Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2024

Open Access 01-12-2024 | Review

cAMP-PKA/EPAC signaling and cancer: the interplay in tumor microenvironment

Authors: Hongying Zhang, Yongliang Liu, Jieya Liu, Jinzhu Chen, Jiao Wang, Hui Hua, Yangfu Jiang

Published in: Journal of Hematology & Oncology | Issue 1/2024

Login to get access

Abstract

Cancer is a complex disease resulting from abnormal cell growth that is induced by a number of genetic and environmental factors. The tumor microenvironment (TME), which involves extracellular matrix, cancer-associated fibroblasts (CAF), tumor-infiltrating immune cells and angiogenesis, plays a critical role in tumor progression. Cyclic adenosine monophosphate (cAMP) is a second messenger that has pleiotropic effects on the TME. The downstream effectors of cAMP include cAMP-dependent protein kinase (PKA), exchange protein activated by cAMP (EPAC) and ion channels. While cAMP can activate PKA or EPAC and promote cancer cell growth, it can also inhibit cell proliferation and survival in context- and cancer type-dependent manner. Tumor-associated stromal cells, such as CAF and immune cells, can release cytokines and growth factors that either stimulate or inhibit cAMP production within the TME. Recent studies have shown that targeting cAMP signaling in the TME has therapeutic benefits in cancer. Small-molecule agents that inhibit adenylate cyclase and PKA have been shown to inhibit tumor growth. In addition, cAMP-elevating agents, such as forskolin, can not only induce cancer cell death, but also directly inhibit cell proliferation in some cancer types. In this review, we summarize current understanding of cAMP signaling in cancer biology and immunology and discuss the basis for its context-dependent dual role in oncogenesis. Understanding the precise mechanisms by which cAMP and the TME interact in cancer will be critical for the development of effective therapies. Future studies aimed at investigating the cAMP-cancer axis and its regulation in the TME may provide new insights into the underlying mechanisms of tumorigenesis and lead to the development of novel therapeutic strategies.
Literature
1.
go back to reference Uhler MD, Carmichael DF, Lee DC, Chrivia JC, Krebs EG, McKnight GS. Isolation of cDNA clones coding for the catalytic subunit of mouse cAMP-dependent protein kinase. Proc Natl Acad Sci USA. 1986;83:1300–4.PubMedPubMedCentralCrossRef Uhler MD, Carmichael DF, Lee DC, Chrivia JC, Krebs EG, McKnight GS. Isolation of cDNA clones coding for the catalytic subunit of mouse cAMP-dependent protein kinase. Proc Natl Acad Sci USA. 1986;83:1300–4.PubMedPubMedCentralCrossRef
2.
go back to reference Caldwell JL, Lee IJ, Ngo L, Wang L, Bahriz S, Xu B, et al. Whole-heart multiparametric optical imaging reveals sex-dependent heterogeneity in cAMP signaling and repolarization kinetics. Sci Adv. 2023;9:eadd5799.PubMedPubMedCentralCrossRef Caldwell JL, Lee IJ, Ngo L, Wang L, Bahriz S, Xu B, et al. Whole-heart multiparametric optical imaging reveals sex-dependent heterogeneity in cAMP signaling and repolarization kinetics. Sci Adv. 2023;9:eadd5799.PubMedPubMedCentralCrossRef
3.
go back to reference Martinez JM, Shen A, Xu B, Jovanovic A, de Chabot J, Zhang J, et al. Arrestin-dependent nuclear export of phosphodiesterase 4D promotes GPCR-induced nuclear cAMP signaling required for learning and memory. Sci Signal. 2023;16:eade3380.PubMedPubMedCentralCrossRef Martinez JM, Shen A, Xu B, Jovanovic A, de Chabot J, Zhang J, et al. Arrestin-dependent nuclear export of phosphodiesterase 4D promotes GPCR-induced nuclear cAMP signaling required for learning and memory. Sci Signal. 2023;16:eade3380.PubMedPubMedCentralCrossRef
4.
go back to reference Roy D, Balasubramanian S, Krishnamurthy PT, Sola P, Rymbai E. Phosphodiesterase-4 inhibition in Parkinson’s disease: molecular insights and therapeutic potential. Cell Mol Neurobiol. 2023;43:2713–41.PubMedCrossRef Roy D, Balasubramanian S, Krishnamurthy PT, Sola P, Rymbai E. Phosphodiesterase-4 inhibition in Parkinson’s disease: molecular insights and therapeutic potential. Cell Mol Neurobiol. 2023;43:2713–41.PubMedCrossRef
5.
go back to reference Fuentes-Pananá EM, Peng R, Brewer G, Tan J, Ling PD. Regulation of the Epstein–Barr virus C promoter by AUF1 and the cyclic AMP/protein kinase A signaling pathway. J Virol. 2000;74:8166–75.PubMedPubMedCentralCrossRef Fuentes-Pananá EM, Peng R, Brewer G, Tan J, Ling PD. Regulation of the Epstein–Barr virus C promoter by AUF1 and the cyclic AMP/protein kinase A signaling pathway. J Virol. 2000;74:8166–75.PubMedPubMedCentralCrossRef
6.
go back to reference Moar P, Sushmita K, Kateriya S, Tandon R. Transcriptional profiling indicates cAMP-driven reversal of HIV latency in monocytes occurs via transcription factor SP-1. Virology. 2020;542:40–53.PubMedCrossRef Moar P, Sushmita K, Kateriya S, Tandon R. Transcriptional profiling indicates cAMP-driven reversal of HIV latency in monocytes occurs via transcription factor SP-1. Virology. 2020;542:40–53.PubMedCrossRef
7.
go back to reference Luo Z, Li M, Li TW, Lv Z, Ye Z, Cisneros WJ, et al. Differential expression of CREM/ICER isoforms is associated with the spontaneous control of HIV infection. mBio. 2022;13:e0197921.PubMedCrossRef Luo Z, Li M, Li TW, Lv Z, Ye Z, Cisneros WJ, et al. Differential expression of CREM/ICER isoforms is associated with the spontaneous control of HIV infection. mBio. 2022;13:e0197921.PubMedCrossRef
8.
go back to reference Xu K, Cooney KA, Shin EY, Wang L, Deppen JN, Ginn SC, et al. Adenosine from a biologic source regulates neutrophil extracellular traps (NETs). J Leukoc Biol. 2019;105:1225–34.PubMedCrossRef Xu K, Cooney KA, Shin EY, Wang L, Deppen JN, Ginn SC, et al. Adenosine from a biologic source regulates neutrophil extracellular traps (NETs). J Leukoc Biol. 2019;105:1225–34.PubMedCrossRef
9.
go back to reference Ravani A, Vincenzi F, Bortoluzzi A, Padovan M, Pasquini S, Gessi S, et al. Role and function of A2A and A3 adenosine receptors in patients with ankylosing spondylitis, psoriatic arthritis and rheumatoid arthritis. Int J Mol Sci. 2017;18:697.PubMedPubMedCentralCrossRef Ravani A, Vincenzi F, Bortoluzzi A, Padovan M, Pasquini S, Gessi S, et al. Role and function of A2A and A3 adenosine receptors in patients with ankylosing spondylitis, psoriatic arthritis and rheumatoid arthritis. Int J Mol Sci. 2017;18:697.PubMedPubMedCentralCrossRef
10.
go back to reference Zhang L, Yang N, Wang S, Huang B, Li F, Tan H, et al. Adenosine 2A receptor is protective against renal injury in MRL/lpr mice. Lupus. 2011;20:667–77.PubMedCrossRef Zhang L, Yang N, Wang S, Huang B, Li F, Tan H, et al. Adenosine 2A receptor is protective against renal injury in MRL/lpr mice. Lupus. 2011;20:667–77.PubMedCrossRef
11.
