Skip to main content
Top

Open Access 29-04-2024 | Acute Respiratory Distress-Syndrome | ACUTE RESPIRATORY DISTRESS SYNDROME

The Synthetic Surfactant CHF5633 Restores Lung Function and Lung Architecture in Severe Acute Respiratory Distress Syndrome in Adult Rabbits

Authors: Pavol Mikolka, Petra Kosutova, Maros Kolomaznik, Nikolett Nemcova, Juliana Hanusrichterova, Tore Curstedt, Jan Johansson, Andrea Calkovska

Published in: Lung

Login to get access

Abstract

Purpose

Acute respiratory distress syndrome (ARDS) is a major cause of hypoxemic respiratory failure in adults. In ARDS extensive inflammation and leakage of fluid into the alveoli lead to dysregulation of pulmonary surfactant metabolism and function. Altered surfactant synthesis, secretion, and breakdown contribute to the clinical features of decreased lung compliance and alveolar collapse. Lung function in ARDS could potentially be restored with surfactant replacement therapy, and synthetic surfactants with modified peptide analogues may better withstand inactivation in ARDS alveoli than natural surfactants.

Methods

This study aimed to investigate the activity in vitro and the bolus effect (200 mg phospholipids/kg) of synthetic surfactant CHF5633 with analogues of SP‐B and SP‐C, or natural surfactant Poractant alfa (Curosurf®, both preparations Chiesi Farmaceutici S.p.A.) in a severe ARDS model (the ratio of partial pressure arterial oxygen and fraction of inspired oxygen, P/F ratio ≤ 13.3 kPa) induced by hydrochloric acid instillation followed by injurious ventilation in adult New Zealand rabbits. The animals were ventilated for 4 h after surfactant treatment and the respiratory parameters, histological appearance of lung parenchyma and levels of inflammation, oxidative stress, surfactant dysfunction, and endothelial damage were evaluated.

Results

Both surfactant preparations yielded comparable improvements in lung function parameters, reductions in lung injury score, pro-inflammatory cytokines levels, and lung edema formation compared to untreated controls.

Conclusions

This study indicates that surfactant replacement therapy with CHF5633 improves lung function and lung architecture, and attenuates inflammation in severe ARDS in adult rabbits similarly to Poractant alfa. Clinical trials have so far not yielded conclusive results, but exogenous surfactant may be a valid supportive treatment for patients with ARDS given its anti-inflammatory and lung-protective effects.
Literature
1.
3.
go back to reference An XN et al (2019) Oxidative stress promotes ventilator-induced lung injury through activating NLRP3 inflammasome and TRPM2 channel. Artif Cells Nanomed Biotechnol 47(1):3448–3455PubMedCrossRef An XN et al (2019) Oxidative stress promotes ventilator-induced lung injury through activating NLRP3 inflammasome and TRPM2 channel. Artif Cells Nanomed Biotechnol 47(1):3448–3455PubMedCrossRef
5.
go back to reference Sahetya SK, Brower RG (2017) Lung recruitment and titrated PEEP in moderate to severe ARDS is the door closing on the open lung? JAMA 318(14):1327–1329PubMedPubMedCentralCrossRef Sahetya SK, Brower RG (2017) Lung recruitment and titrated PEEP in moderate to severe ARDS is the door closing on the open lung? JAMA 318(14):1327–1329PubMedPubMedCentralCrossRef
6.
