;124(6):2341–51.PubMedCrossRef Pastor CM, Matthay MA, Frossard J-L. Pancreatitis-associated acute lung injury: new insights. Chest. 2003;124(6):2341–51.PubMedCrossRef
81.
go back to reference Grailer JJ, Kalbitz M, Zetoune FS, Ward PA. persistent neutrophil dysfunction and suppression of acute lung injury in mice following cecal ligation and puncture sepsis. J Innate Immun. 2014;6(5):695–705.PubMedPubMedCentralCrossRef Grailer JJ, Kalbitz M, Zetoune FS, Ward PA. persistent neutrophil dysfunction and suppression of acute lung injury in mice following cecal ligation and puncture sepsis. J Innate Immun. 2014;6(5):695–705.PubMedPubMedCentralCrossRef
82.
go back to reference Schabbauer G. Polymicrobial sepsis models: CLP versus CASP. Drug Discov Today Dis Model. 2012;9(1):e17–21.CrossRef Schabbauer G. Polymicrobial sepsis models: CLP versus CASP. Drug Discov Today Dis Model. 2012;9(1):e17–21.CrossRef
83.
go back to reference Iskander KN, Craciun FL, Stepien DM, Duffy ER, Kim J, Moitra R, Vaickus LJ, Osuchowski MF, Remick DG. Cecal ligation and puncture-induced murine sepsis does not cause lung injury*. Crit Care Med. 2013;41(1):159–70.PubMedCrossRef Iskander KN, Craciun FL, Stepien DM, Duffy ER, Kim J, Moitra R, Vaickus LJ, Osuchowski MF, Remick DG. Cecal ligation and puncture-induced murine sepsis does not cause lung injury*. Crit Care Med. 2013;41(1):159–70.PubMedCrossRef
84.
go back to reference Brun-Buisson C, Minelli C, Bertolini G, Brazzi L, Pimentel J, Lewandowski K, Bion J, Romand JA, Villar J, Thorsteinsson A, et al. Epidemiology and outcome of acute lung injury in European intensive care units results from the ALIVE study. Intensive Care Med. 2004;30(1):51–61.PubMedCrossRef Brun-Buisson C, Minelli C, Bertolini G, Brazzi L, Pimentel J, Lewandowski K, Bion J, Romand JA, Villar J, Thorsteinsson A, et al. Epidemiology and outcome of acute lung injury in European intensive care units results from the ALIVE study. Intensive Care Med. 2004;30(1):51–61.PubMedCrossRef
85.
go back to reference Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease different syndromes? Am J Respiratory Crit Care Med. 1998;158(1):3–11.CrossRef Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease different syndromes? Am J Respiratory Crit Care Med. 1998;158(1):3–11.CrossRef
86.
go back to reference Luo L, Shaver CM, Zhao Z, Koyama T, Calfee CS, Bastarache JA, Ware LB. Clinical predictors of hospital mortality differ between direct and indirect ARDS. Chest. 2017;151(4):755–63.PubMedCrossRef Luo L, Shaver CM, Zhao Z, Koyama T, Calfee CS, Bastarache JA, Ware LB. Clinical predictors of hospital mortality differ between direct and indirect ARDS. Chest. 2017;151(4):755–63.PubMedCrossRef
87.
go back to reference Suntharalingam G, Regan K, Keogh BF, Morgan CJ, Evans TW. Influence of direct and indirect etiology on acute outcome and 6-month functional recovery in acute respiratory distress syndrome. Crit Care Med. 2001;29(3):562–6.PubMedCrossRef Suntharalingam G, Regan K, Keogh BF, Morgan CJ, Evans TW. Influence of direct and indirect etiology on acute outcome and 6-month functional recovery in acute respiratory distress syndrome. Crit Care Med. 2001;29(3):562–6.PubMedCrossRef
88.
go back to reference Pelosi P, D’Onofrio D, Chiumello D, Paolo S, Chiara G, Capelozzi VL, Barbas CSV, Chiaranda M, Gattinoni L. Pulmonary and extrapulmonary acute respiratory distress syndrome are different. Eur Respir J. 2003;22(42 suppl):48s–56s.CrossRef Pelosi P, D’Onofrio D, Chiumello D, Paolo S, Chiara G, Capelozzi VL, Barbas CSV, Chiaranda M, Gattinoni L. Pulmonary and extrapulmonary acute respiratory distress syndrome are different. Eur Respir J. 2003;22(42 suppl):48s–56s.CrossRef
89.
go back to reference Desai SR, Wells AU, Suntharalingam G, Rubens MB, Evans TW, Hansell DM. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary injury: a comparative CT study. Radiology. 2001;218(3):689–93.PubMedCrossRef Desai SR, Wells AU, Suntharalingam G, Rubens MB, Evans TW, Hansell DM. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary injury: a comparative CT study. Radiology. 2001;218(3):689–93.PubMedCrossRef
90.
go back to reference Gattinoni L, Chiumello D, Pelosi P. Chest wall mechanics in ARDS. Heidelberg: Springer; 2004. Gattinoni L, Chiumello D, Pelosi P. Chest wall mechanics in ARDS. Heidelberg: Springer; 2004.
91.
92.
go back to reference Wen XP, Zhang YZ, Wan QQ. Non-targeted proteomics of acute respiratory distress syndrome: clinical and research applications. Proteome sci. 2021;19(1):5.PubMedPubMedCentralCrossRef Wen XP, Zhang YZ, Wan QQ. Non-targeted proteomics of acute respiratory distress syndrome: clinical and research applications. Proteome sci. 2021;19(1):5.PubMedPubMedCentralCrossRef
93.
go back to reference Chen X, Shan Q, Jiang L, Zhu B, Xi X. Quantitative proteomic analysis by iTRAQ for identification of candidate biomarkers in plasma from acute respiratory distress syndrome patients. Biochem Biophys Res Commun. 2013;441(1):1–6.PubMedCrossRef Chen X, Shan Q, Jiang L, Zhu B, Xi X. Quantitative proteomic analysis by iTRAQ for identification of candidate biomarkers in plasma from acute respiratory distress syndrome patients. Biochem Biophys Res Commun. 2013;441(1):1–6.PubMedCrossRef
94.
go back to reference Zheng F, Pan Y, Yang Y, Zeng C, Fang X, Shu Q, Chen Q. Novel biomarkers for acute respiratory distress syndrome: genetics, epigenetics and transcriptomics. Biomark Med. 2022;16(3):217–31.PubMedCrossRef Zheng F, Pan Y, Yang Y, Zeng C, Fang X, Shu Q, Chen Q. Novel biomarkers for acute respiratory distress syndrome: genetics, epigenetics and transcriptomics. Biomark Med. 2022;16(3):217–31.PubMedCrossRef
95.
go back to reference Calfee CS, Janz DR, Bernard GR, May AK, Kangelaris KN, Matthay MA, Ware LB. Distinct molecular phenotypes of direct vs indirect ARDS in single-center and multicenter studies. Chest. 2015;147(6):1539–48.PubMedCrossRef Calfee CS, Janz DR, Bernard GR, May AK, Kangelaris KN, Matthay MA, Ware LB. Distinct molecular phenotypes of direct vs indirect ARDS in single-center and multicenter studies. Chest. 2015;147(6):1539–48.PubMedCrossRef
96.
go back to reference Whitney JE, Feng R, Koterba N, Chen F, Bush J, Graham K, Lacey SF, Melenhorst JJ, Parikh SM, Weiss SL, et al. Endothelial biomarkers are associated with indirect lung injury in sepsis-associated pediatric acute respiratory distress syndrome. Critical Care Explorations. 2020;2(12): e0295.PubMedPubMedCentralCrossRef Whitney JE, Feng R, Koterba N, Chen F, Bush J, Graham K, Lacey SF, Melenhorst JJ, Parikh SM, Weiss SL, et al. Endothelial biomarkers are associated with indirect lung injury in sepsis-associated pediatric acute respiratory distress syndrome. Critical Care Explorations. 2020;2(12): e0295.PubMedPubMedCentralCrossRef
97.
go back to reference Reilly JP, Christie JD, Meyer NJ. Fifty years of research in ARDS genomic contributions and opportunities. Am J Respiratory Crit Care Med. 2017;196(9):1113–21.CrossRef Reilly JP, Christie JD, Meyer NJ. Fifty years of research in ARDS genomic contributions and opportunities. Am J Respiratory Crit Care Med. 2017;196(9):1113–21.CrossRef
98.
go back to reference Bime C, Pouladi N, Sammani S, Batai K, Casanova N, Zhou T, Kempf CL, Sun X, Camp SM, Wang T, et al. Genome-wide association study in african americans with acute respiratory distress syndrome identifies the selectin P ligand gene as a risk factor. Am J Respir Crit Care Med. 2018;197(11):1421–32.PubMedPubMedCentralCrossRef Bime C, Pouladi N, Sammani S, Batai K, Casanova N, Zhou T, Kempf CL, Sun X, Camp SM, Wang T, et al. Genome-wide association study in african americans with acute respiratory distress syndrome identifies the selectin P ligand gene as a risk factor. Am J Respir Crit Care Med. 2018;197(11):1421–32.PubMedPubMedCentralCrossRef
99.
go back to reference Christie JD, Wurfel MM, Feng R, O’Keefe GE, Bradfield J, Ware LB, Christiani DC, Calfee CS, Cohen MJ, Matthay M, et al. Genome wide association identifies PPFIA1 as a candidate gene for acute lung injury risk following major trauma. PLoS ONE. 2012;7(1): e28268.PubMedPubMedCentralCrossRef Christie JD, Wurfel MM, Feng R, O’Keefe GE, Bradfield J, Ware LB, Christiani DC, Calfee CS, Cohen MJ, Matthay M, et al. Genome wide association identifies PPFIA1 as a candidate gene for acute lung injury risk following major trauma. PLoS ONE. 2012;7(1): e28268.PubMedPubMedCentralCrossRef
100.
go back to reference Grigoryev DN, Cheranova DI, Chaudhary S, Heruth DP, Zhang LQ, Ye SQ. Identification of new biomarkers for acute respiratory distress syndrome by expression-based genome-wide association study. BMC Pulm Med. 2015;15(1):95.PubMedPubMedCentralCrossRef Grigoryev DN, Cheranova DI, Chaudhary S, Heruth DP, Zhang LQ, Ye SQ. Identification of new biomarkers for acute respiratory distress syndrome by expression-based genome-wide association study. BMC Pulm Med. 2015;15(1):95.PubMedPubMedCentralCrossRef
101.
go back to reference Matsuda A, Kishi T, Jacob A, Aziz M, Wang P. Association between insertion/deletion polymorphism in angiotensin-converting enzyme gene and acute lung injury/acute respiratory distress syndrome: a meta-analysis. BMC Med Genet. 2012;13(1):76.PubMedPubMedCentralCrossRef Matsuda A, Kishi T, Jacob A, Aziz M, Wang P. Association between insertion/deletion polymorphism in angiotensin-converting enzyme gene and acute lung injury/acute respiratory distress syndrome: a meta-analysis. BMC Med Genet. 2012;13(1):76.PubMedPubMedCentralCrossRef
102.
go back to reference Bajwa EK, Yu CL, Gong MN, Thompson BT, Christiani DC. Pre-B-cell colony-enhancing factor gene polymorphisms and risk of acute respiratory distress syndrome. Crit Care Med. 2007;35(5):1290–5.PubMedCrossRef Bajwa EK, Yu CL, Gong MN, Thompson BT, Christiani DC. Pre-B-cell colony-enhancing factor gene polymorphisms and risk of acute respiratory distress syndrome. Crit Care Med. 2007;35(5):1290–5.PubMedCrossRef
103.
go back to reference Chen S, Xu L, Tang J. Association of interleukin 18 gene polymorphism with susceptibility to the development of acute lung injury after cardiopulmonary bypass surgery. Tissue Antigens. 2010;76(3):245–9.PubMedCrossRef Chen S, Xu L, Tang J. Association of interleukin 18 gene polymorphism with susceptibility to the development of acute lung injury after cardiopulmonary bypass surgery. Tissue Antigens. 2010;76(3):245–9.PubMedCrossRef
104.
go back to reference Gong MN, Zhou W, Williams PL, Thompson TB, Pothier L, Christiani DC. Polymorphisms in themannose binding lectin-2gene and acute respiratory distress syndrome*. Crit Care Med. 2007;35(1):48–56.PubMedPubMedCentralCrossRef Gong MN, Zhou W, Williams PL, Thompson TB, Pothier L, Christiani DC. Polymorphisms in themannose binding lectin-2gene and acute respiratory distress syndrome*. Crit Care Med. 2007;35(1):48–56.PubMedPubMedCentralCrossRef
105.
go back to reference Tejera P, Meyer NJ, Chen F, Feng R, Zhao Y, O’Mahony DS, Li L, Sheu CC, Zhai R, Wang Z, et al. Distinct and replicable genetic risk factors for acute respiratory distress syndrome of pulmonary or extrapulmonary origin. J Med Genet. 2012;49(11):671–80.PubMedCrossRef Tejera P, Meyer NJ, Chen F, Feng R, Zhao Y, O’Mahony DS, Li L, Sheu CC, Zhai R, Wang Z, et al. Distinct and replicable genetic risk factors for acute respiratory distress syndrome of pulmonary or extrapulmonary origin. J Med Genet. 2012;49(11):671–80.PubMedCrossRef
106.