go back to reference Chung JH, Choi HJ, Kang YJ, Kim YS, Lee SY, Kwon RJ, et al. MHY4571, a novel diarylcyclohexanone derivative, exerts anti-cancer activity by regulating the PKA-cAMP-response element-binding protein pathway in squamous cell lung cancer. Exp Hematol Oncol. 2022;11:68.PubMedPubMedCentralCrossRef Chung JH, Choi HJ, Kang YJ, Kim YS, Lee SY, Kwon RJ, et al. MHY4571, a novel diarylcyclohexanone derivative, exerts anti-cancer activity by regulating the PKA-cAMP-response element-binding protein pathway in squamous cell lung cancer. Exp Hematol Oncol. 2022;11:68.PubMedPubMedCentralCrossRef
12.
go back to reference Knighton DR, Zheng JH, Ten Eyck LF, Ashford VA, Xuong NH, Taylor SS, et al. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science. 1991;253:407–14.PubMedCrossRef Knighton DR, Zheng JH, Ten Eyck LF, Ashford VA, Xuong NH, Taylor SS, et al. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science. 1991;253:407–14.PubMedCrossRef
13.
14.
go back to reference Tsuji G, Yamamura K, Kawamura K, Kido-Nakahara M, Ito T, Nakahara T. Novel therapeutic targets for the treatment of atopic dermatitis. Biomedicines. 2023;11:1303.PubMedPubMedCentralCrossRef Tsuji G, Yamamura K, Kawamura K, Kido-Nakahara M, Ito T, Nakahara T. Novel therapeutic targets for the treatment of atopic dermatitis. Biomedicines. 2023;11:1303.PubMedPubMedCentralCrossRef
15.
go back to reference Sadeghi MA, Nassireslami E, Yousefi Zoshk M, Hosseini Y, Abbasian K, Chamanara M. Phosphodiesterase inhibitors in psychiatric disorders. Psychopharmacology. 2023;240:1201–19.PubMedCrossRef Sadeghi MA, Nassireslami E, Yousefi Zoshk M, Hosseini Y, Abbasian K, Chamanara M. Phosphodiesterase inhibitors in psychiatric disorders. Psychopharmacology. 2023;240:1201–19.PubMedCrossRef
16.
go back to reference Jeong MH, Urquhart G, Lewis C, Chi Z, Jewell JL. Inhibition of phosphodiesterase 4D suppresses mTORC1 signaling and pancreatic cancer growth. JCI Insight. 2023;8:e158098.PubMedPubMedCentralCrossRef Jeong MH, Urquhart G, Lewis C, Chi Z, Jewell JL. Inhibition of phosphodiesterase 4D suppresses mTORC1 signaling and pancreatic cancer growth. JCI Insight. 2023;8:e158098.PubMedPubMedCentralCrossRef
17.
go back to reference Lee A, Lebedyeva I, Zhi W, Senthil V, Cheema H, Brands MW, et al. A non-systemic phosphodiesterase-5 inhibitor suppresses colon proliferation in mice. Int J Mol Sci. 2023;24:9397.PubMedPubMedCentralCrossRef Lee A, Lebedyeva I, Zhi W, Senthil V, Cheema H, Brands MW, et al. A non-systemic phosphodiesterase-5 inhibitor suppresses colon proliferation in mice. Int J Mol Sci. 2023;24:9397.PubMedPubMedCentralCrossRef
18.
go back to reference Godbole A, Lyga S, Lohse MJ, Calebiro D. Internalized TSH receptors en route to the TGN induce local G(s)-protein signaling and gene transcription. Nat Commun. 2017;8:443.PubMedPubMedCentralCrossRef Godbole A, Lyga S, Lohse MJ, Calebiro D. Internalized TSH receptors en route to the TGN induce local G(s)-protein signaling and gene transcription. Nat Commun. 2017;8:443.PubMedPubMedCentralCrossRef
19.
go back to reference Arkhipov A, Khuzakhmetova V, Petrov AM, Bukharaeva EA. Catecholamine-dependent hyperpolarization of the junctional membrane via β2-adrenoreceptor/G(i)-protein/α2-Na-K-ATPase pathway. Brain Res. 2022;1795:148072.PubMedCrossRef Arkhipov A, Khuzakhmetova V, Petrov AM, Bukharaeva EA. Catecholamine-dependent hyperpolarization of the junctional membrane via β2-adrenoreceptor/G(i)-protein/α2-Na-K-ATPase pathway. Brain Res. 2022;1795:148072.PubMedCrossRef
20.
go back to reference Tang G, Guo Y, Zhang L, Wang T, Li R, Yang J, et al. 5-HT(1B) receptors in the basolateral amygdaloid nucleus regulate anxiety-like behaviors through AC-PKA signal pathway in a rat model of Parkinson’s disease. Behav Brain Res. 2023;449:114488.PubMedCrossRef Tang G, Guo Y, Zhang L, Wang T, Li R, Yang J, et al. 5-HT(1B) receptors in the basolateral amygdaloid nucleus regulate anxiety-like behaviors through AC-PKA signal pathway in a rat model of Parkinson’s disease. Behav Brain Res. 2023;449:114488.PubMedCrossRef
21.
go back to reference Ostrom KF, LaVigne JE, Brust TF, Seifert R, Dessauer CW, Watts VJ, et al. Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiol Rev. 2022;102:815–57.PubMedCrossRef Ostrom KF, LaVigne JE, Brust TF, Seifert R, Dessauer CW, Watts VJ, et al. Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiol Rev. 2022;102:815–57.PubMedCrossRef
22.
go back to reference Pizzoni A, Zhang X, Naim N, Altschuler DL. Soluble cyclase-mediated nuclear cAMP synthesis is sufficient for cell proliferation. Proc Natl Acad Sci USA. 2023;120:e2208749120.PubMedPubMedCentralCrossRef Pizzoni A, Zhang X, Naim N, Altschuler DL. Soluble cyclase-mediated nuclear cAMP synthesis is sufficient for cell proliferation. Proc Natl Acad Sci USA. 2023;120:e2208749120.PubMedPubMedCentralCrossRef
23.
go back to reference Tenner B, Getz M, Ross B, Ohadi D, Bohrer CH, Greenwald E, et al. Spatially compartmentalized phase regulation of a Ca(2+)-cAMP-PKA oscillatory circuit. Elife. 2020;9:e55013.PubMedPubMedCentralCrossRef Tenner B, Getz M, Ross B, Ohadi D, Bohrer CH, Greenwald E, et al. Spatially compartmentalized phase regulation of a Ca(2+)-cAMP-PKA oscillatory circuit. Elife. 2020;9:e55013.PubMedPubMedCentralCrossRef
24.
go back to reference Piggott LA, Bauman AL, Scott JD, Dessauer CW. The A-kinase anchoring protein Yotiao binds and regulates adenylyl cyclase in brain. Proc Natl Acad Sci USA. 2008;105:13835–40.PubMedPubMedCentralCrossRef Piggott LA, Bauman AL, Scott JD, Dessauer CW. The A-kinase anchoring protein Yotiao binds and regulates adenylyl cyclase in brain. Proc Natl Acad Sci USA. 2008;105:13835–40.PubMedPubMedCentralCrossRef
25.
go back to reference Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov. 2014;13:290–314.PubMedPubMedCentralCrossRef Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov. 2014;13:290–314.PubMedPubMedCentralCrossRef
26.
go back to reference Beavo JA. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev. 1995;75:725–48.PubMedCrossRef Beavo JA. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev. 1995;75:725–48.PubMedCrossRef
27.
