Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2024

Open Access 01-12-2024 | Acute Myeloid Leukemia | Review

Vaccines: a promising therapy for myelodysplastic syndrome

Authors: Kriti Gera, Anjali Chauhan, Paul Castillo, Maryam Rahman, Akash Mathavan, Akshay Mathavan, Elizabeth Oganda-Rivas, Leighton Elliott, John R. Wingard, Elias J. Sayour

Published in: Journal of Hematology & Oncology | Issue 1/2024

Login to get access

Abstract

Myelodysplastic neoplasms (MDS) define clonal hematopoietic malignancies characterized by heterogeneous mutational and clinical spectra typically seen in the elderly. Curative treatment entails allogeneic hematopoietic stem cell transplant, which is often not a feasible option due to older age and significant comorbidities. Immunotherapy has the cytotoxic capacity to elicit tumor-specific killing with long-term immunological memory. While a number of platforms have emerged, therapeutic vaccination presents as an appealing strategy for MDS given its promising safety profile and amenability for commercialization. Several preclinical and clinical trials have investigated the efficacy of vaccines in MDS; these include peptide vaccines targeting tumor antigens, whole cell-based vaccines and dendritic cell-based vaccines. These therapeutic vaccines have shown acceptable safety profiles, but consistent clinical responses remain elusive despite robust immunological reactions. Combining vaccines with immunotherapeutic agents holds promise and requires further investigation. Herein, we highlight therapeutic vaccine trials while reviewing challenges and future directions of successful vaccination strategies in MDS.
Literature
5.
go back to reference Peng X, Zhu X, Di T, et al. The yin-yang of immunity: Immune dysregulation in myelodysplastic syndrome with different risk stratification. Front Immunol. 2022;13. Peng X, Zhu X, Di T, et al. The yin-yang of immunity: Immune dysregulation in myelodysplastic syndrome with different risk stratification. Front Immunol. 2022;13.
6.
go back to reference Bewersdorf JP, Xie Z, Bejar R, et al. Current landscape of translational and clinical research in myelodysplastic syndromes/neoplasms (MDS). In: Proceedings from the 1st International Workshop on MDS (iwMDS) Of the International Consortium for MDS (icMDS). Blood Rev. Published online March 11, 2023, p 101072. https://doi.org/10.1016/j.blre.2023.101072 Bewersdorf JP, Xie Z, Bejar R, et al. Current landscape of translational and clinical research in myelodysplastic syndromes/neoplasms (MDS). In: Proceedings from the 1st International Workshop on MDS (iwMDS) Of the International Consortium for MDS (icMDS). Blood Rev. Published online March 11, 2023, p 101072. https://​doi.​org/​10.​1016/​j.​blre.​2023.​101072
15.
go back to reference Liu W, Teodorescu P, Halene S, Ghiaur G. The coming of age of preclinical models of MDS. Front Oncol. 2022;12. Liu W, Teodorescu P, Halene S, Ghiaur G. The coming of age of preclinical models of MDS. Front Oncol. 2022;12.
26.
go back to reference Bergmann L, Miething C, Maurer U, et al. High levels of Wilms’ tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood. 1997;90(3):1217–25.CrossRefPubMed Bergmann L, Miething C, Maurer U, et al. High levels of Wilms’ tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood. 1997;90(3):1217–25.CrossRefPubMed
32.
go back to reference Di Stasi A, Jimenez AM, Minagawa K, Al-Obaidi M, Rezvani K. Review of the results of WT1 peptide vaccination strategies for myelodysplastic syndromes and acute myeloid leukemia from nine different studies. Front Immunol. 2015;6. Di Stasi A, Jimenez AM, Minagawa K, Al-Obaidi M, Rezvani K. Review of the results of WT1 peptide vaccination strategies for myelodysplastic syndromes and acute myeloid leukemia from nine different studies. Front Immunol. 2015;6.
47.
go back to reference Hinneh JA, Gillis JL, Moore NL, Butler LM, Centenera MM. The role of RHAMM in cancer: Exposing novel therapeutic vulnerabilities. Front Oncol. 2022;12. Hinneh JA, Gillis JL, Moore NL, Butler LM, Centenera MM. The role of RHAMM in cancer: Exposing novel therapeutic vulnerabilities. Front Oncol. 2022;12.
53.
go back to reference Lane A. Phase 1 Study of SL-401 in Combination With Azacitidine and Venetoclax in Relapsed/Refractory Acute Myeloid Leukemia (AML) and in Treatment-Naive Subjects With AML Not Eligible for Standard Induction and in Subjects With Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN) or SL-401 in Combination With Azacitidine in Subjects With High-Risk Myelodysplastic Syndrome (MDS). clinicaltrials.gov; 2022. Accessed 2 June 2023. https://clinicaltrials.gov/ct2/show/NCT03113643. Lane A. Phase 1 Study of SL-401 in Combination With Azacitidine and Venetoclax in Relapsed/Refractory Acute Myeloid Leukemia (AML) and in Treatment-Naive Subjects With AML Not Eligible for Standard Induction and in Subjects With Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN) or SL-401 in Combination With Azacitidine in Subjects With High-Risk Myelodysplastic Syndrome (MDS). clinicaltrials.gov; 2022. Accessed 2 June 2023. https://​clinicaltrials.​gov/​ct2/​show/​NCT03113643.
56.