go back to reference Lemos-Filho LB, Mikkelsen ME, Martin GS, Dabbagh O, Adesanya A, Gentile N, Esper A, Gajic O, Gong MN. Sex, race, and the development of acute lung injury. Chest. 2013;143(4):901–9.PubMedCrossRef Lemos-Filho LB, Mikkelsen ME, Martin GS, Dabbagh O, Adesanya A, Gentile N, Esper A, Gajic O, Gong MN. Sex, race, and the development of acute lung injury. Chest. 2013;143(4):901–9.PubMedCrossRef
107.
go back to reference McNicholas BA, Madotto F, Pham T, Rezoagli E, Masterson CH, Horie S, Bellani G, Brochard L, Laffey JG. Demographics, management and outcome of females and males with acute respiratory distress syndrome in the LUNG SAFE prospective cohort study. Eur Respir J. 2019;54(4):1900609.PubMedCrossRef McNicholas BA, Madotto F, Pham T, Rezoagli E, Masterson CH, Horie S, Bellani G, Brochard L, Laffey JG. Demographics, management and outcome of females and males with acute respiratory distress syndrome in the LUNG SAFE prospective cohort study. Eur Respir J. 2019;54(4):1900609.PubMedCrossRef
108.
go back to reference Bime C, Poongkunran C, Borgstrom M, Natt B, Desai H, Parthasarathy S, Garcia JGN. Racial differences in mortality from severe acute respiratory failure in the United States, 2008–2012. Ann Am Thorac Soc. 2016;13(12):2184–9.PubMedPubMedCentralCrossRef Bime C, Poongkunran C, Borgstrom M, Natt B, Desai H, Parthasarathy S, Garcia JGN. Racial differences in mortality from severe acute respiratory failure in the United States, 2008–2012. Ann Am Thorac Soc. 2016;13(12):2184–9.PubMedPubMedCentralCrossRef
109.
go back to reference Calfee CS, Matthay MA, Eisner MD, Benowitz N, Call M, Pittet JF, Cohen MJ. Active and passive cigarette smoking and acute lung injury after severe blunt trauma. Am J Respir Crit Care Med. 2011;183(12):1660–5.PubMedPubMedCentralCrossRef Calfee CS, Matthay MA, Eisner MD, Benowitz N, Call M, Pittet JF, Cohen MJ. Active and passive cigarette smoking and acute lung injury after severe blunt trauma. Am J Respir Crit Care Med. 2011;183(12):1660–5.PubMedPubMedCentralCrossRef
110.
go back to reference Rezoagli E, McNicholas BA, Madotto F, Pham T, Bellani G, Laffey JG. the Lung Safe Investigators tETG: Presence of comorbidities alters management and worsens outcome of patients with acute respiratory distress syndrome: insights from the LUNG SAFE study. Ann Intensive Care. 2022;12(1):42.PubMedPubMedCentralCrossRef Rezoagli E, McNicholas BA, Madotto F, Pham T, Bellani G, Laffey JG. the Lung Safe Investigators tETG: Presence of comorbidities alters management and worsens outcome of patients with acute respiratory distress syndrome: insights from the LUNG SAFE study. Ann Intensive Care. 2022;12(1):42.PubMedPubMedCentralCrossRef
111.
go back to reference Guo L, Wang W, Zhao N, Guo L, Chi C, Hou W, Wu A, Tong H, Wang Y, Wang C, et al. Mechanical ventilation strategies for intensive care unit patients without acute lung injury or acute respiratory distress syndrome: a systematic review and network meta-analysis. Crit Care. 2016;20(1):226.PubMedPubMedCentralCrossRef Guo L, Wang W, Zhao N, Guo L, Chi C, Hou W, Wu A, Tong H, Wang Y, Wang C, et al. Mechanical ventilation strategies for intensive care unit patients without acute lung injury or acute respiratory distress syndrome: a systematic review and network meta-analysis. Crit Care. 2016;20(1):226.PubMedPubMedCentralCrossRef
112.
go back to reference Needham DM, Yang T, Dinglas VD, Mendez-Tellez PA, Shanholtz C, Sevransky JE, Brower RG, Pronovost PJ, Colantuoni E. Timing of low tidal volume ventilation and intensive care unit mortality in acute respiratory distress syndrome a prospective cohort study. Am J Respiratory Crit Care Med. 2015;191(2):177–85.CrossRef Needham DM, Yang T, Dinglas VD, Mendez-Tellez PA, Shanholtz C, Sevransky JE, Brower RG, Pronovost PJ, Colantuoni E. Timing of low tidal volume ventilation and intensive care unit mortality in acute respiratory distress syndrome a prospective cohort study. Am J Respiratory Crit Care Med. 2015;191(2):177–85.CrossRef
113.
go back to reference ThilleArnaudRichard W, JChristophe M, MaggioreSalvatore M, Ranieri VM, Brochard L. Alveolar recruitment in pulmonary and extrapulmonary acute respiratory distress syndrome: comparison using pressure-volume curve or static compliance. Anesthesiology. 2007;106(2):212–7.CrossRef ThilleArnaudRichard W, JChristophe M, MaggioreSalvatore M, Ranieri VM, Brochard L. Alveolar recruitment in pulmonary and extrapulmonary acute respiratory distress syndrome: comparison using pressure-volume curve or static compliance. Anesthesiology. 2007;106(2):212–7.CrossRef
114.
go back to reference Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Am J Respir Crit Care Med. 1998;158(1):3–11.PubMedCrossRef Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Am J Respir Crit Care Med. 1998;158(1):3–11.PubMedCrossRef
115.