go back to reference Andrew TB, Joseph AB. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev. 2006;58:488.CrossRef Andrew TB, Joseph AB. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev. 2006;58:488.CrossRef
28.
go back to reference Paes D, Schepers M, Rombaut B, van den Hove D, Vanmierlo T, Prickaerts J. The molecular biology of phosphodiesterase 4 enzymes as pharmacological targets: an interplay of isoforms, conformational states, and inhibitors. Pharmacol Rev. 2021;73:1016–49.PubMedCrossRef Paes D, Schepers M, Rombaut B, van den Hove D, Vanmierlo T, Prickaerts J. The molecular biology of phosphodiesterase 4 enzymes as pharmacological targets: an interplay of isoforms, conformational states, and inhibitors. Pharmacol Rev. 2021;73:1016–49.PubMedCrossRef
29.
go back to reference Sassi Y, Ahles A, Truong DJ, Baqi Y, Lee SY, Husse B, et al. Cardiac myocyte-secreted cAMP exerts paracrine action via adenosine receptor activation. J Clin Invest. 2014;124:5385–97.PubMedPubMedCentralCrossRef Sassi Y, Ahles A, Truong DJ, Baqi Y, Lee SY, Husse B, et al. Cardiac myocyte-secreted cAMP exerts paracrine action via adenosine receptor activation. J Clin Invest. 2014;124:5385–97.PubMedPubMedCentralCrossRef
30.
go back to reference Jackson EK, Raghvendra DK. The extracellular cyclic AMP-adenosine pathway in renal physiology. Annu Rev Physiol. 2004;66:571–99.PubMedCrossRef Jackson EK, Raghvendra DK. The extracellular cyclic AMP-adenosine pathway in renal physiology. Annu Rev Physiol. 2004;66:571–99.PubMedCrossRef
31.
go back to reference Giron MC, Bin A, Brun P, Etteri S, Bolego C, Florio C, et al. Cyclic AMP in rat ileum: evidence for the presence of an extracellular cyclic AMP-adenosine pathway. Gastroenterology. 2008;134:1116–26.PubMedCrossRef Giron MC, Bin A, Brun P, Etteri S, Bolego C, Florio C, et al. Cyclic AMP in rat ileum: evidence for the presence of an extracellular cyclic AMP-adenosine pathway. Gastroenterology. 2008;134:1116–26.PubMedCrossRef
32.
go back to reference Brzostowski JA, Sawai S, Rozov O, Liao XH, Imoto D, Parent CA, et al. Phosphorylation of chemoattractant receptors regulates chemotaxis, actin reorganization and signal relay. J Cell Sci. 2013;126:4614–26.PubMedPubMedCentral Brzostowski JA, Sawai S, Rozov O, Liao XH, Imoto D, Parent CA, et al. Phosphorylation of chemoattractant receptors regulates chemotaxis, actin reorganization and signal relay. J Cell Sci. 2013;126:4614–26.PubMedPubMedCentral
33.
go back to reference Yang H, Li G, Wu JJ, Wang L, Uhler M, Simeone DM. Protein kinase A modulates transforming growth factor-β signaling through a direct interaction with Smad4 protein. J Biol Chem. 2013;288:8737–49.PubMedPubMedCentralCrossRef Yang H, Li G, Wu JJ, Wang L, Uhler M, Simeone DM. Protein kinase A modulates transforming growth factor-β signaling through a direct interaction with Smad4 protein. J Biol Chem. 2013;288:8737–49.PubMedPubMedCentralCrossRef
34.
go back to reference Oerlecke I, Bauer E, Dittmer A, Leyh B, Dittmer J. Cyclic AMP enhances TGFβ responses of breast cancer cells by upregulating TGFβ receptor I expression. PLOS ONE. 2013;8:e54261.PubMedPubMedCentralCrossRef Oerlecke I, Bauer E, Dittmer A, Leyh B, Dittmer J. Cyclic AMP enhances TGFβ responses of breast cancer cells by upregulating TGFβ receptor I expression. PLOS ONE. 2013;8:e54261.PubMedPubMedCentralCrossRef
36.
go back to reference Lin D, Chen Y, Koksal AR, Dash S, Aydin Y. Targeting ER stress/PKA/GSK-3β/β-catenin pathway as a potential novel strategy for hepatitis C virus-infected patients. Cell Commun Signal. 2023;21:102.PubMedPubMedCentralCrossRef Lin D, Chen Y, Koksal AR, Dash S, Aydin Y. Targeting ER stress/PKA/GSK-3β/β-catenin pathway as a potential novel strategy for hepatitis C virus-infected patients. Cell Commun Signal. 2023;21:102.PubMedPubMedCentralCrossRef
38.
go back to reference Soundararajan R, Hernández-Cuervo H, Stearns TM, Griswold AJ, Patil SS, Fukumoto J, et al. A-Kinase Anchor Protein 1 deficiency causes mitochondrial dysfunction in mouse model of hyperoxia induced acute lung injury. Front Pharmacol. 2022;13:980723.PubMedPubMedCentralCrossRef Soundararajan R, Hernández-Cuervo H, Stearns TM, Griswold AJ, Patil SS, Fukumoto J, et al. A-Kinase Anchor Protein 1 deficiency causes mitochondrial dysfunction in mouse model of hyperoxia induced acute lung injury. Front Pharmacol. 2022;13:980723.PubMedPubMedCentralCrossRef
39.
go back to reference Inigo JR, Chandra D. The mitochondrial unfolded protein response (UPR(mt)): shielding against toxicity to mitochondria in cancer. J Hematol Oncol. 2022;15:98.PubMedPubMedCentralCrossRef Inigo JR, Chandra D. The mitochondrial unfolded protein response (UPR(mt)): shielding against toxicity to mitochondria in cancer. J Hematol Oncol. 2022;15:98.PubMedPubMedCentralCrossRef
41.
go back to reference Bucko PJ, Scott JD. Drugs that regulate local cell signaling: AKAP targeting as a therapeutic option. Annu Rev Pharmacol Toxicol. 2021;61:361–79.PubMedCrossRef Bucko PJ, Scott JD. Drugs that regulate local cell signaling: AKAP targeting as a therapeutic option. Annu Rev Pharmacol Toxicol. 2021;61:361–79.PubMedCrossRef
42.
go back to reference Pidoux G, Taskén K. Specificity and spatial dynamics of protein kinase A signaling organized by A-kinase-anchoring proteins. J Mol Endocrinol. 2010;44:271–84.PubMedCrossRef Pidoux G, Taskén K. Specificity and spatial dynamics of protein kinase A signaling organized by A-kinase-anchoring proteins. J Mol Endocrinol. 2010;44:271–84.PubMedCrossRef
43.
go back to reference Ruppelt A, Mosenden R, Grönholm M, Aandahl EM, Tobin D, Carlson CR, et al. Inhibition of T cell activation by cyclic adenosine 5’-monophosphate requires lipid raft targeting of protein kinase A type I by the A-kinase anchoring protein ezrin. J Immunol. 2007;179:5159–68.PubMedCrossRef Ruppelt A, Mosenden R, Grönholm M, Aandahl EM, Tobin D, Carlson CR, et al. Inhibition of T cell activation by cyclic adenosine 5’-monophosphate requires lipid raft targeting of protein kinase A type I by the A-kinase anchoring protein ezrin. J Immunol. 2007;179:5159–68.PubMedCrossRef
44.