go back to reference Dranoff G, Jaffee E, Lazenby A, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA. 1993;90(8):3539–43.CrossRefPubMedPubMedCentral Dranoff G, Jaffee E, Lazenby A, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA. 1993;90(8):3539–43.CrossRefPubMedPubMedCentral
60.
64.
go back to reference Palma M, Hansson L, Choudhury A, et al. Vaccination with dendritic cells loaded with tumor apoptotic bodies (Apo-DC) in patients with chronic lymphocytic leukemia: effects of various adjuvants and definition of immune response criteria. Cancer Immunol Immunother. 2011;61(6):865.CrossRefPubMed Palma M, Hansson L, Choudhury A, et al. Vaccination with dendritic cells loaded with tumor apoptotic bodies (Apo-DC) in patients with chronic lymphocytic leukemia: effects of various adjuvants and definition of immune response criteria. Cancer Immunol Immunother. 2011;61(6):865.CrossRefPubMed
69.
go back to reference Mendus. An International, Multicentre, Open-Label Study To Evaluate The Efficacy and Safety of Two Different Vaccination Regimens of Immunotherapy With Allogeneic Dendritic Cells, DCP-001, in Patients With Acute Myeloid Leukaemia That Are In Remission With Persistent MRD. clinicaltrials.gov; 2022. Accessed 13 April 2023. https://clinicaltrials.gov/ct2/show/NCT03697707. Mendus. An International, Multicentre, Open-Label Study To Evaluate The Efficacy and Safety of Two Different Vaccination Regimens of Immunotherapy With Allogeneic Dendritic Cells, DCP-001, in Patients With Acute Myeloid Leukaemia That Are In Remission With Persistent MRD. clinicaltrials.gov; 2022. Accessed 13 April 2023. https://​clinicaltrials.​gov/​ct2/​show/​NCT03697707.
91.
go back to reference Brunner AM, Esteve J, Porkka K, et al. Efficacy and safety of sabatolimab (MBG453) in combination with hypomethylating agents (HMAs) in patients (Pts) with very high/high-risk myelodysplastic syndrome (vHR/HR-MDS) and acute myeloid leukemia (AML): final analysis from a phase Ib study. Blood. 2021;138(Supplement 1):244. https://doi.org/10.1182/blood-2021-146039.CrossRef Brunner AM, Esteve J, Porkka K, et al. Efficacy and safety of sabatolimab (MBG453) in combination with hypomethylating agents (HMAs) in patients (Pts) with very high/high-risk myelodysplastic syndrome (vHR/HR-MDS) and acute myeloid leukemia (AML): final analysis from a phase Ib study. Blood. 2021;138(Supplement 1):244. https://​doi.​org/​10.​1182/​blood-2021-146039.CrossRef
97.
go back to reference Senapati J, Almanza EH, Kadia TM, et al. Updated results of CPX-351 in combination with gemtuzumab ozogamicin (GO) in relapsed refractory (R/R) acute myeloid leukemia (AML) and post-hypomethylating agent (Post-HMA) failure high-risk myelodysplastic syndrome (HR-MDS). Blood. 2022;140(Supplement 1):9050–3. https://doi.org/10.1182/blood-2022-171011.CrossRef Senapati J, Almanza EH, Kadia TM, et al. Updated results of CPX-351 in combination with gemtuzumab ozogamicin (GO) in relapsed refractory (R/R) acute myeloid leukemia (AML) and post-hypomethylating agent (Post-HMA) failure high-risk myelodysplastic syndrome (HR-MDS). Blood. 2022;140(Supplement 1):9050–3. https://​doi.​org/​10.​1182/​blood-2022-171011.CrossRef
98.
go back to reference Warlick ED, Weisdorf DJ, Vallera DA, et al. GTB-3550 TriKE™ for the treatment of high-risk myelodysplastic syndromes (mds) and refractory/relapsed acute myeloid leukemia (AML) safely drives natural killer (NK) cell proliferation at initial dose cohorts. Blood. 2020;136:7–8. https://doi.org/10.1182/blood-2020-136398.CrossRef Warlick ED, Weisdorf DJ, Vallera DA, et al. GTB-3550 TriKE™ for the treatment of high-risk myelodysplastic syndromes (mds) and refractory/relapsed acute myeloid leukemia (AML) safely drives natural killer (NK) cell proliferation at initial dose cohorts. Blood. 2020;136:7–8. https://​doi.​org/​10.​1182/​blood-2020-136398.CrossRef
100.
go back to reference Garcia-Manero G, Jabbour EJ, Konopleva MY, et al. A clinical study of tomaralimab (OPN-305), a toll-like receptor 2 (TLR-2) antibody, in heavily pre-treated transfusion dependent patients with lower risk myelodysplastic syndromes (MDS) that have received and failed on prior hypomethylating agent (HMA) therapy. Blood. 2018;132:798. https://doi.org/10.1182/blood-2018-99-119805.CrossRef Garcia-Manero G, Jabbour EJ, Konopleva MY, et al. A clinical study of tomaralimab (OPN-305), a toll-like receptor 2 (TLR-2) antibody, in heavily pre-treated transfusion dependent patients with lower risk myelodysplastic syndromes (MDS) that have received and failed on prior hypomethylating agent (HMA) therapy. Blood. 2018;132:798. https://​doi.​org/​10.​1182/​blood-2018-99-119805.CrossRef
120.
Metadata
Title
Vaccines: a promising therapy for myelodysplastic syndrome
Authors
Kriti Gera
Anjali Chauhan
Paul Castillo
Maryam Rahman
Akash Mathavan
Akshay Mathavan
Elizabeth Oganda-Rivas
Leighton Elliott
John R. Wingard
Elias J. Sayour
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2024
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-023-01523-4

Other articles of this Issue 1/2024

Journal of Hematology & Oncology 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine