Skip to main content
Top
Published in: Inflammation 3/2020

01-06-2020 | Acute Respiratory Distress-Syndrome | Original Article

Esculetin Ameliorates Lipopolysaccharide-Induced Acute Lung Injury in Mice Via Modulation of the AKT/ERK/NF-κB and RORγt/IL-17 Pathways

Authors: Hung-Chen Lee, Fu-Chao Liu, Chi-Neu Tsai, An-Hsun Chou, Chia-Chih Liao, Huang-Ping Yu

Published in: Inflammation | Issue 3/2020

Login to get access

Abstract

Esculetin, a coumarin derivative from various natural plants, has an anti-inflammatory property. In the present study, we examined if esculetin has any salutary effects against lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Acute lung injury (ALI) was induced via the intratracheal administration of LPS, and esculetin (20 and 40 mg/kg) was given intraperitoneally 30 min before LPS challenge. After 6 h of LPS administration, lung tissues were collected for analysis. Pretreatment with esculetin significantly attenuated histopathological changes, inflammatory cell infiltration, and production of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, in the lung tissue. Furthermore, esculetin inhibited the protein kinase B (AKT), extracellular signal-regulated kinase (ERK), and nuclear factor-kappa B (NF-κB) pathways and downregulated the expression of RORγt and IL-17 in LPS-induced ALI. Our results indicated that esculetin possesses anti-inflammatory and protective effects against LPS-induced ALI via inhibition of the AKT/ERK/NF-κB and RORγt/IL-17 pathways.
Literature
1.
go back to reference Mokra, D., and P. Kosutova. 2015. Biomarkers in acute lung injury. Respiratory Physiology & Neurobiology 209: 52–58.CrossRef Mokra, D., and P. Kosutova. 2015. Biomarkers in acute lung injury. Respiratory Physiology & Neurobiology 209: 52–58.CrossRef
2.
go back to reference Bellani, G., J.G. Laffey, T. Pham, E. Fan, L. Brochard, A. Esteban, L. Gattinoni, et al. 2016. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315 (8): 788–800.PubMedCrossRef Bellani, G., J.G. Laffey, T. Pham, E. Fan, L. Brochard, A. Esteban, L. Gattinoni, et al. 2016. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315 (8): 788–800.PubMedCrossRef
3.
go back to reference Chignard, M., and V. Balloy. 2000. Neutrophil recruitment and increased permeability during acute lung injury induced by lipopolysaccharide. American Journal of Physiology: Lung Cellular and Molecular Physiology 279 (6): L1083–L1090.PubMed Chignard, M., and V. Balloy. 2000. Neutrophil recruitment and increased permeability during acute lung injury induced by lipopolysaccharide. American Journal of Physiology: Lung Cellular and Molecular Physiology 279 (6): L1083–L1090.PubMed
4.
go back to reference Goodman, R.B., J. Pugin, J.S. Lee, and M.A. Matthay. 2003. Cytokine-mediated inflammation in acute lung injury. Cytokine and Growth Factor Reviews 14 (6): 523–535.PubMedCrossRef Goodman, R.B., J. Pugin, J.S. Lee, and M.A. Matthay. 2003. Cytokine-mediated inflammation in acute lung injury. Cytokine and Growth Factor Reviews 14 (6): 523–535.PubMedCrossRef
5.
go back to reference Chopra, M., J. S. Reuben, and A. C. Sharma. 2009. Acute lung injury: Apoptosis and signaling mechanisms. Experimental Biology and Medicine (Maywood, N.J.) 234 (4):361-371. Chopra, M., J. S. Reuben, and A. C. Sharma. 2009. Acute lung injury: Apoptosis and signaling mechanisms. Experimental Biology and Medicine (Maywood, N.J.) 234 (4):361-371.
6.
go back to reference Wen, Z., L. Fan, Y. Li, Z. Zou, M.J. Scott, G. Xiao, S. Li, et al. 2014. Neutrophils counteract autophagy-mediated anti-inflammatory mechanisms in alveolar macrophage: Role in posthemorrhagic shock acute lung inflammation. Journal of Immunology 193 (9): 4623–4633.CrossRef Wen, Z., L. Fan, Y. Li, Z. Zou, M.J. Scott, G. Xiao, S. Li, et al. 2014. Neutrophils counteract autophagy-mediated anti-inflammatory mechanisms in alveolar macrophage: Role in posthemorrhagic shock acute lung inflammation. Journal of Immunology 193 (9): 4623–4633.CrossRef
7.
go back to reference Su, X., L. Wang, Y. Song, and C. Bai. 2004. Inhibition of inflammatory responses by ambroxol, a mucolytic agent, in a murine model of acute lung injury induced by lipopolysaccharide. Intensive Care Medicine 30 (1): 133–140.PubMedPubMedCentralCrossRef Su, X., L. Wang, Y. Song, and C. Bai. 2004. Inhibition of inflammatory responses by ambroxol, a mucolytic agent, in a murine model of acute lung injury induced by lipopolysaccharide. Intensive Care Medicine 30 (1): 133–140.PubMedPubMedCentralCrossRef
8.