go back to reference Insel PA, Zhang L, Murray F, Yokouchi H, Zambon AC. Cyclic AMP is both a pro-apoptotic and anti-apoptotic second messenger. Acta Physiol (Oxf). 2012;204:277–87.PubMedCrossRef Insel PA, Zhang L, Murray F, Yokouchi H, Zambon AC. Cyclic AMP is both a pro-apoptotic and anti-apoptotic second messenger. Acta Physiol (Oxf). 2012;204:277–87.PubMedCrossRef
45.
go back to reference Keshwani MM, Kanter JR, Ma Y, Wilderman A, Darshi M, Insel PA, et al. Mechanisms of cyclic AMP/protein kinase A- and glucocorticoid-mediated apoptosis using S49 lymphoma cells as a model system. Proc Natl Acad Sci USA. 2015;112:12681–6.PubMedPubMedCentralCrossRef Keshwani MM, Kanter JR, Ma Y, Wilderman A, Darshi M, Insel PA, et al. Mechanisms of cyclic AMP/protein kinase A- and glucocorticoid-mediated apoptosis using S49 lymphoma cells as a model system. Proc Natl Acad Sci USA. 2015;112:12681–6.PubMedPubMedCentralCrossRef
46.
go back to reference Ye J, Zeng B, Zhong M, Li H, Xu L, Shu J, et al. Scutellarin inhibits caspase-11 activation and pyroptosis in macrophages via regulating PKA signaling. Acta Pharm Sin B. 2021;11:112–26.PubMedCrossRef Ye J, Zeng B, Zhong M, Li H, Xu L, Shu J, et al. Scutellarin inhibits caspase-11 activation and pyroptosis in macrophages via regulating PKA signaling. Acta Pharm Sin B. 2021;11:112–26.PubMedCrossRef
47.
go back to reference Brunyanszki A, Olah G, Coletta C, Szczesny B, Szabo C. Regulation of mitochondrial poly(ADP-Ribose) polymerase activation by the β-adrenoceptor/cAMP/protein kinase A axis during oxidative stress. Mol Pharmacol. 2014;86:450–62.PubMedPubMedCentralCrossRef Brunyanszki A, Olah G, Coletta C, Szczesny B, Szabo C. Regulation of mitochondrial poly(ADP-Ribose) polymerase activation by the β-adrenoceptor/cAMP/protein kinase A axis during oxidative stress. Mol Pharmacol. 2014;86:450–62.PubMedPubMedCentralCrossRef
48.
go back to reference Shishikura K, Horiuchi T, Sakata N, Trinh DA, Shirakawa R, Kimura T, et al. Prostaglandin E2 inhibits neutrophil extracellular trap formation through production of cyclic AMP. Br J Pharmacol. 2016;173:319–31.PubMedCrossRef Shishikura K, Horiuchi T, Sakata N, Trinh DA, Shirakawa R, Kimura T, et al. Prostaglandin E2 inhibits neutrophil extracellular trap formation through production of cyclic AMP. Br J Pharmacol. 2016;173:319–31.PubMedCrossRef
49.
go back to reference Shi L, Chen H, Chen K, Zhong C, Song C, Huang Y, et al. The DRD2 antagonist haloperidol mediates autophagy-induced ferroptosis to increase temozolomide sensitivity by promoting endoplasmic reticulum stress in glioblastoma. Clin Cancer Res. 2023;29:3172–88.PubMedCrossRef Shi L, Chen H, Chen K, Zhong C, Song C, Huang Y, et al. The DRD2 antagonist haloperidol mediates autophagy-induced ferroptosis to increase temozolomide sensitivity by promoting endoplasmic reticulum stress in glioblastoma. Clin Cancer Res. 2023;29:3172–88.PubMedCrossRef
50.
go back to reference Guan Q, Wang Z, Hu K, Cao J, Dong Y, Chen Y. Melatonin ameliorates hepatic ferroptosis in NAFLD by inhibiting ER stress via the MT2/cAMP/PKA/IRE1 signaling pathway. Int J Biol Sci. 2023;19:3937–50.PubMedPubMedCentralCrossRef Guan Q, Wang Z, Hu K, Cao J, Dong Y, Chen Y. Melatonin ameliorates hepatic ferroptosis in NAFLD by inhibiting ER stress via the MT2/cAMP/PKA/IRE1 signaling pathway. Int J Biol Sci. 2023;19:3937–50.PubMedPubMedCentralCrossRef
51.
52.
go back to reference Kumar N, Prasad P, Jash E, Saini M, Husain A, Goldman A, et al. Insights into exchange factor directly activated by cAMP (EPAC) as potential target for cancer treatment. Mol Cell Biochem. 2018;447:77–92.PubMedCrossRef Kumar N, Prasad P, Jash E, Saini M, Husain A, Goldman A, et al. Insights into exchange factor directly activated by cAMP (EPAC) as potential target for cancer treatment. Mol Cell Biochem. 2018;447:77–92.PubMedCrossRef
53.
go back to reference Singhmar P, Huo X, Eijkelkamp N, Berciano SR, Baameur F, Mei FC, et al. Critical role for Epac1 in inflammatory pain controlled by GRK2-mediated phosphorylation of Epac1. Proc Natl Acad Sci USA. 2016;113:3036–41.PubMedPubMedCentralCrossRef Singhmar P, Huo X, Eijkelkamp N, Berciano SR, Baameur F, Mei FC, et al. Critical role for Epac1 in inflammatory pain controlled by GRK2-mediated phosphorylation of Epac1. Proc Natl Acad Sci USA. 2016;113:3036–41.PubMedPubMedCentralCrossRef
54.
go back to reference Khaliulin I, Bond M, James AF, Dyar Z, Amini R, Johnson JL, et al. Functional and cardioprotective effects of simultaneous and individual activation of protein kinase A and Epac. Br J Pharmacol. 2017;174:438–53.PubMedPubMedCentralCrossRef Khaliulin I, Bond M, James AF, Dyar Z, Amini R, Johnson JL, et al. Functional and cardioprotective effects of simultaneous and individual activation of protein kinase A and Epac. Br J Pharmacol. 2017;174:438–53.PubMedPubMedCentralCrossRef
55.
56.
go back to reference Okumura S, Fujita T, Cai W, Jin M, Namekata I, Mototani Y, et al. Epac1-dependent phospholamban phosphorylation mediates the cardiac response to stresses. J Clin Invest. 2014;124:2785–801.PubMedPubMedCentralCrossRef Okumura S, Fujita T, Cai W, Jin M, Namekata I, Mototani Y, et al. Epac1-dependent phospholamban phosphorylation mediates the cardiac response to stresses. J Clin Invest. 2014;124:2785–801.PubMedPubMedCentralCrossRef
57.
go back to reference Gu Y, Li G, Huang LM. Inflammation induces Epac-protein kinase C alpha and epsilon signaling in TRPV1-mediated hyperalgesia. Pain. 2018;159:2383–93.PubMedCrossRef Gu Y, Li G, Huang LM. Inflammation induces Epac-protein kinase C alpha and epsilon signaling in TRPV1-mediated hyperalgesia. Pain. 2018;159:2383–93.PubMedCrossRef
60.
go back to reference Hochbaum D, Tanos T, Ribeiro-Neto F, Altschuler D, Coso OA. Activation of JNK by Epac is independent of its activity as a Rap guanine nucleotide exchanger. J Biol Chem. 2003;278:33738–46.PubMedCrossRef Hochbaum D, Tanos T, Ribeiro-Neto F, Altschuler D, Coso OA. Activation of JNK by Epac is independent of its activity as a Rap guanine nucleotide exchanger. J Biol Chem. 2003;278:33738–46.PubMedCrossRef
62.
