Skip to main content
Top
Published in: Critical Care 1/2024

Open Access 01-12-2024 | Acute Respiratory Distress-Syndrome | Research

Clustering COVID-19 ARDS patients through the first days of ICU admission. An analysis of the CIBERESUCICOVID Cohort

Authors: Adrian Ceccato, Carles Forne, Lieuwe D. Bos, Marta Camprubí-Rimblas, Aina Areny-Balagueró, Elena Campaña-Duel, Sara Quero, Emili Diaz, Oriol Roca, David De Gonzalo-Calvo, Laia Fernández-Barat, Anna Motos, Ricard Ferrer, Jordi Riera, Jose A. Lorente, Oscar Peñuelas, Rosario Menendez, Rosario Amaya-Villar, José M. Añón, Ana Balan-Mariño, Carme Barberà, José Barberán, Aaron Blandino-Ortiz, Maria Victoria Boado, Elena Bustamante-Munguira, Jesús Caballero, Cristina Carbajales, Nieves Carbonell, Mercedes Catalán-González, Nieves Franco, Cristóbal Galbán, Víctor D. Gumucio-Sanguino, Maria del Carmen de la Torre, Ángel Estella, Elena Gallego, José Luis García-Garmendia, José Garnacho-Montero, José M. Gómez, Arturo Huerta, Ruth Noemí Jorge-García, Ana Loza-Vázquez, Judith Marin-Corral, Amalia Martínez de la Gándara, María Cruz Martin-Delgado, Ignacio Martínez-Varela, Juan Lopez Messa, Guillermo Muñiz-Albaiceta, María Teresa Nieto, Mariana Andrea Novo, Yhivian Peñasco, Juan Carlos Pozo-Laderas, Felipe Pérez-García, Pilar Ricart, Ferran Roche-Campo, Alejandro Rodríguez, Victor Sagredo, Angel Sánchez-Miralles, Susana Sancho-Chinesta, Lorenzo Socias, Jordi Solé-Violan, Fernando Suarez-Sipmann, Luis Tamayo-Lomas, José Trenado, Alejandro Úbeda, Luis Jorge Valdivia, Pablo Vidal, Jesus Bermejo, Jesica Gonzalez, Ferran Barbe, Carolyn S. Calfee, Antonio Artigas, Antoni Torres, CIBERESUCICOVID Project

Published in: Critical Care | Issue 1/2024

Login to get access

Abstract

Background

Acute respiratory distress syndrome (ARDS) can be classified into sub-phenotypes according to different inflammatory/clinical status. Prognostic enrichment was achieved by grouping patients into hypoinflammatory or hyperinflammatory sub-phenotypes, even though the time of analysis may change the classification according to treatment response or disease evolution. We aimed to evaluate when patients can be clustered in more than 1 group, and how they may change the clustering of patients using data of baseline or day 3, and the prognosis of patients according to their evolution by changing or not the cluster.

Methods

Multicenter, observational prospective, and retrospective study of patients admitted due to ARDS related to COVID-19 infection in Spain. Patients were grouped according to a clustering mixed-type data algorithm (k-prototypes) using continuous and categorical readily available variables at baseline and day 3.

Results

Of 6205 patients, 3743 (60%) were included in the study. According to silhouette analysis, patients were grouped in two clusters. At baseline, 1402 (37%) patients were included in cluster 1 and 2341(63%) in cluster 2. On day 3, 1557(42%) patients were included in cluster 1 and 2086 (57%) in cluster 2. The patients included in cluster 2 were older and more frequently hypertensive and had a higher prevalence of shock, organ dysfunction, inflammatory biomarkers, and worst respiratory indexes at both time points. The 90-day mortality was higher in cluster 2 at both clustering processes (43.8% [n = 1025] versus 27.3% [n = 383] at baseline, and 49% [n = 1023] versus 20.6% [n = 321] on day 3). Four hundred and fifty-eight (33%) patients clustered in the first group were clustered in the second group on day 3. In contrast, 638 (27%) patients clustered in the second group were clustered in the first group on day 3.