go back to reference Deal, E.N., J.M. Hollands, G.E. Schramm, and S.T. Micek. 2008. Role of corticosteroids in the management of acute respiratory distress syndrome. Clinical Therapeutics 30 (5): 787–799.PubMedCrossRef Deal, E.N., J.M. Hollands, G.E. Schramm, and S.T. Micek. 2008. Role of corticosteroids in the management of acute respiratory distress syndrome. Clinical Therapeutics 30 (5): 787–799.PubMedCrossRef
9.
go back to reference Zhang, Y., J. Wu, S. Ying, G. Chen, B. Wu, T. Xu, Z. Liu, et al. 2016. Discovery of new MD2 inhibitor from chalcone derivatives with anti-inflammatory effects in LPS-induced acute lung injury. Scientific Reports 6: 25130.PubMedPubMedCentralCrossRef Zhang, Y., J. Wu, S. Ying, G. Chen, B. Wu, T. Xu, Z. Liu, et al. 2016. Discovery of new MD2 inhibitor from chalcone derivatives with anti-inflammatory effects in LPS-induced acute lung injury. Scientific Reports 6: 25130.PubMedPubMedCentralCrossRef
10.
go back to reference Rossol, M., H. Heine, U. Meusch, D. Quandt, C. Klein, M.J. Sweet, and S. Hauschildt. 2011. LPS-induced cytokine production in human monocytes and macrophages. CRC Critical Reviews in Immunology 31 (5): 379–446.PubMedCrossRef Rossol, M., H. Heine, U. Meusch, D. Quandt, C. Klein, M.J. Sweet, and S. Hauschildt. 2011. LPS-induced cytokine production in human monocytes and macrophages. CRC Critical Reviews in Immunology 31 (5): 379–446.PubMedCrossRef
11.
go back to reference Bhattacharyya, J., S. Biswas, and A.G. Datta. 2004. Mode of action of endotoxin: Role of free radicals and antioxidants. Current Medicinal Chemistry 11 (3): 359–368.PubMedCrossRef Bhattacharyya, J., S. Biswas, and A.G. Datta. 2004. Mode of action of endotoxin: Role of free radicals and antioxidants. Current Medicinal Chemistry 11 (3): 359–368.PubMedCrossRef
12.
go back to reference Rubenfeld, G.D., E. Caldwell, E. Peabody, J. Weaver, D.P. Martin, M. Neff, E.J. Stern, and L.D. Hudson. 2005. Incidence and outcomes of acute lung injury. New England Journal of Medicine 353 (16): 1685–1693.CrossRef Rubenfeld, G.D., E. Caldwell, E. Peabody, J. Weaver, D.P. Martin, M. Neff, E.J. Stern, and L.D. Hudson. 2005. Incidence and outcomes of acute lung injury. New England Journal of Medicine 353 (16): 1685–1693.CrossRef
13.
go back to reference Hayden, M.S., and S. Ghosh. 2008. Shared principles in NF-kappaB signaling. Cell 132 (3): 344–362.PubMedCrossRef Hayden, M.S., and S. Ghosh. 2008. Shared principles in NF-kappaB signaling. Cell 132 (3): 344–362.PubMedCrossRef
14.
go back to reference Everhart, M.B., W. Han, T.P. Sherrill, M. Arutiunov, V.V. Polosukhin, J.R. Burke, R.T. Sadikot, J.W. Christman, F.E. Yull, and T.S. Blackwell. 2006. Duration and intensity of NF-kappaB activity determine the severity of endotoxin-induced acute lung injury. Journal of Immunology 176 (8): 4995–5005.CrossRef Everhart, M.B., W. Han, T.P. Sherrill, M. Arutiunov, V.V. Polosukhin, J.R. Burke, R.T. Sadikot, J.W. Christman, F.E. Yull, and T.S. Blackwell. 2006. Duration and intensity of NF-kappaB activity determine the severity of endotoxin-induced acute lung injury. Journal of Immunology 176 (8): 4995–5005.CrossRef
15.
go back to reference Chen, Z., X. Zhang, X. Chu, X. Zhang, K. Song, Y. Jiang, L. Yu, and X. Deng. 2010. Preventive effects of valnemulin on lipopolysaccharide-induced acute lung injury in mice. Inflammation 33 (5): 306–314.PubMedCrossRef Chen, Z., X. Zhang, X. Chu, X. Zhang, K. Song, Y. Jiang, L. Yu, and X. Deng. 2010. Preventive effects of valnemulin on lipopolysaccharide-induced acute lung injury in mice. Inflammation 33 (5): 306–314.PubMedCrossRef
16.
go back to reference Lv, H., Z. Yu, Y. Zheng, L. Wang, X. Qin, G. Cheng, and X. Ci. 2016. Isovitexin exerts anti-inflammatory and anti-oxidant activities on lipopolysaccharide-induced acute lung injury by inhibiting MAPK and NF-kappaB and activating HO-1/Nrf2 pathways. International Journal of Biological Sciences 12 (1): 72–86.PubMedPubMedCentralCrossRef Lv, H., Z. Yu, Y. Zheng, L. Wang, X. Qin, G. Cheng, and X. Ci. 2016. Isovitexin exerts anti-inflammatory and anti-oxidant activities on lipopolysaccharide-induced acute lung injury by inhibiting MAPK and NF-kappaB and activating HO-1/Nrf2 pathways. International Journal of Biological Sciences 12 (1): 72–86.PubMedPubMedCentralCrossRef
17.
go back to reference Wu, H., Y. Yang, S. Guo, J. Yang, K. Jiang, G. Zhao, C. Qiu, and G. Deng. 2017. Nuciferine ameliorates inflammatory responses by inhibiting the TLR4-mediated pathway in lipopolysaccharide-induced acute lung injury. Frontiers in Pharmacology 8: 939.PubMedPubMedCentralCrossRef Wu, H., Y. Yang, S. Guo, J. Yang, K. Jiang, G. Zhao, C. Qiu, and G. Deng. 2017. Nuciferine ameliorates inflammatory responses by inhibiting the TLR4-mediated pathway in lipopolysaccharide-induced acute lung injury. Frontiers in Pharmacology 8: 939.PubMedPubMedCentralCrossRef
18.
go back to reference Hommes, D.W., M.P. Peppelenbosch, and S.J. van Deventer. 2003. Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut 52 (1): 144–151.PubMedPubMedCentralCrossRef Hommes, D.W., M.P. Peppelenbosch, and S.J. van Deventer. 2003. Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut 52 (1): 144–151.PubMedPubMedCentralCrossRef
19.
go back to reference Huang, W.C., C.L. Lai, Y.T. Liang, H.C. Hung, H.C. Liu, and C.J. Liou. 2016. Phloretin attenuates LPS-induced acute lung injury in mice via modulation of the NF-kappaB and MAPK pathways. International Immunopharmacology 40: 98–105.PubMedCrossRef Huang, W.C., C.L. Lai, Y.T. Liang, H.C. Hung, H.C. Liu, and C.J. Liou. 2016. Phloretin attenuates LPS-induced acute lung injury in mice via modulation of the NF-kappaB and MAPK pathways. International Immunopharmacology 40: 98–105.PubMedCrossRef
20.
go back to reference Santos, Lamd, G.B. Rodrigues, F.V.B. Mota, M.E.R. Franca, K.P. de Souza Barbosa, W.H. Oliveira, S.W.S. Rocha, et al. 2018. New thiazolidinedione LPSF/GQ-2 inhibits NFkappaB and MAPK activation in LPS-induced acute lung inflammation. International Immunopharmacology 57: 91–101.PubMedCrossRef Santos, Lamd, G.B. Rodrigues, F.V.B. Mota, M.E.R. Franca, K.P. de Souza Barbosa, W.H. Oliveira, S.W.S. Rocha, et al. 2018. New thiazolidinedione LPSF/GQ-2 inhibits NFkappaB and MAPK activation in LPS-induced acute lung inflammation. International Immunopharmacology 57: 91–101.PubMedCrossRef
21.
go back to reference Hyam, S.R., I.A. Lee, W. Gu, K.A. Kim, J.J. Jeong, S.E. Jang, M.J. Han, and D.H. Kim. 2013. Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT pathway and polarizing M1 macrophages to M2-like macrophages. European Journal of Pharmacology 708 (1–3): 21–29.PubMedCrossRef Hyam, S.R., I.A. Lee, W. Gu, K.A. Kim, J.J. Jeong, S.E. Jang, M.J. Han, and D.H. Kim. 2013. Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT pathway and polarizing M1 macrophages to M2-like macrophages. European Journal of Pharmacology 708 (1–3): 21–29.PubMedCrossRef
22.
go back to reference Jiang, K., S. Guo, C. Yang, J. Yang, Y. Chen, A. Shaukat, G. Zhao, H. Wu, and G. Deng. 2018. Barbaloin protects against lipopolysaccharide (LPS)-induced acute lung injury by inhibiting the ROS-mediated PI3K/AKT/NF-kappaB pathway. International Immunopharmacology 64: 140–150.PubMedCrossRef Jiang, K., S. Guo, C. Yang, J. Yang, Y. Chen, A. Shaukat, G. Zhao, H. Wu, and G. Deng. 2018. Barbaloin protects against lipopolysaccharide (LPS)-induced acute lung injury by inhibiting the ROS-mediated PI3K/AKT/NF-kappaB pathway. International Immunopharmacology 64: 140–150.PubMedCrossRef
23.