116.
go back to reference Guerin C, Debord S, Leray V, Delannoy B, Bayle F, Bourdin G, Richard JC. Efficacy and safety of recruitment maneuvers in acute respiratory distress syndrome. Ann Intensive Care. 2011;1(1):9.PubMedPubMedCentralCrossRef Guerin C, Debord S, Leray V, Delannoy B, Bayle F, Bourdin G, Richard JC. Efficacy and safety of recruitment maneuvers in acute respiratory distress syndrome. Ann Intensive Care. 2011;1(1):9.PubMedPubMedCentralCrossRef
117.
go back to reference Tugrul S, Akinci O, Ozcan PE, Ince S, Esen F, Telci L, Akpir K, Cakar N. Effects of sustained inflation and postinflation positive end-expiratory pressure in acute respiratory distress syndrome: focusing on pulmonary and extrapulmonary forms. Crit Care Med. 2003;31(3):738–44.PubMedCrossRef Tugrul S, Akinci O, Ozcan PE, Ince S, Esen F, Telci L, Akpir K, Cakar N. Effects of sustained inflation and postinflation positive end-expiratory pressure in acute respiratory distress syndrome: focusing on pulmonary and extrapulmonary forms. Crit Care Med. 2003;31(3):738–44.PubMedCrossRef
118.
go back to reference Pelosi P, Cadringher P, Bottino N, Panigada M, Carrieri F, Riva E, Lissoni A, Gattinoni L. Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159(3):872–80.PubMedCrossRef Pelosi P, Cadringher P, Bottino N, Panigada M, Carrieri F, Riva E, Lissoni A, Gattinoni L. Sigh in acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159(3):872–80.PubMedCrossRef
119.
go back to reference Riva DR, Oliveira MB, Rzezinski AF, Rangel G, Capelozzi VL, Zin WA, Morales MM, Pelosi P, Rocco PR. Recruitment maneuver in pulmonary and extrapulmonary experimental acute lung injury. Crit Care Med. 2008;36(6):1900–8.PubMedCrossRef Riva DR, Oliveira MB, Rzezinski AF, Rangel G, Capelozzi VL, Zin WA, Morales MM, Pelosi P, Rocco PR. Recruitment maneuver in pulmonary and extrapulmonary experimental acute lung injury. Crit Care Med. 2008;36(6):1900–8.PubMedCrossRef
120.
go back to reference Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, Davies AR, Hand LE, Zhou Q, Thabane L, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):637–45.PubMedCrossRef Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, Davies AR, Hand LE, Zhou Q, Thabane L, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299(6):637–45.PubMedCrossRef
122.
go back to reference Rialp G, Betbese AJ, Perez-Marquez M, Mancebo J. Short-term effects of inhaled nitric oxide and prone position in pulmonary and extrapulmonary acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001;164(2):243–9.PubMedCrossRef Rialp G, Betbese AJ, Perez-Marquez M, Mancebo J. Short-term effects of inhaled nitric oxide and prone position in pulmonary and extrapulmonary acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001;164(2):243–9.PubMedCrossRef
123.
go back to reference Lim CM, Kim EK, Lee JS, Shim TS, Lee SD, Koh Y, Kim WS, Kim DS, Kim WD. Comparison of the response to the prone position between pulmonary and extrapulmonary acute respiratory distress syndrome. Intensive Care Med. 2001;27(3):477–85.PubMedCrossRef Lim CM, Kim EK, Lee JS, Shim TS, Lee SD, Koh Y, Kim WS, Kim DS, Kim WD. Comparison of the response to the prone position between pulmonary and extrapulmonary acute respiratory distress syndrome. Intensive Care Med. 2001;27(3):477–85.PubMedCrossRef
124.
go back to reference Soo Hoo GW. In prone ventilation, one good turn deserves another. N Engl J Med. 2013;368(23):2227–8.PubMedCrossRef Soo Hoo GW. In prone ventilation, one good turn deserves another. N Engl J Med. 2013;368(23):2227–8.PubMedCrossRef
125.
go back to reference Brodie D, Bacchetta M. Extracorporeal membrane oxygenation for ARDS in adults. N Engl J Med. 2011;365(20):1905–14.PubMedCrossRef Brodie D, Bacchetta M. Extracorporeal membrane oxygenation for ARDS in adults. N Engl J Med. 2011;365(20):1905–14.PubMedCrossRef
126.
go back to reference Aoyama H, Uchida K, Aoyama K, Pechlivanoglou P, Englesakis M, Yamada Y, Fan E. Assessment of therapeutic interventions and lung protective ventilation in patients with moderate to severe acute respiratory distress syndrome: a systematic review and network meta-analysis. JAMA Netw Open. 2019;2(7): e198116.PubMedPubMedCentralCrossRef Aoyama H, Uchida K, Aoyama K, Pechlivanoglou P, Englesakis M, Yamada Y, Fan E. Assessment of therapeutic interventions and lung protective ventilation in patients with moderate to severe acute respiratory distress syndrome: a systematic review and network meta-analysis. JAMA Netw Open. 2019;2(7): e198116.PubMedPubMedCentralCrossRef
127.
go back to reference Kimmoun A, Roche S, Bridey C, Vanhuyse F, Fay R, Girerd N, Mandry D, Levy B. Prolonged prone positioning under VV-ECMO is safe and improves oxygenation and respiratory compliance. Ann Intensive Care. 2015;5(1):35.PubMedPubMedCentralCrossRef Kimmoun A, Roche S, Bridey C, Vanhuyse F, Fay R, Girerd N, Mandry D, Levy B. Prolonged prone positioning under VV-ECMO is safe and improves oxygenation and respiratory compliance. Ann Intensive Care. 2015;5(1):35.PubMedPubMedCentralCrossRef
128.
go back to reference Garcia B, Cousin N, Bourel C, Jourdain M, Poissy J, Duburcq T, Boddaert P, Durand A, El Kalioubie A, Girardie P, et al. Prone positioning under VV-ECMO in SARS-CoV-2-induced acute respiratory distress syndrome. Crit Care. 2020;24(1):428.PubMedPubMedCentralCrossRef Garcia B, Cousin N, Bourel C, Jourdain M, Poissy J, Duburcq T, Boddaert P, Durand A, El Kalioubie A, Girardie P, et al. Prone positioning under VV-ECMO in SARS-CoV-2-induced acute respiratory distress syndrome. Crit Care. 2020;24(1):428.PubMedPubMedCentralCrossRef
129.
go back to reference Chiu LC, Chuang LP, Lin SW, Li HH, Leu SW, Chang KW, Huang CH, Chiu TH, Wu HP, Tsai FC, et al. Comparisons of outcomes between patients with direct and indirect acute respiratory distress syndrome receiving extracorporeal membrane oxygenation. Membranes. 2021;11(8):644.PubMedPubMedCentralCrossRef Chiu LC, Chuang LP, Lin SW, Li HH, Leu SW, Chang KW, Huang CH, Chiu TH, Wu HP, Tsai FC, et al. Comparisons of outcomes between patients with direct and indirect acute respiratory distress syndrome receiving extracorporeal membrane oxygenation. Membranes. 2021;11(8):644.PubMedPubMedCentralCrossRef
130.
go back to reference Barbaro RP, MacLaren G, Boonstra PS, Combes A, Agerstrand C, Annich G, Diaz R, Fan E, Hryniewicz K, Lorusso R, et al. Extracorporeal membrane oxygenation for COVID-19: evolving outcomes from the international extracorporeal life support organization registry. The Lancet. 2021;398(10307):1230–8.CrossRef Barbaro RP, MacLaren G, Boonstra PS, Combes A, Agerstrand C, Annich G, Diaz R, Fan E, Hryniewicz K, Lorusso R, et al. Extracorporeal membrane oxygenation for COVID-19: evolving outcomes from the international extracorporeal life support organization registry. The Lancet. 2021;398(10307):1230–8.CrossRef
131.