7.
go back to reference Held HD et al (2001) Ventilation-induced chemokine and cytokine release is associated with activation of nuclear factor-κB and is blocked by steroids. Am J Respir Crit Care Med 163(3):711–716PubMedCrossRef Held HD et al (2001) Ventilation-induced chemokine and cytokine release is associated with activation of nuclear factor-κB and is blocked by steroids. Am J Respir Crit Care Med 163(3):711–716PubMedCrossRef
8.
go back to reference Bos LDJ, Ware LB (2022) Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes. Lancet 400(10358):1145–1156PubMedCrossRef Bos LDJ, Ware LB (2022) Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes. Lancet 400(10358):1145–1156PubMedCrossRef
9.
go back to reference Gunther A et al (1996) Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema. Am J Respir Crit Care Med 153(1):176–184PubMedCrossRef Gunther A et al (1996) Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema. Am J Respir Crit Care Med 153(1):176–184PubMedCrossRef
10.
go back to reference Mander A et al (2002) Altered phospholipid composition and aggregate structure of lung surfactant is associated with impaired lung function in young children with respiratory infections. Am J Respir Cell Mol Biol 27(6):714–721PubMedCrossRef Mander A et al (2002) Altered phospholipid composition and aggregate structure of lung surfactant is associated with impaired lung function in young children with respiratory infections. Am J Respir Cell Mol Biol 27(6):714–721PubMedCrossRef
11.
go back to reference Petty TL et al (1977) Characteristics of pulmonary surfactant in adult respiratory-distress syndrome associated with trauma and shock. Am Rev Respir Dis 115(3):531–536PubMed Petty TL et al (1977) Characteristics of pulmonary surfactant in adult respiratory-distress syndrome associated with trauma and shock. Am Rev Respir Dis 115(3):531–536PubMed
12.
go back to reference Pison U et al (1989) Surfactant abnormalities in patients with respiratory failure after multiple trauma. Am Rev Respir Dis 140(4):1033–1039PubMedCrossRef Pison U et al (1989) Surfactant abnormalities in patients with respiratory failure after multiple trauma. Am Rev Respir Dis 140(4):1033–1039PubMedCrossRef
13.
go back to reference Schmidt R et al (2002) Altered fatty acid composition of lung surfactant phospholipids in interstitial lung disease. Am J Physiol Lung Cell Mol Physiol 283(5):L1079–L1085PubMedCrossRef Schmidt R et al (2002) Altered fatty acid composition of lung surfactant phospholipids in interstitial lung disease. Am J Physiol Lung Cell Mol Physiol 283(5):L1079–L1085PubMedCrossRef
14.
go back to reference Holm BA, Enhorning G, Notter RH (1988) A biophysical mechanism by which plasma-proteins inhibit lung surfactant activity. Chem Phys Lipid 49(1–2):49–55CrossRef Holm BA, Enhorning G, Notter RH (1988) A biophysical mechanism by which plasma-proteins inhibit lung surfactant activity. Chem Phys Lipid 49(1–2):49–55CrossRef
15.
go back to reference Holm BA, Notter RH (1987) Effects of hemoglobin and cell-membrane lipids on pulmonary surfactant activity. J Appl Physiol 63(4):1434–1442PubMedCrossRef Holm BA, Notter RH (1987) Effects of hemoglobin and cell-membrane lipids on pulmonary surfactant activity. J Appl Physiol 63(4):1434–1442PubMedCrossRef
16.
go back to reference Holm BA, Notter RH, Finkelstein JN (1985) Surface-property changes from interactions of albumin with natural lung surfactant and extracted lung lipids. Chem Phys Lipid 38(3):287–298CrossRef Holm BA, Notter RH, Finkelstein JN (1985) Surface-property changes from interactions of albumin with natural lung surfactant and extracted lung lipids. Chem Phys Lipid 38(3):287–298CrossRef
17.
go back to reference Keough KMW, Parsons CS, Tweeddale MG (1989) Interactions between plasma-proteins and pulmonary surfactant—pulsating bubble studies. Can J Physiol Pharmacol 67(6):663–668PubMedCrossRef Keough KMW, Parsons CS, Tweeddale MG (1989) Interactions between plasma-proteins and pulmonary surfactant—pulsating bubble studies. Can J Physiol Pharmacol 67(6):663–668PubMedCrossRef
18.
go back to reference Seeger W et al (1993) Surfactant inhibition by plasma-proteins—differential sensitivity of various surfactant preparations. Eur Respir J 6(7):971–977PubMedCrossRef Seeger W et al (1993) Surfactant inhibition by plasma-proteins—differential sensitivity of various surfactant preparations. Eur Respir J 6(7):971–977PubMedCrossRef
19.