go back to reference Rudner, X.L., K.I. Happel, E.A. Young, and J.E. Shellito. 2007. Interleukin-23 (IL-23)-IL-17 cytokine axis in murine Pneumocystis carinii infection. Infection and Immunity 75 (6): 3055–3061.PubMedPubMedCentralCrossRef Rudner, X.L., K.I. Happel, E.A. Young, and J.E. Shellito. 2007. Interleukin-23 (IL-23)-IL-17 cytokine axis in murine Pneumocystis carinii infection. Infection and Immunity 75 (6): 3055–3061.PubMedPubMedCentralCrossRef
24.
go back to reference Cua, D.J., and C.M. Tato. 2010. Innate IL-17-producing cells: The sentinels of the immune system. Nature Reviews: Immunology 10 (7): 479–489.PubMed Cua, D.J., and C.M. Tato. 2010. Innate IL-17-producing cells: The sentinels of the immune system. Nature Reviews: Immunology 10 (7): 479–489.PubMed
25.
go back to reference Ye, P., P.B. Garvey, P. Zhang, S. Nelson, G. Bagby, W.R. Summer, P. Schwarzenberger, J.E. Shellito, and J.K. Kolls. 2001. Interleukin-17 and lung host defense against Klebsiella pneumoniae infection. American Journal of Respiratory Cell and Molecular Biology 25 (3): 335–340.PubMedCrossRef Ye, P., P.B. Garvey, P. Zhang, S. Nelson, G. Bagby, W.R. Summer, P. Schwarzenberger, J.E. Shellito, and J.K. Kolls. 2001. Interleukin-17 and lung host defense against Klebsiella pneumoniae infection. American Journal of Respiratory Cell and Molecular Biology 25 (3): 335–340.PubMedCrossRef
26.
go back to reference Pichavant, M., S. Goya, E.H. Meyer, R.A. Johnston, H.Y. Kim, P. Matangkasombut, M. Zhu, Y. Iwakura, P.B. Savage, R. DeKruyff, S.A. Shore, and D.T. Umetsu. 2008. Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. Journal of Experimental Medicine 205 (2): 385–393.CrossRef Pichavant, M., S. Goya, E.H. Meyer, R.A. Johnston, H.Y. Kim, P. Matangkasombut, M. Zhu, Y. Iwakura, P.B. Savage, R. DeKruyff, S.A. Shore, and D.T. Umetsu. 2008. Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. Journal of Experimental Medicine 205 (2): 385–393.CrossRef
27.
go back to reference Holloway, T.L., and M.G. Schwacha. 2012. The Th-17 response and its potential role in post-injury pulmonary complications. International Journal of Burns and Trauma 2 (1): 11–17.PubMedPubMedCentral Holloway, T.L., and M.G. Schwacha. 2012. The Th-17 response and its potential role in post-injury pulmonary complications. International Journal of Burns and Trauma 2 (1): 11–17.PubMedPubMedCentral
28.
go back to reference Kaur, M., S. Reynolds, L.J. Smyth, K. Simpson, S. Hall, and D. Singh. 2014. The effects of corticosteroids on cytokine production from asthma lung lymphocytes. International Immunopharmacology 23 (2): 581–584.PubMedCrossRef Kaur, M., S. Reynolds, L.J. Smyth, K. Simpson, S. Hall, and D. Singh. 2014. The effects of corticosteroids on cytokine production from asthma lung lymphocytes. International Immunopharmacology 23 (2): 581–584.PubMedCrossRef
29.
go back to reference Sakaguchi, R., S. Chikuma, T. Shichita, R. Morita, T. Sekiya, W. Ouyang, T. Ueda, H. Seki, H. Morisaki, and A. Yoshimura. 2016. Innate-like function of memory Th17 cells for enhancing endotoxin-induced acute lung inflammation through IL-22. International Immunology 28 (5): 233–243.PubMedCrossRef Sakaguchi, R., S. Chikuma, T. Shichita, R. Morita, T. Sekiya, W. Ouyang, T. Ueda, H. Seki, H. Morisaki, and A. Yoshimura. 2016. Innate-like function of memory Th17 cells for enhancing endotoxin-induced acute lung inflammation through IL-22. International Immunology 28 (5): 233–243.PubMedCrossRef
30.
go back to reference Ding, Q., G.Q. Liu, Y.Y. Zeng, J.J. Zhu, Z.Y. Liu, X. Zhang, and J.A. Huang. 2017. Role of IL-17 in LPS-induced acute lung injury: An in vivo study. Oncotarget 8 (55): 93704–93711.PubMedPubMedCentralCrossRef Ding, Q., G.Q. Liu, Y.Y. Zeng, J.J. Zhu, Z.Y. Liu, X. Zhang, and J.A. Huang. 2017. Role of IL-17 in LPS-induced acute lung injury: An in vivo study. Oncotarget 8 (55): 93704–93711.PubMedPubMedCentralCrossRef
31.