133.
go back to reference Lu MY, Kang BH, Wan FJ, Chen CS, Huang KL. Hyperbaric oxygen attenuates lipopolysaccharide-induced acute lung injury. Intensive Care Med. 2002;28(5):636–41.PubMedCrossRef Lu MY, Kang BH, Wan FJ, Chen CS, Huang KL. Hyperbaric oxygen attenuates lipopolysaccharide-induced acute lung injury. Intensive Care Med. 2002;28(5):636–41.PubMedCrossRef
134.
go back to reference Perng WC, Wu CP, Chu SJ, Kang BH, Huang KL. Effect of hyperbaric oxygen on endotoxin-induced lung injury in rats. Shock. 2004;21(4):370–5.PubMedCrossRef Perng WC, Wu CP, Chu SJ, Kang BH, Huang KL. Effect of hyperbaric oxygen on endotoxin-induced lung injury in rats. Shock. 2004;21(4):370–5.PubMedCrossRef
135.
go back to reference Awad-Igbaria Y, Ferreira N, Keadan A, Sakas R, Edelman D, Shamir A, Francous-Soustiel J, Palzur E. HBO treatment enhances motor function and modulates pain development after sciatic nerve injury via protection the mitochondrial function. J Transl Med. 2023;21(1):545.PubMedPubMedCentralCrossRef Awad-Igbaria Y, Ferreira N, Keadan A, Sakas R, Edelman D, Shamir A, Francous-Soustiel J, Palzur E. HBO treatment enhances motor function and modulates pain development after sciatic nerve injury via protection the mitochondrial function. J Transl Med. 2023;21(1):545.PubMedPubMedCentralCrossRef
136.
go back to reference Palzur E, Zaaroor M, Vlodavsky E, Milman F, Soustiel JF. Neuroprotective effect of hyperbaric oxygen therapy in brain injury is mediated by preservation of mitochondrial membrane properties. Brain Res. 2008;1221:126–33.PubMedCrossRef Palzur E, Zaaroor M, Vlodavsky E, Milman F, Soustiel JF. Neuroprotective effect of hyperbaric oxygen therapy in brain injury is mediated by preservation of mitochondrial membrane properties. Brain Res. 2008;1221:126–33.PubMedCrossRef
137.
go back to reference Hadanny A, Zubari T, Tamir-Adler L, Bechor Y, Fishlev G, Lang E, Polak N, Bergan J, Friedman M, Efrati S. Hyperbaric oxygen therapy effects on pulmonary functions: a prospective cohort study. BMC Pulm Med. 2019;19(1):148.PubMedPubMedCentralCrossRef Hadanny A, Zubari T, Tamir-Adler L, Bechor Y, Fishlev G, Lang E, Polak N, Bergan J, Friedman M, Efrati S. Hyperbaric oxygen therapy effects on pulmonary functions: a prospective cohort study. BMC Pulm Med. 2019;19(1):148.PubMedPubMedCentralCrossRef
138.
go back to reference Cannellotto M, Duarte M, Keller G, Larrea R, Cunto E, Chediack V, Mansur M, Brito DM, García E, Salvo HED, et al. Hyperbaric oxygen as an adjuvant treatment for patients with COVID-19 severe hypoxaemia: a randomised controlled trial. Emerg Med J. 2022;39(2):88–93.PubMedCrossRef Cannellotto M, Duarte M, Keller G, Larrea R, Cunto E, Chediack V, Mansur M, Brito DM, García E, Salvo HED, et al. Hyperbaric oxygen as an adjuvant treatment for patients with COVID-19 severe hypoxaemia: a randomised controlled trial. Emerg Med J. 2022;39(2):88–93.PubMedCrossRef
139.
go back to reference Jain R, DalNogare A. Pharmacological therapy for acute respiratory distress syndrome. Mayo Clin Proc. 2006;81(2):205–12.PubMedCrossRef Jain R, DalNogare A. Pharmacological therapy for acute respiratory distress syndrome. Mayo Clin Proc. 2006;81(2):205–12.PubMedCrossRef
140.
go back to reference Simonis FD, de Iudicibus G, Cremer OL, Ong DSY, van der Poll T, Bos LD, Schultz MJ. Macrolide therapy is associated with reduced mortality in acute respiratory distress syndrome (ARDS) patients. Ann Transl Med. 2018;6(2):24.PubMedPubMedCentralCrossRef Simonis FD, de Iudicibus G, Cremer OL, Ong DSY, van der Poll T, Bos LD, Schultz MJ. Macrolide therapy is associated with reduced mortality in acute respiratory distress syndrome (ARDS) patients. Ann Transl Med. 2018;6(2):24.PubMedPubMedCentralCrossRef
141.
go back to reference Whitney JE, Feng R, Koterba N, Chen F, Bush J, Graham K, Lacey SF, Melenhorst JJ, Parikh SM, Weiss SL, et al. Endothelial biomarkers are associated with indirect lung injury in sepsis-associated pediatric acute respiratory distress syndrome. Crit Care Explor. 2020;2(12): e0295.PubMedPubMedCentralCrossRef Whitney JE, Feng R, Koterba N, Chen F, Bush J, Graham K, Lacey SF, Melenhorst JJ, Parikh SM, Weiss SL, et al. Endothelial biomarkers are associated with indirect lung injury in sepsis-associated pediatric acute respiratory distress syndrome. Crit Care Explor. 2020;2(12): e0295.PubMedPubMedCentralCrossRef
142.
go back to reference Flori H, Sapru A, Quasney MW, Gildengorin G, Curley MAQ, Matthay MA, Dahmer MK, Bateman ST, Berg MD, Borasino S, et al. A prospective investigation of interleukin-8 levels in pediatric acute respiratory failure and acute respiratory distress syndrome. Crit Care. 2019;23(1):128.PubMedPubMedCentralCrossRef Flori H, Sapru A, Quasney MW, Gildengorin G, Curley MAQ, Matthay MA, Dahmer MK, Bateman ST, Berg MD, Borasino S, et al. A prospective investigation of interleukin-8 levels in pediatric acute respiratory failure and acute respiratory distress syndrome. Crit Care. 2019;23(1):128.PubMedPubMedCentralCrossRef
143.