go back to reference Lakhter AJ, Naidu SR. Cyclic AMP-Epac signaling pathway contributes to repression of PUMA transcription in melanoma cells. Melanoma Res. 2017;27:411–6.PubMedCrossRef Lakhter AJ, Naidu SR. Cyclic AMP-Epac signaling pathway contributes to repression of PUMA transcription in melanoma cells. Melanoma Res. 2017;27:411–6.PubMedCrossRef
63.
go back to reference Musheshe N, Oun A, Sabogal-Guáqueta AM, Trombetta-Lima M, Mitchel SC, Adzemovic A, et al. Pharmacological inhibition of Epac1 averts ferroptosis cell death by preserving mitochondrial integrity. Antioxidants (Basel). 2022;11:314.PubMedCrossRef Musheshe N, Oun A, Sabogal-Guáqueta AM, Trombetta-Lima M, Mitchel SC, Adzemovic A, et al. Pharmacological inhibition of Epac1 averts ferroptosis cell death by preserving mitochondrial integrity. Antioxidants (Basel). 2022;11:314.PubMedCrossRef
64.
go back to reference Zhang T, Luu MDA, Dolga AM, Eisel ULM, Schmidt M. The old second messenger cAMP teams up with novel cell death mechanisms: potential translational therapeutical benefit for Alzheimer’s disease and Parkinson’s disease. Front Physiol. 2023;14:1207280.PubMedPubMedCentralCrossRef Zhang T, Luu MDA, Dolga AM, Eisel ULM, Schmidt M. The old second messenger cAMP teams up with novel cell death mechanisms: potential translational therapeutical benefit for Alzheimer’s disease and Parkinson’s disease. Front Physiol. 2023;14:1207280.PubMedPubMedCentralCrossRef
65.
go back to reference Page DA, Magee KEA, Li J, Jung M, Young EC. Cytoplasmic autoinhibition in HCN channels is regulated by the transmembrane region. J Membr Biol. 2020;253:153–66.PubMedPubMedCentralCrossRef Page DA, Magee KEA, Li J, Jung M, Young EC. Cytoplasmic autoinhibition in HCN channels is regulated by the transmembrane region. J Membr Biol. 2020;253:153–66.PubMedPubMedCentralCrossRef
66.
go back to reference Magee KE, Madden Z, Young EC. HCN channel C-terminal region speeds activation rates independently of autoinhibition. J Membr Biol. 2015;248:1043–60.PubMedCrossRef Magee KE, Madden Z, Young EC. HCN channel C-terminal region speeds activation rates independently of autoinhibition. J Membr Biol. 2015;248:1043–60.PubMedCrossRef
67.
go back to reference Evans EGB, Morgan JLW, DiMaio F, Zagotta WN, Stoll S. Allosteric conformational change of a cyclic nucleotide-gated ion channel revealed by DEER spectroscopy. Proc Natl Acad Sci USA. 2020;117:10839–47.PubMedPubMedCentralCrossRef Evans EGB, Morgan JLW, DiMaio F, Zagotta WN, Stoll S. Allosteric conformational change of a cyclic nucleotide-gated ion channel revealed by DEER spectroscopy. Proc Natl Acad Sci USA. 2020;117:10839–47.PubMedPubMedCentralCrossRef
68.
go back to reference Amunjela JN, Tucker SJ. POPDC proteins as potential novel therapeutic targets in cancer. Drug Discov Today. 2016;21:1920–7.PubMedCrossRef Amunjela JN, Tucker SJ. POPDC proteins as potential novel therapeutic targets in cancer. Drug Discov Today. 2016;21:1920–7.PubMedCrossRef
69.
go back to reference Baldwin TA, Li Y, Marsden AN, Rinné S, Garza-Carbajal A, Schindler RFR, et al. POPDC1 scaffolds a complex of adenylyl cyclase 9 and the potassium channel TREK-1 in heart. EMBO Rep. 2022;23:e55208.PubMedPubMedCentralCrossRef Baldwin TA, Li Y, Marsden AN, Rinné S, Garza-Carbajal A, Schindler RFR, et al. POPDC1 scaffolds a complex of adenylyl cyclase 9 and the potassium channel TREK-1 in heart. EMBO Rep. 2022;23:e55208.PubMedPubMedCentralCrossRef
70.
go back to reference Tibbo AJ, Mika D, Dobi S, Ling J, McFall A, Tejeda GS, et al. Phosphodiesterase type 4 anchoring regulates cAMP signaling to Popeye domain-containing proteins. J Mol Cell Cardiol. 2022;165:86–102.PubMedPubMedCentralCrossRef Tibbo AJ, Mika D, Dobi S, Ling J, McFall A, Tejeda GS, et al. Phosphodiesterase type 4 anchoring regulates cAMP signaling to Popeye domain-containing proteins. J Mol Cell Cardiol. 2022;165:86–102.PubMedPubMedCentralCrossRef
71.
go back to reference Gingold-Belfer R, Kessler-Icekson G, Morgenstern S, Rath-Wolfson L, Zemel R, Boltin D, et al. The transition from gastric intestinal metaplasia to gastric cancer involves POPDC1 and POPDC3 downregulation. Int J Mol Sci. 2021;22:5359.PubMedPubMedCentralCrossRef Gingold-Belfer R, Kessler-Icekson G, Morgenstern S, Rath-Wolfson L, Zemel R, Boltin D, et al. The transition from gastric intestinal metaplasia to gastric cancer involves POPDC1 and POPDC3 downregulation. Int J Mol Sci. 2021;22:5359.PubMedPubMedCentralCrossRef
72.
go back to reference Amunjela JN, Tucker SJ. POPDC1 is suppressed in human breast cancer tissues and is negatively regulated by EGFR in breast cancer cell lines. Cancer Lett. 2017;406:81–92.PubMedCrossRef Amunjela JN, Tucker SJ. POPDC1 is suppressed in human breast cancer tissues and is negatively regulated by EGFR in breast cancer cell lines. Cancer Lett. 2017;406:81–92.PubMedCrossRef
73.
go back to reference Wu Y, Zhang J. Study on differentially expressed genes between stage M and stage MS neuroblastoma. Front Oncol. 2022;12:1083570.PubMedCrossRef Wu Y, Zhang J. Study on differentially expressed genes between stage M and stage MS neuroblastoma. Front Oncol. 2022;12:1083570.PubMedCrossRef
74.
go back to reference Kim M, Jang HR, Haam K, Kang TW, Kim JH, Kim SY, et al. Frequent silencing of popeye domain-containing genes, BVES and POPDC3, is associated with promoter hypermethylation in gastric cancer. Carcinogenesis. 2010;31:1685–93.PubMedCrossRef Kim M, Jang HR, Haam K, Kang TW, Kim JH, Kim SY, et al. Frequent silencing of popeye domain-containing genes, BVES and POPDC3, is associated with promoter hypermethylation in gastric cancer. Carcinogenesis. 2010;31:1685–93.PubMedCrossRef
75.
go back to reference Osler ME, Chang MS, Bader DM. Bves modulates epithelial integrity through an interaction at the tight junction. J Cell Sci. 2005;118:4667–78.PubMedCrossRef Osler ME, Chang MS, Bader DM. Bves modulates epithelial integrity through an interaction at the tight junction. J Cell Sci. 2005;118:4667–78.PubMedCrossRef
76.
go back to reference Hager HA, Roberts RJ, Cross EE, Proux-Gillardeaux V, Bader DM. Identification of a novel Bves function: regulation of vesicular transport. Embo J. 2010;29:532–45.PubMedPubMedCentralCrossRef Hager HA, Roberts RJ, Cross EE, Proux-Gillardeaux V, Bader DM. Identification of a novel Bves function: regulation of vesicular transport. Embo J. 2010;29:532–45.PubMedPubMedCentralCrossRef
77.