Conclusions

During the first days, patients can be clustered into two groups and the process of clustering patients may change as they continue to evolve. This means that despite a vast majority of patients remaining in the same cluster, a minority reaching 33% of patients analyzed may be re-categorized into different clusters based on their progress. Such changes can significantly impact their prognosis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat A, et al. Acute respiratory distress syndrome. Nat Rev Disease Prim. 2019;5(1):1–22. Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat A, et al. Acute respiratory distress syndrome. Nat Rev Disease Prim. 2019;5(1):1–22.
2.
go back to reference Villar J, Ferrando C, Martínez D, Ambrós A, Muñoz T, Soler JA, et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med. 2020;8(3):267–76.CrossRefPubMed Villar J, Ferrando C, Martínez D, Ambrós A, Muñoz T, Soler JA, et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med. 2020;8(3):267–76.CrossRefPubMed
3.
go back to reference Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.CrossRefPubMed Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.CrossRefPubMed
4.
go back to reference Amato MBP, Barbas CSV, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338(6):347–54.CrossRefPubMed Amato MBP, Barbas CSV, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338(6):347–54.CrossRefPubMed
5.
go back to reference Acute Respiratory Distress Syndrome Network; Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8. Acute Respiratory Distress Syndrome Network; Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–8.
6.
go back to reference RECOVERY Collaborative Group; Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med. 2021;384(8):693–704. RECOVERY Collaborative Group; Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med. 2021;384(8):693–704.
7.
go back to reference Salama C, Han J, Yau L, Reiss WG, Kramer B, Neidhart JD, et al. Tocilizumab in patients hospitalized with Covid-19 pneumonia. N Engl J Med. 2021;384(1):20–30.CrossRefPubMed Salama C, Han J, Yau L, Reiss WG, Kramer B, Neidhart JD, et al. Tocilizumab in patients hospitalized with Covid-19 pneumonia. N Engl J Med. 2021;384(1):20–30.CrossRefPubMed
8.
go back to reference Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of Covid-19—final report. N Engl J Med. 2020;383:NEJMoa2007764.CrossRefPubMed Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of Covid-19—final report. N Engl J Med. 2020;383:NEJMoa2007764.CrossRefPubMed
9.
go back to reference Arabi YM, Gordon AC, Derde LPG, Nichol AD, Murthy S, Beidh FA, et al. Lopinavir-ritonavir and hydroxychloroquine for critically ill patients with COVID-19: REMAP-CAP randomized controlled trial. Intensive Care Med. 2021;47(8):867–86.CrossRefPubMedPubMedCentral Arabi YM, Gordon AC, Derde LPG, Nichol AD, Murthy S, Beidh FA, et al. Lopinavir-ritonavir and hydroxychloroquine for critically ill patients with COVID-19: REMAP-CAP randomized controlled trial. Intensive Care Med. 2021;47(8):867–86.CrossRefPubMedPubMedCentral
10.
go back to reference Ceccato A, Camprubí-Rimblas M, Campaña-Duel E, Areny-Balagueró A, Morales-Quinteros L, Artigas A. Anticoagulant treatment in severe ARDS COVID-19 patients. J Clin Med. 2022;11(10):2695.CrossRefPubMedPubMedCentral Ceccato A, Camprubí-Rimblas M, Campaña-Duel E, Areny-Balagueró A, Morales-Quinteros L, Artigas A. Anticoagulant treatment in severe ARDS COVID-19 patients. J Clin Med. 2022;11(10):2695.CrossRefPubMedPubMedCentral
11.
go back to reference Perico L, Benigni A, Casiraghi F, Ng LFP, Renia L, Remuzzi G. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat Rev Nephrol. 2021;17(1):46–64.CrossRefPubMed Perico L, Benigni A, Casiraghi F, Ng LFP, Renia L, Remuzzi G. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat Rev Nephrol. 2021;17(1):46–64.CrossRefPubMed
12.