go back to reference Menezes SL, Bozza PT, Neto HC, Laranjeira AP, Negri EM, Capelozzi VL, Zin WA, Rocco PR. Pulmonary and extrapulmonary acute lung injury: inflammatory and ultrastructural analyses. J Appl physiol. 2005;98(5):1777–83.PubMedCrossRef Menezes SL, Bozza PT, Neto HC, Laranjeira AP, Negri EM, Capelozzi VL, Zin WA, Rocco PR. Pulmonary and extrapulmonary acute lung injury: inflammatory and ultrastructural analyses. J Appl physiol. 2005;98(5):1777–83.PubMedCrossRef
145.
go back to reference Lewis SR, Pritchard MW, Thomas CM, Smith AF. Pharmacological agents for adults with acute respiratory distress syndrome. Cochrane Database Syst Rev. 2019;7(7):CD004477.PubMed Lewis SR, Pritchard MW, Thomas CM, Smith AF. Pharmacological agents for adults with acute respiratory distress syndrome. Cochrane Database Syst Rev. 2019;7(7):CD004477.PubMed
146.
go back to reference Rubenfeld GD. Confronting the frustrations of negative clinical trials in acute respiratory distress syndrome. Ann Am Thorac Soc. 2015;12(Suppl 1):S58-63.PubMedCrossRef Rubenfeld GD. Confronting the frustrations of negative clinical trials in acute respiratory distress syndrome. Ann Am Thorac Soc. 2015;12(Suppl 1):S58-63.PubMedCrossRef
147.
go back to reference Blondonnet R, Audard J, Belville C, Clairefond G, Lutz J, Bouvier D, Roszyk L, Gross C, Lavergne M, Fournet M, et al. RAGE inhibition reduces acute lung injury in mice. Sci Rep. 2017;7(1):7208.PubMedPubMedCentralCrossRef Blondonnet R, Audard J, Belville C, Clairefond G, Lutz J, Bouvier D, Roszyk L, Gross C, Lavergne M, Fournet M, et al. RAGE inhibition reduces acute lung injury in mice. Sci Rep. 2017;7(1):7208.PubMedPubMedCentralCrossRef
148.
go back to reference Engel M, Nowacki RME, Jonker EM, Ophelders D, Nikiforou M, Kloosterboer N, Zimmermann LJI, van Waardenburg DA, Kramer BW. A comparison of four different models of acute respiratory distress syndrome in sheep. Respir Res. 2020;21(1):209.PubMedPubMedCentralCrossRef Engel M, Nowacki RME, Jonker EM, Ophelders D, Nikiforou M, Kloosterboer N, Zimmermann LJI, van Waardenburg DA, Kramer BW. A comparison of four different models of acute respiratory distress syndrome in sheep. Respir Res. 2020;21(1):209.PubMedPubMedCentralCrossRef
149.
go back to reference Smits SL, van den Brand JM, de Lang A, Leijten LM, van Ijcken WF, van Amerongen G, Osterhaus AD, Andeweg AC, Haagmans BL. Distinct severe acute respiratory syndrome coronavirus-induced acute lung injury pathways in two different nonhuman primate species. J Virol. 2011;85(9):4234–45.PubMedPubMedCentralCrossRef Smits SL, van den Brand JM, de Lang A, Leijten LM, van Ijcken WF, van Amerongen G, Osterhaus AD, Andeweg AC, Haagmans BL. Distinct severe acute respiratory syndrome coronavirus-induced acute lung injury pathways in two different nonhuman primate species. J Virol. 2011;85(9):4234–45.PubMedPubMedCentralCrossRef
150.
go back to reference Brain JD, Molina RM, DeCamp MM, Warner AE. Pulmonary intravascular macrophages: their contribution to the mononuclear phagocyte system in 13 species. Am J Physiol. 1999;276(1):L146-154.PubMed Brain JD, Molina RM, DeCamp MM, Warner AE. Pulmonary intravascular macrophages: their contribution to the mononuclear phagocyte system in 13 species. Am J Physiol. 1999;276(1):L146-154.PubMed
151.
go back to reference Metersky M, Waterer G. Can animal models really teach us anything about pneumonia? Con. Eur Respir J. 2020;55(1):1901525.PubMedCrossRef Metersky M, Waterer G. Can animal models really teach us anything about pneumonia? Con. Eur Respir J. 2020;55(1):1901525.PubMedCrossRef
152.
go back to reference Lian J, Lin J, Zakaria N, Yahaya BH. Acute lung injury: disease modelling and the therapeutic potential of stem cells. Adv Exp Med Biol. 2020;1298:149–66.PubMedCrossRef Lian J, Lin J, Zakaria N, Yahaya BH. Acute lung injury: disease modelling and the therapeutic potential of stem cells. Adv Exp Med Biol. 2020;1298:149–66.PubMedCrossRef
153.
go back to reference Gharib SA, Nguyen E, Altemeier WA, Shaffer SA, Doneanu CE, Goodlett DR, Schnapp LM. Of mice and men: comparative proteomics of bronchoalveolar fluid. Eur Respir J. 2010;35(6):1388–95.PubMedCrossRef Gharib SA, Nguyen E, Altemeier WA, Shaffer SA, Doneanu CE, Goodlett DR, Schnapp LM. Of mice and men: comparative proteomics of bronchoalveolar fluid. Eur Respir J. 2010;35(6):1388–95.PubMedCrossRef
154.
go back to reference Aeffner F, Bolon B, Davis IC. Mouse models of acute respiratory distress syndrome: a review of analytical approaches, pathologic features, and common measurements. Toxicol Pathol. 2015;43(8):1074–92.PubMedCrossRef Aeffner F, Bolon B, Davis IC. Mouse models of acute respiratory distress syndrome: a review of analytical approaches, pathologic features, and common measurements. Toxicol Pathol. 2015;43(8):1074–92.PubMedCrossRef
155.
go back to reference Kulkarni HS, Lee JS, Bastarache JA, Kuebler WM, Downey GP, Albaiceta GM, Altemeier WA, Artigas A, Bates JHT, Calfee CS, et al. Update on the features and measurements of experimental acute lung injury in animals: an official American thoracic society workshop report. Am J Respir Cell Mol Biol. 2022;66(2):e1–14.PubMedPubMedCentralCrossRef Kulkarni HS, Lee JS, Bastarache JA, Kuebler WM, Downey GP, Albaiceta GM, Altemeier WA, Artigas A, Bates JHT, Calfee CS, et al. Update on the features and measurements of experimental acute lung injury in animals: an official American thoracic society workshop report. Am J Respir Cell Mol Biol. 2022;66(2):e1–14.PubMedPubMedCentralCrossRef
156.
go back to reference Lee JW, Fang X, Gupta N, Serikov V, Matthay MA. Allogeneic human mesenchymal stem cells for treatment of E coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci. 2009;106(38):16357–62.PubMedPubMedCentralCrossRef Lee JW, Fang X, Gupta N, Serikov V, Matthay MA. Allogeneic human mesenchymal stem cells for treatment of E coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci. 2009;106(38):16357–62.PubMedPubMedCentralCrossRef
157.
go back to reference Tieu A, Stewart DJ, Lalu MM. Mesenchymal stem cell-derived extracellular vesicles: good things come in small packages. Crit Care Med. 2020;48(7):1095–7.PubMedCrossRef Tieu A, Stewart DJ, Lalu MM. Mesenchymal stem cell-derived extracellular vesicles: good things come in small packages. Crit Care Med. 2020;48(7):1095–7.PubMedCrossRef
158.