go back to reference Parang B, Kaz AM, Barrett CW, Short SP, Ning W, Keating CE, et al. BVES regulates c-Myc stability via PP2A and suppresses colitis-induced tumourigenesis. Gut. 2017;66:852–62.PubMedCrossRef Parang B, Kaz AM, Barrett CW, Short SP, Ning W, Keating CE, et al. BVES regulates c-Myc stability via PP2A and suppresses colitis-induced tumourigenesis. Gut. 2017;66:852–62.PubMedCrossRef
78.
go back to reference Han P, Fu Y, Luo M, He J, Liu J, Liao J, et al. BVES inhibition triggers epithelial-mesenchymal transition in human hepatocellular carcinoma. Dig Dis Sci. 2014;59:992–1000.PubMedCrossRef Han P, Fu Y, Luo M, He J, Liu J, Liao J, et al. BVES inhibition triggers epithelial-mesenchymal transition in human hepatocellular carcinoma. Dig Dis Sci. 2014;59:992–1000.PubMedCrossRef
79.
go back to reference Ramms DJ, Raimondi F, Arang N, Herberg FW, Taylor SS, Gutkind JS. Gαs-protein kinase A (PKA) pathway signalopathies: the emerging genetic landscape and therapeutic potential of human diseases driven by aberrant Gαs-PKA signaling. Pharmacol Rev. 2021;73:155–97.PubMedCrossRef Ramms DJ, Raimondi F, Arang N, Herberg FW, Taylor SS, Gutkind JS. Gαs-protein kinase A (PKA) pathway signalopathies: the emerging genetic landscape and therapeutic potential of human diseases driven by aberrant Gαs-PKA signaling. Pharmacol Rev. 2021;73:155–97.PubMedCrossRef
80.
go back to reference Djari C, Sahut-Barnola I, Septier A, Plotton I, Montanier N, Dufour D, et al. Protein kinase A drives paracrine crisis and WNT4-dependent testis tumor in Carney complex. J Clin Invest. 2021;131:e146910.PubMedPubMedCentralCrossRef Djari C, Sahut-Barnola I, Septier A, Plotton I, Montanier N, Dufour D, et al. Protein kinase A drives paracrine crisis and WNT4-dependent testis tumor in Carney complex. J Clin Invest. 2021;131:e146910.PubMedPubMedCentralCrossRef
81.
go back to reference Beuschlein F, Fassnacht M, Assié G, Calebiro D, Stratakis CA, Osswald A, et al. Constitutive activation of PKA catalytic subunit in adrenal Cushing’s syndrome. N Engl J Med. 2014;370:1019–28.PubMedPubMedCentralCrossRef Beuschlein F, Fassnacht M, Assié G, Calebiro D, Stratakis CA, Osswald A, et al. Constitutive activation of PKA catalytic subunit in adrenal Cushing’s syndrome. N Engl J Med. 2014;370:1019–28.PubMedPubMedCentralCrossRef
82.
83.
go back to reference Lucia K, Wu Y, Garcia JM, Barlier A, Buchfelder M, Saeger W, et al. Hypoxia and the hypoxia inducible factor 1α activate protein kinase A by repressing RII beta subunit transcription. Oncogene. 2020;39:3367–80.PubMedPubMedCentralCrossRef Lucia K, Wu Y, Garcia JM, Barlier A, Buchfelder M, Saeger W, et al. Hypoxia and the hypoxia inducible factor 1α activate protein kinase A by repressing RII beta subunit transcription. Oncogene. 2020;39:3367–80.PubMedPubMedCentralCrossRef
84.
go back to reference Bolger GB. The cAMP-signaling cancers: Clinically-divergent disorders with a common central pathway. Front Endocrinol (Lausanne). 2022;13:1024423.PubMedCrossRef Bolger GB. The cAMP-signaling cancers: Clinically-divergent disorders with a common central pathway. Front Endocrinol (Lausanne). 2022;13:1024423.PubMedCrossRef
85.
go back to reference Horvath A, Bertherat J, Groussin L, Guillaud-Bataille M, Tsang K, Cazabat L, et al. Mutations and polymorphisms in the gene encoding regulatory subunit type 1-alpha of protein kinase A (PRKAR1A): an update. Hum Mutat. 2010;31:369–79.PubMedPubMedCentralCrossRef Horvath A, Bertherat J, Groussin L, Guillaud-Bataille M, Tsang K, Cazabat L, et al. Mutations and polymorphisms in the gene encoding regulatory subunit type 1-alpha of protein kinase A (PRKAR1A): an update. Hum Mutat. 2010;31:369–79.PubMedPubMedCentralCrossRef
86.
go back to reference Sato Y, Maekawa S, Ishii R, Sanada M, Morikawa T, Shiraishi Y, et al. Recurrent somatic mutations underlie corticotropin-independent Cushing’s syndrome. Science. 2014;344:917–20.PubMedCrossRef Sato Y, Maekawa S, Ishii R, Sanada M, Morikawa T, Shiraishi Y, et al. Recurrent somatic mutations underlie corticotropin-independent Cushing’s syndrome. Science. 2014;344:917–20.PubMedCrossRef
87.
go back to reference Espiard S, Knape MJ, Bathon K, Assié G, Rizk-Rabin M, Faillot S, et al. Activating PRKACB somatic mutation in cortisol-producing adenomas. JCI Insight. 2018;3:e98296.PubMedPubMedCentralCrossRef Espiard S, Knape MJ, Bathon K, Assié G, Rizk-Rabin M, Faillot S, et al. Activating PRKACB somatic mutation in cortisol-producing adenomas. JCI Insight. 2018;3:e98296.PubMedPubMedCentralCrossRef
88.
go back to reference Neumayer C, Ng D, Jiang CS, Qureshi A, Lalazar G, Vaughan R, et al. Oncogenic addiction of fibrolamellar hepatocellular carcinoma to the fusion kinase DNAJB1-PRKACA. Clin Cancer Res. 2023;29:271–8.PubMedCrossRef Neumayer C, Ng D, Jiang CS, Qureshi A, Lalazar G, Vaughan R, et al. Oncogenic addiction of fibrolamellar hepatocellular carcinoma to the fusion kinase DNAJB1-PRKACA. Clin Cancer Res. 2023;29:271–8.PubMedCrossRef
89.
go back to reference Vyas M, Hechtman JF, Zhang Y, Benayed R, Yavas A, Askan G, et al. DNAJB1-PRKACA fusions occur in oncocytic pancreatic and biliary neoplasms and are not specific for fibrolamellar hepatocellular carcinoma. Mod Pathol. 2020;33:648–56.PubMedCrossRef Vyas M, Hechtman JF, Zhang Y, Benayed R, Yavas A, Askan G, et al. DNAJB1-PRKACA fusions occur in oncocytic pancreatic and biliary neoplasms and are not specific for fibrolamellar hepatocellular carcinoma. Mod Pathol. 2020;33:648–56.PubMedCrossRef
90.
go back to reference Singhi AD, Wood LD, Parks E, Torbenson MS, Felsenstein M, Hruban RH, et al. Recurrent rearrangements in PRKACA and PRKACB in intraductal oncocytic papillary neoplasms of the pancreas and bile duct. Gastroenterology. 2020;158:573–82.PubMedCrossRef Singhi AD, Wood LD, Parks E, Torbenson MS, Felsenstein M, Hruban RH, et al. Recurrent rearrangements in PRKACA and PRKACB in intraductal oncocytic papillary neoplasms of the pancreas and bile duct. Gastroenterology. 2020;158:573–82.PubMedCrossRef
91.