go back to reference Seeger W et al (1985) Alteration of surfactant function due to protein leakage—special interaction with fibrin monomer. J Appl Physiol 58(2):326–338PubMedCrossRef Seeger W et al (1985) Alteration of surfactant function due to protein leakage—special interaction with fibrin monomer. J Appl Physiol 58(2):326–338PubMedCrossRef
20.
go back to reference Moses D et al (1991) Inhibition of pulmonary surfactant function by meconium. Am J Obstet Gynecol 164(2):477–481PubMedCrossRef Moses D et al (1991) Inhibition of pulmonary surfactant function by meconium. Am J Obstet Gynecol 164(2):477–481PubMedCrossRef
21.
go back to reference Amirkhanian JD, Merritt TA (1998) Inhibitory effects of oxyradicals on surfactant function: utilizing in vitro Fenton reaction. Lung 176(1):63–72PubMedCrossRef Amirkhanian JD, Merritt TA (1998) Inhibitory effects of oxyradicals on surfactant function: utilizing in vitro Fenton reaction. Lung 176(1):63–72PubMedCrossRef
22.
go back to reference Haddad IY et al (1993) Mechanisms of peroxynitrite-induced injury to pulmonary surfactants. Am J Physiol 265(6):L555–L564PubMed Haddad IY et al (1993) Mechanisms of peroxynitrite-induced injury to pulmonary surfactants. Am J Physiol 265(6):L555–L564PubMed
23.
go back to reference Hickman-Davis JM et al (2001) Lung surfactant and reactive oxygen-nitrogen species: antimicrobial activity and host-pathogen interactions. Am J Physiol Lung Cell Mol Physiol 281(3):L517–L523PubMedCrossRef Hickman-Davis JM et al (2001) Lung surfactant and reactive oxygen-nitrogen species: antimicrobial activity and host-pathogen interactions. Am J Physiol Lung Cell Mol Physiol 281(3):L517–L523PubMedCrossRef
24.
go back to reference Pison U et al (1989) Proteolytic inactivation of dog lung surfactant-associated proteins by neutrophil elastase. Biochim Biophys Acta 992(3):251–257PubMedCrossRef Pison U et al (1989) Proteolytic inactivation of dog lung surfactant-associated proteins by neutrophil elastase. Biochim Biophys Acta 992(3):251–257PubMedCrossRef
25.
go back to reference Enhorning G et al (1992) Phospholipases introduced into the hypophase affect the surfactant film outlining a bubble. J Appl Physiol 73(3):941–945PubMedCrossRef Enhorning G et al (1992) Phospholipases introduced into the hypophase affect the surfactant film outlining a bubble. J Appl Physiol 73(3):941–945PubMedCrossRef
26.
go back to reference Holm BA et al (1991) Inhibition of pulmonary surfactant function by phospholipases. J Appl Physiol 71(1):317–321PubMedCrossRef Holm BA et al (1991) Inhibition of pulmonary surfactant function by phospholipases. J Appl Physiol 71(1):317–321PubMedCrossRef
27.
go back to reference Holm BA, Wang WD, Notter RH (1999) Multiple mechanisms of lung surfactant inhibition. Pediatr Res 46(1):85–93PubMedCrossRef Holm BA, Wang WD, Notter RH (1999) Multiple mechanisms of lung surfactant inhibition. Pediatr Res 46(1):85–93PubMedCrossRef
28.
go back to reference Hall SB et al (1992) Inhibition of pulmonary surfactant by oleic-acid—mechanisms and characteristics. J Appl Physiol 72(5):1708–1716PubMedCrossRef Hall SB et al (1992) Inhibition of pulmonary surfactant by oleic-acid—mechanisms and characteristics. J Appl Physiol 72(5):1708–1716PubMedCrossRef
29.