go back to reference Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA. Latent class analysis of ARDS subphenotypes: analysis of data from two randomized controlled trials. Lancet Respir Med. 2014;2(8):611–20.CrossRefPubMedPubMedCentral Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA. Latent class analysis of ARDS subphenotypes: analysis of data from two randomized controlled trials. Lancet Respir Med. 2014;2(8):611–20.CrossRefPubMedPubMedCentral
13.
go back to reference Calfee CS, Delucchi KL, Sinha P, Matthay MA, Hackett J, Shankar-Hari M, et al. ARDS subphenotypes and differential response to simvastatin: secondary analysis of a randomized controlled trial. Lancet Respir Med. 2018;6(9):691–8.CrossRefPubMedPubMedCentral Calfee CS, Delucchi KL, Sinha P, Matthay MA, Hackett J, Shankar-Hari M, et al. ARDS subphenotypes and differential response to simvastatin: secondary analysis of a randomized controlled trial. Lancet Respir Med. 2018;6(9):691–8.CrossRefPubMedPubMedCentral
14.
go back to reference Famous KR, Delucchi K, Ware LB, Kangelaris KN, Liu KD, Thompson BT, et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med. 2017;195(3):331–8.CrossRefPubMedPubMedCentral Famous KR, Delucchi K, Ware LB, Kangelaris KN, Liu KD, Thompson BT, et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med. 2017;195(3):331–8.CrossRefPubMedPubMedCentral
15.
go back to reference Sinha P, Calfee CS, Cherian S, Brealey D, Cutler S, King C, et al. Prevalence of phenotypes of acute respiratory distress syndrome in critically ill patients with COVID-19: a prospective observational study. Lancet Respir Med. 2020;8(12):1209–18.CrossRefPubMedPubMedCentral Sinha P, Calfee CS, Cherian S, Brealey D, Cutler S, King C, et al. Prevalence of phenotypes of acute respiratory distress syndrome in critically ill patients with COVID-19: a prospective observational study. Lancet Respir Med. 2020;8(12):1209–18.CrossRefPubMedPubMedCentral
16.
go back to reference Bos LDJ, Sjoding M, Sinha P, Bhavani SV, Lyons PG, Bewley AF, et al. Longitudinal respiratory subphenotypes in patients with COVID-19-related acute respiratory distress syndrome: results from three observational cohorts. Lancet Respir Med. 2021;9(12):1377–86.CrossRefPubMedPubMedCentral Bos LDJ, Sjoding M, Sinha P, Bhavani SV, Lyons PG, Bewley AF, et al. Longitudinal respiratory subphenotypes in patients with COVID-19-related acute respiratory distress syndrome: results from three observational cohorts. Lancet Respir Med. 2021;9(12):1377–86.CrossRefPubMedPubMedCentral
17.
go back to reference Verhoef PA, Spicer AB, Lopez-Espina C, Bhargava A, Schmalz L, Sims MD, et al. Analysis of protein biomarkers from hospitalized COVID-19 patients reveals severity-specific signatures and two distinct latent profiles with differential responses to corticosteroids*. Crit Care Med. 2023;51(12):1697.CrossRefPubMed Verhoef PA, Spicer AB, Lopez-Espina C, Bhargava A, Schmalz L, Sims MD, et al. Analysis of protein biomarkers from hospitalized COVID-19 patients reveals severity-specific signatures and two distinct latent profiles with differential responses to corticosteroids*. Crit Care Med. 2023;51(12):1697.CrossRefPubMed
18.
go back to reference López-Martínez C, Martín-Vicente P, Gómez de Oña J, López-Alonso I, Gil-Peña H, Cuesta-Llavona E, et al. Transcriptomic clustering of critically ill COVID-19 patients. Eur Respir J. 2023;61(1):220.CrossRef López-Martínez C, Martín-Vicente P, Gómez de Oña J, López-Alonso I, Gil-Peña H, Cuesta-Llavona E, et al. Transcriptomic clustering of critically ill COVID-19 patients. Eur Respir J. 2023;61(1):220.CrossRef
19.
go back to reference Torres A, Motos A, Ceccato A, Bermejo-Martin J, de Gonzalo-Calvo D, Pérez R, et al. Methodology of a large multicenter observational study of patients with COVID-19 in Spanish intensive care units. Arch Bronconeumol. 2022;58(Suppl 1):22–31.CrossRefPubMedPubMedCentral Torres A, Motos A, Ceccato A, Bermejo-Martin J, de Gonzalo-Calvo D, Pérez R, et al. Methodology of a large multicenter observational study of patients with COVID-19 in Spanish intensive care units. Arch Bronconeumol. 2022;58(Suppl 1):22–31.CrossRefPubMedPubMedCentral
21.