go back to reference Gausdal G, Wergeland A, Skavland J, Nguyen E, Pendino F, Rouhee N, et al. Cyclic AMP can promote APL progression and protect myeloid leukemia cells against anthracycline-induced apoptosis. Cell Death Dis. 2013;4:e516.PubMedPubMedCentralCrossRef Gausdal G, Wergeland A, Skavland J, Nguyen E, Pendino F, Rouhee N, et al. Cyclic AMP can promote APL progression and protect myeloid leukemia cells against anthracycline-induced apoptosis. Cell Death Dis. 2013;4:e516.PubMedPubMedCentralCrossRef
92.
go back to reference Naderi EH, Findley HW, Ruud E, Blomhoff HK, Naderi S. Activation of cAMP signaling inhibits DNA damage-induced apoptosis in BCP-ALL cells through abrogation of p53 accumulation. Blood. 2009;114:608–18.PubMedCrossRef Naderi EH, Findley HW, Ruud E, Blomhoff HK, Naderi S. Activation of cAMP signaling inhibits DNA damage-induced apoptosis in BCP-ALL cells through abrogation of p53 accumulation. Blood. 2009;114:608–18.PubMedCrossRef
93.
go back to reference Kusnadi EP, Trigos AS, Cullinane C, Goode DL, Larsson O, Devlin JR, et al. Reprogrammed mRNA translation drives resistance to therapeutic targeting of ribosome biogenesis. Embo J. 2020;39:e105111.PubMedPubMedCentralCrossRef Kusnadi EP, Trigos AS, Cullinane C, Goode DL, Larsson O, Devlin JR, et al. Reprogrammed mRNA translation drives resistance to therapeutic targeting of ribosome biogenesis. Embo J. 2020;39:e105111.PubMedPubMedCentralCrossRef
94.
go back to reference Roderick JE, Gallagher KM, Murphy LC, O’Connor KW, Tang K, Zhang B, et al. Prostaglandin E2 stimulates cAMP signaling and resensitizes human leukemia cells to glucocorticoid-induced cell death. Blood. 2021;137:500–12.PubMedPubMedCentralCrossRef Roderick JE, Gallagher KM, Murphy LC, O’Connor KW, Tang K, Zhang B, et al. Prostaglandin E2 stimulates cAMP signaling and resensitizes human leukemia cells to glucocorticoid-induced cell death. Blood. 2021;137:500–12.PubMedPubMedCentralCrossRef
95.
go back to reference Illiano M, Conte M, Sapio L, Nebbioso A, Spina A, Altucci L, et al. Forskolin sensitizes human acute myeloid leukemia cells to H3K27me2/3 demethylases GSKJ4 inhibitor via protein kinase A. Front Pharmacol. 2018;9:792.PubMedPubMedCentralCrossRef Illiano M, Conte M, Sapio L, Nebbioso A, Spina A, Altucci L, et al. Forskolin sensitizes human acute myeloid leukemia cells to H3K27me2/3 demethylases GSKJ4 inhibitor via protein kinase A. Front Pharmacol. 2018;9:792.PubMedPubMedCentralCrossRef
96.
go back to reference Smith PG, Wang F, Wilkinson KN, Savage KJ, Klein U, Neuberg DS, et al. The phosphodiesterase PDE4B limits cAMP-associated PI3K/AKT-dependent apoptosis in diffuse large B-cell lymphoma. Blood. 2005;105:308–16.PubMedCrossRef Smith PG, Wang F, Wilkinson KN, Savage KJ, Klein U, Neuberg DS, et al. The phosphodiesterase PDE4B limits cAMP-associated PI3K/AKT-dependent apoptosis in diffuse large B-cell lymphoma. Blood. 2005;105:308–16.PubMedCrossRef
97.
go back to reference Wang Z, Zhang X, Tian X, Yang Y, Ma L, Wang J, et al. CREB stimulates GPX4 transcription to inhibit ferroptosis in lung adenocarcinoma. Oncol Rep. 2021;45:88.PubMedPubMedCentralCrossRef Wang Z, Zhang X, Tian X, Yang Y, Ma L, Wang J, et al. CREB stimulates GPX4 transcription to inhibit ferroptosis in lung adenocarcinoma. Oncol Rep. 2021;45:88.PubMedPubMedCentralCrossRef
98.
go back to reference Alam SK, Zhang Y, Wang L, Zhu Z, Hernandez CE, Zhou Y, et al. DARPP-32 promotes ERBB3-mediated resistance to molecular targeted therapy in EGFR-mutated lung adenocarcinoma. Oncogene. 2022;41:83–98.PubMedCrossRef Alam SK, Zhang Y, Wang L, Zhu Z, Hernandez CE, Zhou Y, et al. DARPP-32 promotes ERBB3-mediated resistance to molecular targeted therapy in EGFR-mutated lung adenocarcinoma. Oncogene. 2022;41:83–98.PubMedCrossRef
99.
go back to reference Kim IK, McCutcheon JN, Rao G, Liu SV, Pommier Y, Skrzypski M, et al. Acquired SETD2 mutation and impaired CREB1 activation confer cisplatin resistance in metastatic non-small cell lung cancer. Oncogene. 2019;38:180–93.PubMedCrossRef Kim IK, McCutcheon JN, Rao G, Liu SV, Pommier Y, Skrzypski M, et al. Acquired SETD2 mutation and impaired CREB1 activation confer cisplatin resistance in metastatic non-small cell lung cancer. Oncogene. 2019;38:180–93.PubMedCrossRef
100.
go back to reference Wang YW, Chen X, Gao JW, Zhang H, Ma RR, Gao ZH, et al. High expression of cAMP-responsive element-binding protein 1 (CREB1) is associated with metastasis, tumor stage and poor outcome in gastric cancer. Oncotarget. 2015;6:10646–57.PubMedPubMedCentralCrossRef Wang YW, Chen X, Gao JW, Zhang H, Ma RR, Gao ZH, et al. High expression of cAMP-responsive element-binding protein 1 (CREB1) is associated with metastasis, tumor stage and poor outcome in gastric cancer. Oncotarget. 2015;6:10646–57.PubMedPubMedCentralCrossRef
101.
go back to reference Sun DP, Fang CL, Chen HK, Wen KS, Hseu YC, Hung ST, et al. EPAC1 overexpression is a prognostic marker and its inhibition shows promising therapeutic potential for gastric cancer. Oncol Rep. 2017;37:1953–60.PubMedPubMedCentralCrossRef Sun DP, Fang CL, Chen HK, Wen KS, Hseu YC, Hung ST, et al. EPAC1 overexpression is a prognostic marker and its inhibition shows promising therapeutic potential for gastric cancer. Oncol Rep. 2017;37:1953–60.PubMedPubMedCentralCrossRef
102.
go back to reference Zhu S, Soutto M, Chen Z, Blanca Piazuelo M, Kay Washington M, Belkhiri A, et al. Activation of IGF1R by DARPP-32 promotes STAT3 signaling in gastric cancer cells. Oncogene. 2019;38:5805–16.PubMedPubMedCentralCrossRef Zhu S, Soutto M, Chen Z, Blanca Piazuelo M, Kay Washington M, Belkhiri A, et al. Activation of IGF1R by DARPP-32 promotes STAT3 signaling in gastric cancer cells. Oncogene. 2019;38:5805–16.PubMedPubMedCentralCrossRef
103.
go back to reference Zhu S, Soutto M, Chen Z, Peng D, Romero-Gallo J, Krishna US, et al. Helicobacter pylori-induced cell death is counteracted by NF-κB-mediated transcription of DARPP-32. Gut. 2017;66:761–2.PubMedCrossRef Zhu S, Soutto M, Chen Z, Peng D, Romero-Gallo J, Krishna US, et al. Helicobacter pylori-induced cell death is counteracted by NF-κB-mediated transcription of DARPP-32. Gut. 2017;66:761–2.PubMedCrossRef
104.
go back to reference Zhu S, Khalafi S, Chen Z, Poveda J, Peng D, Lu H, et al. Silencing of miR490-3p by H. pylori activates DARPP-32 and induces resistance to gefitinib. Cancer Lett. 2020;491:87–96.PubMedPubMedCentralCrossRef Zhu S, Khalafi S, Chen Z, Poveda J, Peng D, Lu H, et al. Silencing of miR490-3p by H. pylori activates DARPP-32 and induces resistance to gefitinib. Cancer Lett. 2020;491:87–96.PubMedPubMedCentralCrossRef
105.