go back to reference Wang Z et al (2003) Surface activity of a synthetic lung surfactant containing a phospholipase-resistant phosphonolipid analog of dipalmitoyl phosphatidylcholine. Am J Physiol Lung Cell Mol Physiol 285(3):L550–L559PubMedCrossRef Wang Z et al (2003) Surface activity of a synthetic lung surfactant containing a phospholipase-resistant phosphonolipid analog of dipalmitoyl phosphatidylcholine. Am J Physiol Lung Cell Mol Physiol 285(3):L550–L559PubMedCrossRef
30.
go back to reference Notter RH (2000) Lung surfactants: basic science and clinical applications. CRC PressCrossRef Notter RH (2000) Lung surfactants: basic science and clinical applications. CRC PressCrossRef
31.
go back to reference Notter RH, Finkelstein JN, Holm BA (2005) Lung injury: mechanisms, pathophysiology, and therapy. CRC PressCrossRef Notter RH, Finkelstein JN, Holm BA (2005) Lung injury: mechanisms, pathophysiology, and therapy. CRC PressCrossRef
32.
go back to reference Dushianthan A et al (2023) Pulmonary surfactant in adult ARDS: current perspectives and future directions. Diagnostics (Basel) 13(18):2964PubMedCrossRef Dushianthan A et al (2023) Pulmonary surfactant in adult ARDS: current perspectives and future directions. Diagnostics (Basel) 13(18):2964PubMedCrossRef
33.
go back to reference Kesecioglu J et al (2009) Exogenous natural surfactant for treatment of acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 180(10):989–994PubMedCrossRef Kesecioglu J et al (2009) Exogenous natural surfactant for treatment of acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med 180(10):989–994PubMedCrossRef
34.
go back to reference Spragg RG et al (2004) Effect of recombinant surfactant protein C-based surfactant on the acute respiratory distress syndrome. N Engl J Med 351(9):884–892PubMedCrossRef Spragg RG et al (2004) Effect of recombinant surfactant protein C-based surfactant on the acute respiratory distress syndrome. N Engl J Med 351(9):884–892PubMedCrossRef
35.
go back to reference Spragg RG et al (2011) Recombinant surfactant protein C-based surfactant for patients with severe direct lung injury. Am J Respir Crit Care Med 183(8):1055–1061PubMedCrossRef Spragg RG et al (2011) Recombinant surfactant protein C-based surfactant for patients with severe direct lung injury. Am J Respir Crit Care Med 183(8):1055–1061PubMedCrossRef
36.
go back to reference Willson DF et al (2015) The adult calfactant in acute respiratory distress syndrome trial. Chest 148(2):356–364PubMedCrossRef Willson DF et al (2015) The adult calfactant in acute respiratory distress syndrome trial. Chest 148(2):356–364PubMedCrossRef
38.
go back to reference Soll R, Blanco F (2001) Natural surfactant extract versus synthetic surfactant for neonatal respiratory distress syndrome. Cochrane Database Syst Rev 2:CD000144 Soll R, Blanco F (2001) Natural surfactant extract versus synthetic surfactant for neonatal respiratory distress syndrome. Cochrane Database Syst Rev 2:CD000144
39.
go back to reference Singh N et al (2015) Comparison of animal-derived surfactants for the prevention and treatment of respiratory distress syndrome in preterm infants. Cochrane Database Syst Rev 2015(12):010249 Singh N et al (2015) Comparison of animal-derived surfactants for the prevention and treatment of respiratory distress syndrome in preterm infants. Cochrane Database Syst Rev 2015(12):010249
40.
go back to reference Rey-Santano C et al (2017) Cerebral and lung effects of a new generation synthetic surfactant with SP-B and SP-C analogs in preterm lambs. Pediatr Pulmonol 52(7):929–938PubMedCrossRef Rey-Santano C et al (2017) Cerebral and lung effects of a new generation synthetic surfactant with SP-B and SP-C analogs in preterm lambs. Pediatr Pulmonol 52(7):929–938PubMedCrossRef
41.
go back to reference Ricci F et al (2017) In vitro and in vivo comparison between poractant alfa and the new generation synthetic surfactant CHF5633. Pediatr Res 81(2):369–375PubMedCrossRef Ricci F et al (2017) In vitro and in vivo comparison between poractant alfa and the new generation synthetic surfactant CHF5633. Pediatr Res 81(2):369–375PubMedCrossRef
42.