go back to reference Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81.CrossRefPubMed Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81.CrossRefPubMed
22.
go back to reference von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med. 2007;147(8):573–7.CrossRef von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med. 2007;147(8):573–7.CrossRef
23.
go back to reference ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–33. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–33.
24.
go back to reference Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22(7):707–10.CrossRefPubMed Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22(7):707–10.CrossRefPubMed
25.
go back to reference Ankerst M, Breunig MM, Kriegel HP, Sander J. OPTICS: ordering points to identify the clustering structure. SIGMOD Rec. 1999;28(2):49–60.CrossRef Ankerst M, Breunig MM, Kriegel HP, Sander J. OPTICS: ordering points to identify the clustering structure. SIGMOD Rec. 1999;28(2):49–60.CrossRef
26.
go back to reference Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987;20:53–65.CrossRef Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987;20:53–65.CrossRef
27.
go back to reference Handl J, Knowles J, Kell DB. Computational cluster validation in post-genomic data analysis. Bioinformatics. 2005;21(15):3201–12.CrossRefPubMed Handl J, Knowles J, Kell DB. Computational cluster validation in post-genomic data analysis. Bioinformatics. 2005;21(15):3201–12.CrossRefPubMed
28.
go back to reference Matthay MA, Arabi YM, Siegel ER, Ware LB, Bos LDJ, Sinha P, et al. Phenotypes and personalized medicine in the acute respiratory distress syndrome. Intensive Care Med. 2020;46(12):2136–52.CrossRefPubMedPubMedCentral Matthay MA, Arabi YM, Siegel ER, Ware LB, Bos LDJ, Sinha P, et al. Phenotypes and personalized medicine in the acute respiratory distress syndrome. Intensive Care Med. 2020;46(12):2136–52.CrossRefPubMedPubMedCentral
29.
go back to reference Seymour CW, Gomez H, Chang CCH, Clermont G, Kellum JA, Kennedy J, et al. Precision medicine for all? Challenges and opportunities for a precision medicine approach to critical illness. Crit Care. 2017;21(1):257.CrossRefPubMedPubMedCentral Seymour CW, Gomez H, Chang CCH, Clermont G, Kellum JA, Kennedy J, et al. Precision medicine for all? Challenges and opportunities for a precision medicine approach to critical illness. Crit Care. 2017;21(1):257.CrossRefPubMedPubMedCentral
30.
go back to reference Bos LDJ, Ware LB. Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes. Lancet. 2022;400(10358):1145–56.CrossRefPubMed Bos LDJ, Ware LB. Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes. Lancet. 2022;400(10358):1145–56.CrossRefPubMed
32.
go back to reference Seymour CW, Kennedy JN, Wang S, Chang CCH, Elliott CF, Xu Z, et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for Sepsis. JAMA. 2019;321(20):2003–17.CrossRefPubMedPubMedCentral Seymour CW, Kennedy JN, Wang S, Chang CCH, Elliott CF, Xu Z, et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for Sepsis. JAMA. 2019;321(20):2003–17.CrossRefPubMedPubMedCentral
33.
go back to reference Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13(3):260–8.CrossRefPubMedPubMedCentral Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13(3):260–8.CrossRefPubMedPubMedCentral
34.
go back to reference Bermejo-Martin JF, Cilloniz C, Mendez R, Almansa R, Gabarrus A, Ceccato A, et al. Lymphopenic Community Acquired Pneumonia (L-CAP), an Immunological phenotype associated with higher risk of mortality. EBioMedicine. 2017;24:231–6.CrossRefPubMedPubMedCentral Bermejo-Martin JF, Cilloniz C, Mendez R, Almansa R, Gabarrus A, Ceccato A, et al. Lymphopenic Community Acquired Pneumonia (L-CAP), an Immunological phenotype associated with higher risk of mortality. EBioMedicine. 2017;24:231–6.CrossRefPubMedPubMedCentral
35.
go back to reference Ceccato A, Panagiotarakou M, Ranzani OT, Martin-Fernandez M, Almansa-Mora R, Gabarrus A, et al. Lymphocytopenia as a predictor of mortality in patients with ICU-acquired pneumonia. J Clin Med. 2019;8(6):843.CrossRefPubMedPubMedCentral Ceccato A, Panagiotarakou M, Ranzani OT, Martin-Fernandez M, Almansa-Mora R, Gabarrus A, et al. Lymphocytopenia as a predictor of mortality in patients with ICU-acquired pneumonia. J Clin Med. 2019;8(6):843.CrossRefPubMedPubMedCentral