159.
go back to reference Wang J, Huang R, Xu Q, Zheng G, Qiu G, Ge M, Shu Q, Xu J. Mesenchymal stem cell-derived extracellular vesicles alleviate acute lung injury via transfer of miR-27a-3p*. Crit Care Med. 2020;48(7):e599–610.PubMedCrossRef Wang J, Huang R, Xu Q, Zheng G, Qiu G, Ge M, Shu Q, Xu J. Mesenchymal stem cell-derived extracellular vesicles alleviate acute lung injury via transfer of miR-27a-3p*. Crit Care Med. 2020;48(7):e599–610.PubMedCrossRef
160.
go back to reference Mao G-c, Gong C-c, Wang Z, Sun M-x, Pei Z-p, Meng W-q, Cen J-f, He X-w, Lu Y, Xu Q-q, et al. BMSC-derived exosomes ameliorate sulfur mustard-induced acute lung injury by regulating the GPRC5A–YAP axis. Acta Pharmacol Sinica. 2021;42(12):2082–93.CrossRef Mao G-c, Gong C-c, Wang Z, Sun M-x, Pei Z-p, Meng W-q, Cen J-f, He X-w, Lu Y, Xu Q-q, et al. BMSC-derived exosomes ameliorate sulfur mustard-induced acute lung injury by regulating the GPRC5A–YAP axis. Acta Pharmacol Sinica. 2021;42(12):2082–93.CrossRef
161.
go back to reference Mizuta Y, Akahoshi T, Guo J, Zhang S, Narahara S, Kawano T, Murata M, Tokuda K, Eto M, Hashizume M, et al. Exosomes from adipose tissue-derived mesenchymal stem cells ameliorate histone-induced acute lung injury by activating the PI3K/Akt pathway in endothelial cells. Stem Cell Res Ther. 2020;11(1):508.PubMedPubMedCentralCrossRef Mizuta Y, Akahoshi T, Guo J, Zhang S, Narahara S, Kawano T, Murata M, Tokuda K, Eto M, Hashizume M, et al. Exosomes from adipose tissue-derived mesenchymal stem cells ameliorate histone-induced acute lung injury by activating the PI3K/Akt pathway in endothelial cells. Stem Cell Res Ther. 2020;11(1):508.PubMedPubMedCentralCrossRef
162.
go back to reference Zhou Y, Li P, Goodwin AJ, Cook JA, Halushka PV, Chang E, Zingarelli B, Fan H. Exosomes from endothelial progenitor cells improve outcomes of the lipopolysaccharide-induced acute lung injury. Crit Care. 2019;23(1):44.PubMedPubMedCentralCrossRef Zhou Y, Li P, Goodwin AJ, Cook JA, Halushka PV, Chang E, Zingarelli B, Fan H. Exosomes from endothelial progenitor cells improve outcomes of the lipopolysaccharide-induced acute lung injury. Crit Care. 2019;23(1):44.PubMedPubMedCentralCrossRef
163.
go back to reference Dutra Silva J, Su Y, Calfee CS, Delucchi KL, Weiss D, McAuley DF, O’Kane C, Krasnodembskaya AD. Mesenchymal stromal cell extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS. Eur Respir J. 2021;58(1):2002978.PubMedPubMedCentralCrossRef Dutra Silva J, Su Y, Calfee CS, Delucchi KL, Weiss D, McAuley DF, O’Kane C, Krasnodembskaya AD. Mesenchymal stromal cell extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS. Eur Respir J. 2021;58(1):2002978.PubMedPubMedCentralCrossRef
164.
go back to reference Ibrahim A, Ciullo A, Li C, Akhmerov A, Peck K, Jones-Ungerleider KC, Morris A, Marchevsky A, Marbàn E, Ibrahim AG. Engineered fibroblast extracellular vesicles attenuate pulmonary inflammation and fibrosis in bleomycin-induced lung injury. Front Develop Biol. 2021;9:733158.CrossRef Ibrahim A, Ciullo A, Li C, Akhmerov A, Peck K, Jones-Ungerleider KC, Morris A, Marchevsky A, Marbàn E, Ibrahim AG. Engineered fibroblast extracellular vesicles attenuate pulmonary inflammation and fibrosis in bleomycin-induced lung injury. Front Develop Biol. 2021;9:733158.CrossRef
165.
go back to reference Ma Q, Fan Q, Xu J, Bai J, Han X, Dong Z, Zhou X, Liu Z, Gu Z, Wang C. Calming cytokine storm in pneumonia by targeted delivery of TPCA-1 using platelet-derived extracellular vesicles. Matter. 2020;3(1):287–301.PubMedPubMedCentralCrossRef Ma Q, Fan Q, Xu J, Bai J, Han X, Dong Z, Zhou X, Liu Z, Gu Z, Wang C. Calming cytokine storm in pneumonia by targeted delivery of TPCA-1 using platelet-derived extracellular vesicles. Matter. 2020;3(1):287–301.PubMedPubMedCentralCrossRef
166.
go back to reference Fu Y, Xiong S. Tagged extracellular vesicles with the RBD of the viral spike protein for delivery of antiviral agents against SARS-COV-2 infection. J Controll Release Off J Controll Release Soc. 2021;335:584–95.CrossRef Fu Y, Xiong S. Tagged extracellular vesicles with the RBD of the viral spike protein for delivery of antiviral agents against SARS-COV-2 infection. J Controll Release Off J Controll Release Soc. 2021;335:584–95.CrossRef
168.
go back to reference Gong C, Yu X, You B, Wu Y, Wang R, Han L, Wang Y, Gao S, Yuan Y. Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy. Journal of Nanobiotechnology. 2020;18(1):92.PubMedPubMedCentralCrossRef Gong C, Yu X, You B, Wu Y, Wang R, Han L, Wang Y, Gao S, Yuan Y. Macrophage-cancer hybrid membrane-coated nanoparticles for targeting lung metastasis in breast cancer therapy. Journal of Nanobiotechnology. 2020;18(1):92.PubMedPubMedCentralCrossRef
169.