43.
go back to reference Mikolka P et al (2021) Impact of synthetic surfactant CHF5633 with SP-B and SP-C analogues on lung function and inflammation in rabbit model of acute respiratory distress syndrome. Physiol Rep 9(1):e14700PubMedPubMedCentralCrossRef Mikolka P et al (2021) Impact of synthetic surfactant CHF5633 with SP-B and SP-C analogues on lung function and inflammation in rabbit model of acute respiratory distress syndrome. Physiol Rep 9(1):e14700PubMedPubMedCentralCrossRef
44.
go back to reference Mikolka P et al (2022) Efficacy of surfactant therapy of ARDS induced by hydrochloric acid aspiration followed by ventilator-induced lung injury—an animal study. Physiol Res 71(S2):S237–S249PubMedPubMedCentralCrossRef Mikolka P et al (2022) Efficacy of surfactant therapy of ARDS induced by hydrochloric acid aspiration followed by ventilator-induced lung injury—an animal study. Physiol Res 71(S2):S237–S249PubMedPubMedCentralCrossRef
45.
go back to reference Matthay MA et al (2024) A new global definition of acute respiratory distress syndrome. Am J Respir Crit Care Med 209(1):37–47PubMedCrossRef Matthay MA et al (2024) A new global definition of acute respiratory distress syndrome. Am J Respir Crit Care Med 209(1):37–47PubMedCrossRef
46.
go back to reference Matute-Bello G et al (2011) An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 44(5):725–738PubMedPubMedCentralCrossRef Matute-Bello G et al (2011) An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 44(5):725–738PubMedPubMedCentralCrossRef
47.
go back to reference Enhorning G (1977) Pulsating bubble technique for evaluating pulmonary surfactant. J Appl Physiol Respir Environ Exerc Physiol 43(2):198–203PubMed Enhorning G (1977) Pulsating bubble technique for evaluating pulmonary surfactant. J Appl Physiol Respir Environ Exerc Physiol 43(2):198–203PubMed
48.
go back to reference Verdonk F et al (2022) Upcoming and urgent challenges in critical care research based on COVID-19 pandemic experience. Anaesth Crit Care Pain Med 41(5):101121PubMedPubMedCentralCrossRef Verdonk F et al (2022) Upcoming and urgent challenges in critical care research based on COVID-19 pandemic experience. Anaesth Crit Care Pain Med 41(5):101121PubMedPubMedCentralCrossRef
51.
go back to reference Krafft MP (2015) Overcoming inactivation of the lung surfactant by serum proteins: a potential role for fluorocarbons? Soft Matter 11(30):5982–5994PubMedCrossRef Krafft MP (2015) Overcoming inactivation of the lung surfactant by serum proteins: a potential role for fluorocarbons? Soft Matter 11(30):5982–5994PubMedCrossRef
52.
53.
go back to reference Zhang Q et al (2023) Effect of mechanical ventilation guided by transpulmonary pressure in acute respiratory distress syndrome patients: a systematic review and meta-analysis of randomized control trials. Eur Rev Med Pharmacol Sci 27(15):7020–7030PubMed Zhang Q et al (2023) Effect of mechanical ventilation guided by transpulmonary pressure in acute respiratory distress syndrome patients: a systematic review and meta-analysis of randomized control trials. Eur Rev Med Pharmacol Sci 27(15):7020–7030PubMed
54.