36.
go back to reference Delucchi K, Famous KR, Ware LB, Parsons PE, Thompson BT, Calfee CS, et al. Stability of ARDS subphenotypes over time in two randomised controlled trials. Thorax. 2018;73(5):439–45.CrossRefPubMed Delucchi K, Famous KR, Ware LB, Parsons PE, Thompson BT, Calfee CS, et al. Stability of ARDS subphenotypes over time in two randomised controlled trials. Thorax. 2018;73(5):439–45.CrossRefPubMed
37.
go back to reference Chen H, Yu Q, Xie J, Liu S, Pan C, Liu L, et al. Longitudinal phenotypes in patients with acute respiratory distress syndrome: a multi-database study. Crit Care. 2022;26(1):340.CrossRefPubMedPubMedCentral Chen H, Yu Q, Xie J, Liu S, Pan C, Liu L, et al. Longitudinal phenotypes in patients with acute respiratory distress syndrome: a multi-database study. Crit Care. 2022;26(1):340.CrossRefPubMedPubMedCentral
38.
go back to reference Lu M, Drohan C, Bain W, Shah FA, Bittner M, Evankovich J, et al.Trajectories of host-response subphenotypes in patients with COVID-19 across the spectrum of respiratory support. CHEST Crit Care. 2023;1(3):100018. Lu M, Drohan C, Bain W, Shah FA, Bittner M, Evankovich J, et al.Trajectories of host-response subphenotypes in patients with COVID-19 across the spectrum of respiratory support. CHEST Crit Care. 2023;1(3):100018.
40.
go back to reference Leisman DE, Ronner L, Pinotti R, Taylor MD, Sinha P, Calfee CS, et al. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir Med. 2020;8(12):1233–44.CrossRefPubMedPubMedCentral Leisman DE, Ronner L, Pinotti R, Taylor MD, Sinha P, Calfee CS, et al. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir Med. 2020;8(12):1233–44.CrossRefPubMedPubMedCentral
41.
go back to reference Preud’homme G, Duarte K, Dalleau K, Lacomblez C, Bresso E, Smaïl-Tabbone M, et al. Head-to-head comparison of clustering methods for heterogeneous data: a simulation-driven benchmark. Sci Rep. 2021;11(1):4202.CrossRefPubMedPubMedCentral Preud’homme G, Duarte K, Dalleau K, Lacomblez C, Bresso E, Smaïl-Tabbone M, et al. Head-to-head comparison of clustering methods for heterogeneous data: a simulation-driven benchmark. Sci Rep. 2021;11(1):4202.CrossRefPubMedPubMedCentral
Metadata
Title
Clustering COVID-19 ARDS patients through the first days of ICU admission. An analysis of the CIBERESUCICOVID Cohort
Authors
Adrian Ceccato
Carles Forne
Lieuwe D. Bos
Marta Camprubí-Rimblas
Aina Areny-Balagueró
Elena Campaña-Duel
Sara Quero
Emili Diaz
Oriol Roca
David De Gonzalo-Calvo
Laia Fernández-Barat
Anna Motos
Ricard Ferrer
Jordi Riera
Jose A. Lorente
Oscar Peñuelas
Rosario Menendez
Rosario Amaya-Villar
José M. Añón
Ana Balan-Mariño
Carme Barberà
José Barberán
Aaron Blandino-Ortiz
Maria Victoria Boado
Elena Bustamante-Munguira
Jesús Caballero
Cristina Carbajales
Nieves Carbonell
Mercedes Catalán-González
Nieves Franco
Cristóbal Galbán
Víctor D. Gumucio-Sanguino
Maria del Carmen de la Torre
Ángel Estella
Elena Gallego
José Luis García-Garmendia
José Garnacho-Montero
José M. Gómez
Arturo Huerta
Ruth Noemí Jorge-García
Ana Loza-Vázquez
Judith Marin-Corral
Amalia Martínez de la Gándara
María Cruz Martin-Delgado
Ignacio Martínez-Varela
Juan Lopez Messa
Guillermo Muñiz-Albaiceta
María Teresa Nieto
Mariana Andrea Novo
Yhivian Peñasco
Juan Carlos Pozo-Laderas
Felipe Pérez-García
Pilar Ricart
Ferran Roche-Campo
Alejandro Rodríguez
Victor Sagredo
Angel Sánchez-Miralles
Susana Sancho-Chinesta
Lorenzo Socias
Jordi Solé-Violan
Fernando Suarez-Sipmann
Luis Tamayo-Lomas
José Trenado
Alejandro Úbeda
Luis Jorge Valdivia
Pablo Vidal
Jesus Bermejo
Jesica Gonzalez
Ferran Barbe
Carolyn S. Calfee
Antonio Artigas
Antoni Torres
CIBERESUCICOVID Project
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2024
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-024-04876-5

Other articles of this Issue 1/2024

Critical Care 1/2024 Go to the issue