go back to reference Rao L, Xia S, Xu W, Tian R, Yu G, Gu C, Pan P, Meng QF, Cai X, Qu D, et al. Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proc Natl Acad Sci USA. 2020;117(44):27141–7.PubMedPubMedCentralCrossRef Rao L, Xia S, Xu W, Tian R, Yu G, Gu C, Pan P, Meng QF, Cai X, Qu D, et al. Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proc Natl Acad Sci USA. 2020;117(44):27141–7.PubMedPubMedCentralCrossRef
171.
go back to reference Lim SB, Rubinstein I, Sadikot RT, Artwohl JE, Onyuksel H. A novel peptide nanomedicine against acute lung injury: GLP-1 in phospholipid micelles. Pharm Res. 2011;28(3):662–72.PubMedCrossRef Lim SB, Rubinstein I, Sadikot RT, Artwohl JE, Onyuksel H. A novel peptide nanomedicine against acute lung injury: GLP-1 in phospholipid micelles. Pharm Res. 2011;28(3):662–72.PubMedCrossRef
172.
go back to reference Lokugamage MP, Vanover D, Beyersdorf J, Hatit MZC, Rotolo L, Echeverri ES, Peck HE, Ni H, Yoon J-K, Kim Y, et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nature Biomed Eng. 2021;5(9):1059–68.CrossRef Lokugamage MP, Vanover D, Beyersdorf J, Hatit MZC, Rotolo L, Echeverri ES, Peck HE, Ni H, Yoon J-K, Kim Y, et al. Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs. Nature Biomed Eng. 2021;5(9):1059–68.CrossRef
173.
go back to reference Howard MD, Greineder CF, Hood ED, Muzykantov VR. Endothelial targeting of liposomes encapsulating SOD/catalase mimetic EUK-134 alleviates acute pulmonary inflammation. J Controll Release official journal of the Controlled Release Society. 2014;177:34–41.CrossRef Howard MD, Greineder CF, Hood ED, Muzykantov VR. Endothelial targeting of liposomes encapsulating SOD/catalase mimetic EUK-134 alleviates acute pulmonary inflammation. J Controll Release official journal of the Controlled Release Society. 2014;177:34–41.CrossRef
174.
go back to reference Arber Raviv S, Alyan M, Egorov E, Zano A, Harush MY, Pieters C, Korach-Rechtman H, Saadya A, Kaneti G, Nudelman I, et al. Lung targeted liposomes for treating ARDS. Journal of controlled release Off J Controll Release Soc. 2022;346:421–33.CrossRef Arber Raviv S, Alyan M, Egorov E, Zano A, Harush MY, Pieters C, Korach-Rechtman H, Saadya A, Kaneti G, Nudelman I, et al. Lung targeted liposomes for treating ARDS. Journal of controlled release Off J Controll Release Soc. 2022;346:421–33.CrossRef
175.
go back to reference Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2020;384(5):403–16.PubMedCrossRef Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2020;384(5):403–16.PubMedCrossRef
176.
go back to reference Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Moreira ED, Zerbini C, et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N Engl J Med. 2020;383(27):2603–15.PubMedCrossRef Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Moreira ED, Zerbini C, et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N Engl J Med. 2020;383(27):2603–15.PubMedCrossRef
177.
go back to reference Qiao Q, Liu X, Yang T, Cui K, Kong L, Yang C, Zhang Z. Nanomedicine for acute respiratory distress syndrome: the latest application, targeting strategy, and rational design. Acta Pharm Sin B. 2021;11(10):3060–91.PubMedPubMedCentralCrossRef Qiao Q, Liu X, Yang T, Cui K, Kong L, Yang C, Zhang Z. Nanomedicine for acute respiratory distress syndrome: the latest application, targeting strategy, and rational design. Acta Pharm Sin B. 2021;11(10):3060–91.PubMedPubMedCentralCrossRef
178.
go back to reference Zhang CY, Lin W, Gao J, Shi X, Davaritouchaee M, Nielsen AE, Mancini RJ, Wang Z. pH-responsive nanoparticles targeted to lungs for improved therapy of acute lung inflammation/Injury. ACS Appl Mater Interfaces. 2019;11(18):16380–90.PubMedPubMedCentralCrossRef Zhang CY, Lin W, Gao J, Shi X, Davaritouchaee M, Nielsen AE, Mancini RJ, Wang Z. pH-responsive nanoparticles targeted to lungs for improved therapy of acute lung inflammation/Injury. ACS Appl Mater Interfaces. 2019;11(18):16380–90.PubMedPubMedCentralCrossRef
179.
go back to reference Zhai Z, Ouyang W, Yao Y, Zhang Y, Zhang H, Xu F, Gao C. Dexamethasone-loaded ROS-responsive poly(thioketal) nanoparticles suppress inflammation and oxidative stress of acute lung injury. Bioactive Mater. 2022;14:430–42.CrossRef Zhai Z, Ouyang W, Yao Y, Zhang Y, Zhang H, Xu F, Gao C. Dexamethasone-loaded ROS-responsive poly(thioketal) nanoparticles suppress inflammation and oxidative stress of acute lung injury. Bioactive Mater. 2022;14:430–42.CrossRef
180.
go back to reference Sun Y, Guo F, Zou Z, Li C, Hong X, Zhao Y, Wang C, Wang H, Liu H, Yang P, et al. Cationic nanoparticles directly bind angiotensin-converting enzyme 2 and induce acute lung injury in mice. Part Fibre Toxicol. 2015;12(1):4.PubMedPubMedCentralCrossRef Sun Y, Guo F, Zou Z, Li C, Hong X, Zhao Y, Wang C, Wang H, Liu H, Yang P, et al. Cationic nanoparticles directly bind angiotensin-converting enzyme 2 and induce acute lung injury in mice. Part Fibre Toxicol. 2015;12(1):4.PubMedPubMedCentralCrossRef
181.
182.
go back to reference Silva PL, Pelosi P, Rocco PRM. Personalized pharmacological therapy for ARDS: a light at the end of the tunnel. Expert Opin Investig Drugs. 2020;29(1):49–61.PubMedCrossRef Silva PL, Pelosi P, Rocco PRM. Personalized pharmacological therapy for ARDS: a light at the end of the tunnel. Expert Opin Investig Drugs. 2020;29(1):49–61.PubMedCrossRef
Metadata
Title
Translational medicine for acute lung injury
Authors
Jianguo Zhang
Yumeng Guo
Michael Mak
Zhimin Tao
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2024
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-023-04828-7

Other articles of this Issue 1/2024

Journal of Translational Medicine 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.