go back to reference Meng H et al (2012) Exogenous surfactant may improve oxygenation but not mortality in adult patients with acute lung injury/acute respiratory distress syndrome: a meta-analysis of 9 clinical trials. J Cardiothorac Vasc Anesth 26(5):849–856PubMedPubMedCentralCrossRef Meng H et al (2012) Exogenous surfactant may improve oxygenation but not mortality in adult patients with acute lung injury/acute respiratory distress syndrome: a meta-analysis of 9 clinical trials. J Cardiothorac Vasc Anesth 26(5):849–856PubMedPubMedCentralCrossRef
55.
go back to reference Meng SS et al (2019) Effect of surfactant administration on outcomes of adult patients in acute respiratory distress syndrome: a meta-analysis of randomized controlled trials. BMC Pulm Med 19(1):9PubMedPubMedCentralCrossRef Meng SS et al (2019) Effect of surfactant administration on outcomes of adult patients in acute respiratory distress syndrome: a meta-analysis of randomized controlled trials. BMC Pulm Med 19(1):9PubMedPubMedCentralCrossRef
56.
go back to reference Zhang LN et al (2013) Exogenous pulmonary surfactant for acute respiratory distress syndrome in adults: a systematic review and meta-analysis. Exp Ther Med 5(1):237–242PubMedCrossRef Zhang LN et al (2013) Exogenous pulmonary surfactant for acute respiratory distress syndrome in adults: a systematic review and meta-analysis. Exp Ther Med 5(1):237–242PubMedCrossRef
57.
go back to reference Dushianthan A et al (2012) Clinical review: Exogenous surfactant therapy for acute lung injury/acute respiratory distress syndrome—where do we go from here? Crit Care 16(6):238PubMedPubMedCentralCrossRef Dushianthan A et al (2012) Clinical review: Exogenous surfactant therapy for acute lung injury/acute respiratory distress syndrome—where do we go from here? Crit Care 16(6):238PubMedPubMedCentralCrossRef
58.
go back to reference Mikolka P et al (2023) Synthetic surfactant with a combined SP-B and SP-C analogue is efficient in rabbit models of adult and neonatal respiratory distress syndrome. Transl Res 262:60–74PubMedCrossRef Mikolka P et al (2023) Synthetic surfactant with a combined SP-B and SP-C analogue is efficient in rabbit models of adult and neonatal respiratory distress syndrome. Transl Res 262:60–74PubMedCrossRef
59.
go back to reference Xu Y et al (2023) Efficacy of synthetic surfactant (CHF5633) bolus and/or lavage in meconium-induced lung injury in ventilated newborn rabbits. Pediatr Res 93(3):541–550PubMedCrossRef Xu Y et al (2023) Efficacy of synthetic surfactant (CHF5633) bolus and/or lavage in meconium-induced lung injury in ventilated newborn rabbits. Pediatr Res 93(3):541–550PubMedCrossRef
60.
go back to reference Zebialowicz Ahlstrom J et al (2019) Synthetic surfactant with a recombinant surfactant protein C analogue improves lung function and attenuates inflammation in a model of acute respiratory distress syndrome in adult rabbits. Respir Res 20(1):245PubMedPubMedCentralCrossRef Zebialowicz Ahlstrom J et al (2019) Synthetic surfactant with a recombinant surfactant protein C analogue improves lung function and attenuates inflammation in a model of acute respiratory distress syndrome in adult rabbits. Respir Res 20(1):245PubMedPubMedCentralCrossRef
62.
go back to reference Herting E et al (2001) Resistance of different surfactant preparations to inactivation by meconium. Pediatr Res 50(1):44–49PubMedCrossRef Herting E et al (2001) Resistance of different surfactant preparations to inactivation by meconium. Pediatr Res 50(1):44–49PubMedCrossRef
63.
go back to reference Bellani G et al (2016) Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315(8):788–800PubMedCrossRef Bellani G et al (2016) Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315(8):788–800PubMedCrossRef
64.