go back to reference Righetti, R.F., T.M. Dos Santos, L.D.N. Camargo, Aristoteles Lrcrb, S. Fukuzaki, F.C.R. de Souza, F.P.R. Santana, et al. 2018. Protective effects of anti-IL17 on acute lung injury induced by LPS in mice. Frontiers in Pharmacology 9: 1021.PubMedPubMedCentralCrossRef Righetti, R.F., T.M. Dos Santos, L.D.N. Camargo, Aristoteles Lrcrb, S. Fukuzaki, F.C.R. de Souza, F.P.R. Santana, et al. 2018. Protective effects of anti-IL17 on acute lung injury induced by LPS in mice. Frontiers in Pharmacology 9: 1021.PubMedPubMedCentralCrossRef
32.
go back to reference Masamoto, Y., H. Ando, Y. Murata, Y. Shimoishi, M. Tada, and K. Takahata. 2003. Mushroom tyrosinase inhibitory activity of esculetin isolated from seeds of Euphorbia lathyris L. Bioscience, Biotechnology, and Biochemistry 67 (3): 631–634.PubMedCrossRef Masamoto, Y., H. Ando, Y. Murata, Y. Shimoishi, M. Tada, and K. Takahata. 2003. Mushroom tyrosinase inhibitory activity of esculetin isolated from seeds of Euphorbia lathyris L. Bioscience, Biotechnology, and Biochemistry 67 (3): 631–634.PubMedCrossRef
33.
go back to reference Wang, C., A. Pei, J. Chen, H. Yu, M.L. Sun, C.F. Liu, and X. Xu. 2012. A natural coumarin derivative esculetin offers neuroprotection on cerebral ischemia/reperfusion injury in mice. Journal of Neurochemistry 121 (6): 1007–1013.PubMedCrossRef Wang, C., A. Pei, J. Chen, H. Yu, M.L. Sun, C.F. Liu, and X. Xu. 2012. A natural coumarin derivative esculetin offers neuroprotection on cerebral ischemia/reperfusion injury in mice. Journal of Neurochemistry 121 (6): 1007–1013.PubMedCrossRef
34.
go back to reference Hongyan, L. 2016. Esculetin attenuates Th2 and Th17 responses in an ovalbumin-induced asthmatic mouse model. Inflammation 39 (2): 735–743.PubMedCrossRef Hongyan, L. 2016. Esculetin attenuates Th2 and Th17 responses in an ovalbumin-induced asthmatic mouse model. Inflammation 39 (2): 735–743.PubMedCrossRef
35.
go back to reference Han, M.H., C. Park, D.S. Lee, S.H. Hong, I.W. Choi, G.Y. Kim, S.H. Choi, J.H. Shim, J.I. Chae, Y.H. Yoo, and Y.H. Choi. 2017. Cytoprotective effects of esculetin against oxidative stress are associated with the upregulation of Nrf2-mediated NQO1 expression via the activation of the ERK pathway. International Journal of Molecular Medicine 39 (2): 380–386.PubMedCrossRef Han, M.H., C. Park, D.S. Lee, S.H. Hong, I.W. Choi, G.Y. Kim, S.H. Choi, J.H. Shim, J.I. Chae, Y.H. Yoo, and Y.H. Choi. 2017. Cytoprotective effects of esculetin against oxidative stress are associated with the upregulation of Nrf2-mediated NQO1 expression via the activation of the ERK pathway. International Journal of Molecular Medicine 39 (2): 380–386.PubMedCrossRef
36.
go back to reference Chen, T., Q. Guo, H. Wang, H. Zhang, C. Wang, P. Zhang, S. Meng, Y. Li, H. Ji, and T. Yan. 2015. Effects of esculetin on lipopolysaccharide (LPS)-induced acute lung injury via regulation of RhoA/rho kinase/NF-small ka, CyrillicB pathways in vivo and in vitro. Free Radical Research 49 (12): 1459–1468.PubMedCrossRef Chen, T., Q. Guo, H. Wang, H. Zhang, C. Wang, P. Zhang, S. Meng, Y. Li, H. Ji, and T. Yan. 2015. Effects of esculetin on lipopolysaccharide (LPS)-induced acute lung injury via regulation of RhoA/rho kinase/NF-small ka, CyrillicB pathways in vivo and in vitro. Free Radical Research 49 (12): 1459–1468.PubMedCrossRef
37.