65.
go back to reference Blazquez-Prieto J et al (2021) Activation of p21 limits acute lung injury and induces early senescence after acid aspiration and mechanical ventilation. Transl Res 233:104–116PubMedPubMedCentralCrossRef Blazquez-Prieto J et al (2021) Activation of p21 limits acute lung injury and induces early senescence after acid aspiration and mechanical ventilation. Transl Res 233:104–116PubMedPubMedCentralCrossRef
67.
go back to reference Kamiyama J et al (2015) Hyperinflation deteriorates arterial oxygenation and lung injury in a rabbit model of ARDS with repeated open endotracheal suctioning. BMC Anesthesiol 15:73PubMedPubMedCentralCrossRef Kamiyama J et al (2015) Hyperinflation deteriorates arterial oxygenation and lung injury in a rabbit model of ARDS with repeated open endotracheal suctioning. BMC Anesthesiol 15:73PubMedPubMedCentralCrossRef
68.
go back to reference Ricci F et al (2017) Physiological, biochemical, and biophysical characterization of the lung-lavaged spontaneously-breathing rabbit as a model for respiratory distress syndrome. PLoS ONE 12(1):e0169190PubMedPubMedCentralCrossRef Ricci F et al (2017) Physiological, biochemical, and biophysical characterization of the lung-lavaged spontaneously-breathing rabbit as a model for respiratory distress syndrome. PLoS ONE 12(1):e0169190PubMedPubMedCentralCrossRef
69.
go back to reference Williams AE, Chambers RC (2014) The mercurial nature of neutrophils: still an enigma in ARDS? Am J Physiol Lung Cell Mol Physiol 306(3):L217–L230PubMedCrossRef Williams AE, Chambers RC (2014) The mercurial nature of neutrophils: still an enigma in ARDS? Am J Physiol Lung Cell Mol Physiol 306(3):L217–L230PubMedCrossRef
70.
go back to reference Kosutova P, Mikolka P (2021) Aspiration syndromes and associated lung injury: incidence, pathophysiology and management. Physiol Res 70(Suppl 4):S567–S583PubMedPubMedCentralCrossRef Kosutova P, Mikolka P (2021) Aspiration syndromes and associated lung injury: incidence, pathophysiology and management. Physiol Res 70(Suppl 4):S567–S583PubMedPubMedCentralCrossRef
71.
go back to reference Liu Z et al (2022) Association between inflammatory biomarkers and acute respiratory distress syndrome or acute lung injury risk: a systematic review and meta-analysis. Wien Klin Wochenschr 134(1–2):24–38PubMedCrossRef Liu Z et al (2022) Association between inflammatory biomarkers and acute respiratory distress syndrome or acute lung injury risk: a systematic review and meta-analysis. Wien Klin Wochenschr 134(1–2):24–38PubMedCrossRef
72.
73.
go back to reference Narasaraju T et al (2011) Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol 179(1):199–210PubMedPubMedCentralCrossRef Narasaraju T et al (2011) Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am J Pathol 179(1):199–210PubMedPubMedCentralCrossRef
74.
go back to reference Ikegami M et al (2005) Reversibility of lung inflammation caused by SP-B deficiency. Am J Physiol Lung Cell Mol Physiol 289(6):L962–L970PubMedCrossRef Ikegami M et al (2005) Reversibility of lung inflammation caused by SP-B deficiency. Am J Physiol Lung Cell Mol Physiol 289(6):L962–L970PubMedCrossRef
75.
go back to reference Kolomaznik M et al (2023) Efficiency of exogenous surfactant combined with intravenous N-acetylcysteine in two-hit rodent model of ARDS. Respir Physiol Neurobiol 316:104138PubMedCrossRef Kolomaznik M et al (2023) Efficiency of exogenous surfactant combined with intravenous N-acetylcysteine in two-hit rodent model of ARDS. Respir Physiol Neurobiol 316:104138PubMedCrossRef
76.
77.
go back to reference De Luca D et al (2020) Surfactant-secreted phospholipase A(2) interplay and respiratory outcome in preterm neonates. Am J Physiol Lung Cell Mol Physiol 319(1):L95–L104PubMedCrossRef De Luca D et al (2020) Surfactant-secreted phospholipase A(2) interplay and respiratory outcome in preterm neonates. Am J Physiol Lung Cell Mol Physiol 319(1):L95–L104PubMedCrossRef
78.
go back to reference Albertine KH et al (2002) Fas and fas ligand are up-regulated in pulmonary edema fluid and lung tissue of patients with acute lung injury and the acute respiratory distress syndrome. Am J Pathol 161(5):1783–1796PubMedPubMedCentralCrossRef Albertine KH et al (2002) Fas and fas ligand are up-regulated in pulmonary edema fluid and lung tissue of patients with acute lung injury and the acute respiratory distress syndrome. Am J Pathol 161(5):1783–1796PubMedPubMedCentralCrossRef
80.
go back to reference Bredenberg CE, Paskanik AM, Nieman GF (1983) High surface tension pulmonary edema. J Surg Res 34(6):515–523PubMedCrossRef Bredenberg CE, Paskanik AM, Nieman GF (1983) High surface tension pulmonary edema. J Surg Res 34(6):515–523PubMedCrossRef
82.
go back to reference Touqui L, Arbibe L (1999) A role for phospholipase A2 in ARDS pathogenesis. Mol Med Today 5(6):244–249PubMedCrossRef Touqui L, Arbibe L (1999) A role for phospholipase A2 in ARDS pathogenesis. Mol Med Today 5(6):244–249PubMedCrossRef
83.
go back to reference Johansson J, Curstedt T (2019) Synthetic surfactants with SP-B and SP-C analogues to enable worldwide treatment of neonatal respiratory distress syndrome and other lung diseases. J Intern Med 285(2):165–186PubMedCrossRef Johansson J, Curstedt T (2019) Synthetic surfactants with SP-B and SP-C analogues to enable worldwide treatment of neonatal respiratory distress syndrome and other lung diseases. J Intern Med 285(2):165–186PubMedCrossRef
84.
go back to reference Cattel F et al (2021) Use of exogenous pulmonary surfactant in acute respiratory distress syndrome (ARDS): role in SARS-CoV-2-related lung injury. Respir Physiol Neurobiol 288:103645PubMedPubMedCentralCrossRef Cattel F et al (2021) Use of exogenous pulmonary surfactant in acute respiratory distress syndrome (ARDS): role in SARS-CoV-2-related lung injury. Respir Physiol Neurobiol 288:103645PubMedPubMedCentralCrossRef
85.
go back to reference Lewis JF, Veldhuizen R (2003) The role of exogenous surfactant in the treatment of acute lung injury. Annu Rev Physiol 65:613–642PubMedCrossRef Lewis JF, Veldhuizen R (2003) The role of exogenous surfactant in the treatment of acute lung injury. Annu Rev Physiol 65:613–642PubMedCrossRef
86.
go back to reference Bonten MJ et al (1995) The role of intragastric acidity and stress ulcus prophylaxis on colonization and infection in mechanically ventilated ICU patients. A stratified, randomized, double-blind study of sucralfate versus antacids. Am J Respir Crit Care Med 152(6 Pt 1):1825–34PubMedCrossRef Bonten MJ et al (1995) The role of intragastric acidity and stress ulcus prophylaxis on colonization and infection in mechanically ventilated ICU patients. A stratified, randomized, double-blind study of sucralfate versus antacids. Am J Respir Crit Care Med 152(6 Pt 1):1825–34PubMedCrossRef
Metadata
Title
The Synthetic Surfactant CHF5633 Restores Lung Function and Lung Architecture in Severe Acute Respiratory Distress Syndrome in Adult Rabbits
Authors
Pavol Mikolka
Petra Kosutova
Maros Kolomaznik
Nikolett Nemcova
Juliana Hanusrichterova
Tore Curstedt
Jan Johansson
Andrea Calkovska
Publication date
29-04-2024
Publisher
Springer US
Published in
Lung
Print ISSN: 0341-2040
Electronic ISSN: 1432-1750
DOI
https://doi.org/10.1007/s00408-024-00689-z
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.