go back to reference Liu, F.C., H.P. Yu, C.Y. Lin, A.O. Elzoghby, T.L. Hwang, and J.Y. Fang. 2018. Use of cilomilast-loaded phosphatiosomes to suppress neutrophilic inflammation for attenuating acute lung injury: The effect of nanovesicular surface charge. Journal of Nanobiotechnology 16 (1): 35.PubMedPubMedCentralCrossRef Liu, F.C., H.P. Yu, C.Y. Lin, A.O. Elzoghby, T.L. Hwang, and J.Y. Fang. 2018. Use of cilomilast-loaded phosphatiosomes to suppress neutrophilic inflammation for attenuating acute lung injury: The effect of nanovesicular surface charge. Journal of Nanobiotechnology 16 (1): 35.PubMedPubMedCentralCrossRef
38.
go back to reference Driver, C. 2012. Pneumonia part 1: Pathology, presentation and prevention. British Journal of Nursing 21 (2): 103–106.PubMedCrossRef Driver, C. 2012. Pneumonia part 1: Pathology, presentation and prevention. British Journal of Nursing 21 (2): 103–106.PubMedCrossRef
39.
go back to reference Grommes, J., and O. Soehnlein. 2011. Contribution of neutrophils to acute lung injury. Molecular Medicine 17 (3–4): 293–307.PubMedCrossRef Grommes, J., and O. Soehnlein. 2011. Contribution of neutrophils to acute lung injury. Molecular Medicine 17 (3–4): 293–307.PubMedCrossRef
40.
go back to reference Lee, J.M., C.D. Yeo, H.Y. Lee, C.K. Rhee, I.K. Kim, D.G. Lee, S.H. Lee, and J.W. Kim. 2017. Inhibition of neutrophil elastase contributes to attenuation of lipopolysaccharide-induced acute lung injury during neutropenia recovery in mice. Journal of Anesthesia 31 (3): 397–404.PubMedCrossRef Lee, J.M., C.D. Yeo, H.Y. Lee, C.K. Rhee, I.K. Kim, D.G. Lee, S.H. Lee, and J.W. Kim. 2017. Inhibition of neutrophil elastase contributes to attenuation of lipopolysaccharide-induced acute lung injury during neutropenia recovery in mice. Journal of Anesthesia 31 (3): 397–404.PubMedCrossRef
41.
go back to reference Huang, X., H. Xiu, S. Zhang, and G. Zhang. 2018. The role of macrophages in the pathogenesis of ALI/ARDS. Mediators of Inflammation 2018: 1264913.PubMedPubMedCentral Huang, X., H. Xiu, S. Zhang, and G. Zhang. 2018. The role of macrophages in the pathogenesis of ALI/ARDS. Mediators of Inflammation 2018: 1264913.PubMedPubMedCentral
42.
go back to reference Li, Y.C., C.H. Yeh, M.L. Yang, and Y.H. Kuan. 2012. Luteolin suppresses inflammatory mediator expression by blocking the Akt/NFkappaB pathway in acute lung injury induced by lipopolysaccharide in mice. Evidence-based Complementary and Alternative Medicine 2012: 383608.PubMed Li, Y.C., C.H. Yeh, M.L. Yang, and Y.H. Kuan. 2012. Luteolin suppresses inflammatory mediator expression by blocking the Akt/NFkappaB pathway in acute lung injury induced by lipopolysaccharide in mice. Evidence-based Complementary and Alternative Medicine 2012: 383608.PubMed
43.
go back to reference Feng, G., Z.Y. Jiang, B. Sun, J. Fu, and T.Z. Li. 2016. Fisetin alleviates lipopolysaccharide-induced acute lung injury via TLR4-mediated NF-kappaB signaling pathway in rats. Inflammation 39 (1): 148–157.PubMedCrossRef Feng, G., Z.Y. Jiang, B. Sun, J. Fu, and T.Z. Li. 2016. Fisetin alleviates lipopolysaccharide-induced acute lung injury via TLR4-mediated NF-kappaB signaling pathway in rats. Inflammation 39 (1): 148–157.PubMedCrossRef
44.
go back to reference Guo, S., K. Jiang, H. Wu, C. Yang, Y. Yang, J. Yang, G. Zhao, and G. Deng. 2018. Magnoflorine ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-kappaB and MAPK activation. Frontiers in Pharmacology 9: 982.PubMedPubMedCentralCrossRef Guo, S., K. Jiang, H. Wu, C. Yang, Y. Yang, J. Yang, G. Zhao, and G. Deng. 2018. Magnoflorine ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-kappaB and MAPK activation. Frontiers in Pharmacology 9: 982.PubMedPubMedCentralCrossRef
45.
go back to reference Yu, S.M., and S.J. Kim. 2015. The thymoquinone-induced production of reactive oxygen species promotes dedifferentiation through the ERK pathway and inflammation through the p38 and PI3K pathways in rabbit articular chondrocytes. International Journal of Molecular Medicine 35 (2): 325–332.PubMedCrossRef Yu, S.M., and S.J. Kim. 2015. The thymoquinone-induced production of reactive oxygen species promotes dedifferentiation through the ERK pathway and inflammation through the p38 and PI3K pathways in rabbit articular chondrocytes. International Journal of Molecular Medicine 35 (2): 325–332.PubMedCrossRef
46.
go back to reference Schuh, K., and A. Pahl. 2009. Inhibition of the MAP kinase ERK protects from lipopolysaccharide-induced lung injury. Biochemical Pharmacology 77 (12): 1827–1834.PubMedCrossRef Schuh, K., and A. Pahl. 2009. Inhibition of the MAP kinase ERK protects from lipopolysaccharide-induced lung injury. Biochemical Pharmacology 77 (12): 1827–1834.PubMedCrossRef
47.
go back to reference Cianciulli, A., R. Calvello, C. Porro, T. Trotta, R. Salvatore, and M.A. Panaro. 2016. PI3k/Akt signalling pathway plays a crucial role in the anti-inflammatory effects of curcumin in LPS-activated microglia. International Immunopharmacology 36: 282–290.PubMedCrossRef Cianciulli, A., R. Calvello, C. Porro, T. Trotta, R. Salvatore, and M.A. Panaro. 2016. PI3k/Akt signalling pathway plays a crucial role in the anti-inflammatory effects of curcumin in LPS-activated microglia. International Immunopharmacology 36: 282–290.PubMedCrossRef
48.
go back to reference Zhao, M., C. Li, F. Shen, M. Wang, N. Jia, and C. Wang. 2017. Naringenin ameliorates LPS-induced acute lung injury through its anti-oxidative and anti-inflammatory activity and by inhibition of the PI3K/AKT pathway. Experimental and Therapeutic Medicine 14 (3): 2228–2234.PubMedPubMedCentralCrossRef Zhao, M., C. Li, F. Shen, M. Wang, N. Jia, and C. Wang. 2017. Naringenin ameliorates LPS-induced acute lung injury through its anti-oxidative and anti-inflammatory activity and by inhibition of the PI3K/AKT pathway. Experimental and Therapeutic Medicine 14 (3): 2228–2234.PubMedPubMedCentralCrossRef
49.
go back to reference Schwarzenberger, P., W. Huang, P. Ye, P. Oliver, M. Manuel, Z. Zhang, G. Bagby, S. Nelson, and J.K. Kolls. 2000. Requirement of endogenous stem cell factor and granulocyte-colony-stimulating factor for IL-17-mediated granulopoiesis. Journal of Immunology 164 (9): 4783–4789.CrossRef Schwarzenberger, P., W. Huang, P. Ye, P. Oliver, M. Manuel, Z. Zhang, G. Bagby, S. Nelson, and J.K. Kolls. 2000. Requirement of endogenous stem cell factor and granulocyte-colony-stimulating factor for IL-17-mediated granulopoiesis. Journal of Immunology 164 (9): 4783–4789.CrossRef
50.
go back to reference Gouda, M.M., and Y.P. Bhandary. 2019. Acute lung injury: IL-17A-mediated inflammatory pathway and its regulation by curcumin. Inflammation 42 (4): 1160–1169.PubMedCrossRef Gouda, M.M., and Y.P. Bhandary. 2019. Acute lung injury: IL-17A-mediated inflammatory pathway and its regulation by curcumin. Inflammation 42 (4): 1160–1169.PubMedCrossRef
51.
go back to reference Ivanov, II, B. S. McKenzie, L. Zhou, C. E. Tadokoro, A. Lepelley, J. J. Lafaille, D. J. Cua, and D. R. Littman. 2006. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126 (6):1121–1133. Ivanov, II, B. S. McKenzie, L. Zhou, C. E. Tadokoro, A. Lepelley, J. J. Lafaille, D. J. Cua, and D. R. Littman. 2006. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126 (6):1121–1133.
52.
go back to reference Kanai, T., Y. Mikami, T. Sujino, T. Hisamatsu, and T. Hibi. 2012. RORgammat-dependent IL-17A-producing cells in the pathogenesis of intestinal inflammation. Mucosal Immunology 5 (3): 240–247.PubMedCrossRef Kanai, T., Y. Mikami, T. Sujino, T. Hisamatsu, and T. Hibi. 2012. RORgammat-dependent IL-17A-producing cells in the pathogenesis of intestinal inflammation. Mucosal Immunology 5 (3): 240–247.PubMedCrossRef
53.
go back to reference Tsai, H.C., S. Velichko, L.Y. Hung, and R. Wu. 2013. IL-17A and Th17 cells in lung inflammation: An update on the role of Th17 cell differentiation and IL-17R signaling in host defense against infection. Clinical & Developmental Immunology 2013: 267971.CrossRef Tsai, H.C., S. Velichko, L.Y. Hung, and R. Wu. 2013. IL-17A and Th17 cells in lung inflammation: An update on the role of Th17 cell differentiation and IL-17R signaling in host defense against infection. Clinical & Developmental Immunology 2013: 267971.CrossRef
54.
go back to reference Matsuyama, M., Y. Ishii, H. Sakurai, S. Ano, Y. Morishima, K. Yoh, S. Takahashi, K. Ogawa, and N. Hizawa. 2016. Overexpression of RORgammat enhances pulmonary inflammation after infection with mycobacterium avium. PLoS One 11 (1): e0147064.PubMedPubMedCentralCrossRef Matsuyama, M., Y. Ishii, H. Sakurai, S. Ano, Y. Morishima, K. Yoh, S. Takahashi, K. Ogawa, and N. Hizawa. 2016. Overexpression of RORgammat enhances pulmonary inflammation after infection with mycobacterium avium. PLoS One 11 (1): e0147064.PubMedPubMedCentralCrossRef
55.
go back to reference Whitehead, G.S., H.S. Kang, S.Y. Thomas, A. Medvedev, T.P. Karcz, G. Izumi, K. Nakano, et al. 2019. Therapeutic suppression of pulmonary neutrophilia and allergic airway hyperresponsiveness by a RORgammat inverse agonist. JCI Insight 4 (14): e125528.PubMedCentralCrossRef Whitehead, G.S., H.S. Kang, S.Y. Thomas, A. Medvedev, T.P. Karcz, G. Izumi, K. Nakano, et al. 2019. Therapeutic suppression of pulmonary neutrophilia and allergic airway hyperresponsiveness by a RORgammat inverse agonist. JCI Insight 4 (14): e125528.PubMedCentralCrossRef
56.
go back to reference Nagai, S., Y. Kurebayashi, and S. Koyasu. 2013. Role of PI3K/Akt and mTOR complexes in Th17 cell differentiation. Annals of the New York Academy of Sciences 1280: 30–34.PubMedCrossRef Nagai, S., Y. Kurebayashi, and S. Koyasu. 2013. Role of PI3K/Akt and mTOR complexes in Th17 cell differentiation. Annals of the New York Academy of Sciences 1280: 30–34.PubMedCrossRef
57.
go back to reference Cauvi, D.M., M.R. Williams, J.A. Bermudez, G. Armijo, and A. De Maio. 2014. Elevated expression of IL-23/IL-17 pathway-related mediators correlates with exacerbation of pulmonary inflammation during polymicrobial sepsis. Shock 42 (3): 246–255.PubMedPubMedCentralCrossRef Cauvi, D.M., M.R. Williams, J.A. Bermudez, G. Armijo, and A. De Maio. 2014. Elevated expression of IL-23/IL-17 pathway-related mediators correlates with exacerbation of pulmonary inflammation during polymicrobial sepsis. Shock 42 (3): 246–255.PubMedPubMedCentralCrossRef
58.
go back to reference Yan, B., F. Chen, L. Xu, J. Xing, and X. Wang. 2017. HMGB1-TLR4-IL23-IL17A axis promotes paraquat-induced acute lung injury by mediating neutrophil infiltration in mice. Scientific Reports 7 (1): 597.PubMedPubMedCentralCrossRef Yan, B., F. Chen, L. Xu, J. Xing, and X. Wang. 2017. HMGB1-TLR4-IL23-IL17A axis promotes paraquat-induced acute lung injury by mediating neutrophil infiltration in mice. Scientific Reports 7 (1): 597.PubMedPubMedCentralCrossRef
59.
go back to reference Cheng, S., H. Chen, A. Wang, H. Bunjhoo, Y. Cao, J. Xie, Y. Xu, and W. Xiong. 2016. Blockade of IL-23 ameliorates allergic lung inflammation via decreasing the infiltration of Tc17 cells. Archives of Medical Science 12 (6): 1362–1369.PubMedCrossRefPubMedCentral Cheng, S., H. Chen, A. Wang, H. Bunjhoo, Y. Cao, J. Xie, Y. Xu, and W. Xiong. 2016. Blockade of IL-23 ameliorates allergic lung inflammation via decreasing the infiltration of Tc17 cells. Archives of Medical Science 12 (6): 1362–1369.PubMedCrossRefPubMedCentral
Metadata
Title
Esculetin Ameliorates Lipopolysaccharide-Induced Acute Lung Injury in Mice Via Modulation of the AKT/ERK/NF-κB and RORγt/IL-17 Pathways
Authors
Hung-Chen Lee
Fu-Chao Liu
Chi-Neu Tsai
An-Hsun Chou
Chia-Chih Liao
Huang-Ping Yu
Publication date
01-06-2020
Publisher
Springer US
Published in
Inflammation / Issue 3/2020
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-020-01182-4

Other articles of this Issue 3/2020

Inflammation 3/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.