106.
go back to reference Hirsch TZ, Negulescu A, Gupta B, Caruso S, Noblet B, Couchy G, et al. BAP1 mutations define a homogeneous subgroup of hepatocellular carcinoma with fibrolamellar-like features and activated PKA. J Hepatol. 2020;72:924–36.PubMedCrossRef Hirsch TZ, Negulescu A, Gupta B, Caruso S, Noblet B, Couchy G, et al. BAP1 mutations define a homogeneous subgroup of hepatocellular carcinoma with fibrolamellar-like features and activated PKA. J Hepatol. 2020;72:924–36.PubMedCrossRef
107.
go back to reference Nault JC, Fabre M, Couchy G, Pilati C, Jeannot E, van Nhieu JT, et al. GNAS-activating mutations define a rare subgroup of inflammatory liver tumors characterized by STAT3 activation. J Hepatol. 2012;56:184–91.PubMedCrossRef Nault JC, Fabre M, Couchy G, Pilati C, Jeannot E, van Nhieu JT, et al. GNAS-activating mutations define a rare subgroup of inflammatory liver tumors characterized by STAT3 activation. J Hepatol. 2012;56:184–91.PubMedCrossRef
108.
go back to reference Li Y, Fu Y, Hu X, Sun L, Tang D, Li N, et al. The HBx-CTTN interaction promotes cell proliferation and migration of hepatocellular carcinoma via CREB1. Cell Death Dis. 2019;10:405.PubMedPubMedCentralCrossRef Li Y, Fu Y, Hu X, Sun L, Tang D, Li N, et al. The HBx-CTTN interaction promotes cell proliferation and migration of hepatocellular carcinoma via CREB1. Cell Death Dis. 2019;10:405.PubMedPubMedCentralCrossRef
109.
go back to reference Zhang H, Yang S, Wang J, Jiang Y. Blockade of AMPK-mediated cAMP-PKA-CREB/ATF1 signaling synergizes with aspirin to inhibit hepatocellular carcinoma. Cancers (Basel). 2021;13:1738.PubMedCrossRef Zhang H, Yang S, Wang J, Jiang Y. Blockade of AMPK-mediated cAMP-PKA-CREB/ATF1 signaling synergizes with aspirin to inhibit hepatocellular carcinoma. Cancers (Basel). 2021;13:1738.PubMedCrossRef
110.
go back to reference Wang J, Ma L, Weng W, Qiao Y, Zhang Y, He J, et al. Mutual interaction between YAP and CREB promotes tumorigenesis in liver cancer. Hepatology. 2013;58:1011–20.PubMedCrossRef Wang J, Ma L, Weng W, Qiao Y, Zhang Y, He J, et al. Mutual interaction between YAP and CREB promotes tumorigenesis in liver cancer. Hepatology. 2013;58:1011–20.PubMedCrossRef
111.
go back to reference Zhou M, Mok MT, Sun H, Chan AW, Huang Y, Cheng AS, et al. The anti-diabetic drug exenatide, a glucagon-like peptide-1 receptor agonist, counteracts hepatocarcinogenesis through cAMP-PKA-EGFR-STAT3 axis. Oncogene. 2017;36:4135–49.PubMedCrossRef Zhou M, Mok MT, Sun H, Chan AW, Huang Y, Cheng AS, et al. The anti-diabetic drug exenatide, a glucagon-like peptide-1 receptor agonist, counteracts hepatocarcinogenesis through cAMP-PKA-EGFR-STAT3 axis. Oncogene. 2017;36:4135–49.PubMedCrossRef
112.
go back to reference Massimi M, Cardarelli S, Galli F, Giardi MF, Ragusa F, Panera N, et al. Increase of intracellular cyclic AMP by PDE4 inhibitors affects HepG2 cell cycle progression and survival. J Cell Biochem. 2017;118:1401–11.PubMedCrossRef Massimi M, Cardarelli S, Galli F, Giardi MF, Ragusa F, Panera N, et al. Increase of intracellular cyclic AMP by PDE4 inhibitors affects HepG2 cell cycle progression and survival. J Cell Biochem. 2017;118:1401–11.PubMedCrossRef
113.
go back to reference Ragusa F, Panera N, Cardarelli S, Scarsella M, Bianchi M, Biagioni S, et al. Phosphodiesterase 4D depletion/inhibition exerts anti-oncogenic properties in hepatocellular carcinoma. Cancers (Basel). 2021;13:2182.PubMedCrossRef Ragusa F, Panera N, Cardarelli S, Scarsella M, Bianchi M, Biagioni S, et al. Phosphodiesterase 4D depletion/inhibition exerts anti-oncogenic properties in hepatocellular carcinoma. Cancers (Basel). 2021;13:2182.PubMedCrossRef
114.
go back to reference Pan P, Oshima K, Huang YW, Agle KA, Drobyski WR, Chen X, et al. Loss of FFAR2 promotes colon cancer by epigenetic dysregulation of inflammation suppressors. Int J Cancer. 2018;143:886–96.PubMedPubMedCentralCrossRef Pan P, Oshima K, Huang YW, Agle KA, Drobyski WR, Chen X, et al. Loss of FFAR2 promotes colon cancer by epigenetic dysregulation of inflammation suppressors. Int J Cancer. 2018;143:886–96.PubMedPubMedCentralCrossRef
115.
go back to reference Han J, Jiang Q, Ma R, Zhang H, Tong D, Tang K, et al. Norepinephrine-CREB1-miR-373 axis promotes progression of colon cancer. Mol Oncol. 2020;14:1059–73.PubMedPubMedCentralCrossRef Han J, Jiang Q, Ma R, Zhang H, Tong D, Tang K, et al. Norepinephrine-CREB1-miR-373 axis promotes progression of colon cancer. Mol Oncol. 2020;14:1059–73.PubMedPubMedCentralCrossRef
116.
go back to reference Hany D, Vafeiadou V, Picard D. CRISPR-Cas9 screen reveals a role of purine synthesis for estrogen receptor α activity and tamoxifen resistance of breast cancer cells. Sci Adv. 2023;9:eadd3685.PubMedPubMedCentralCrossRef Hany D, Vafeiadou V, Picard D. CRISPR-Cas9 screen reveals a role of purine synthesis for estrogen receptor α activity and tamoxifen resistance of breast cancer cells. Sci Adv. 2023;9:eadd3685.PubMedPubMedCentralCrossRef
117.
go back to reference Stevens LE, Peluffo G, Qiu X, Temko D, Fassl A, Li Z, et al. JAK-STAT signaling in inflammatory breast cancer enables chemotherapy-resistant cell states. Cancer Res. 2023;83:264–84.PubMedCrossRef Stevens LE, Peluffo G, Qiu X, Temko D, Fassl A, Li Z, et al. JAK-STAT signaling in inflammatory breast cancer enables chemotherapy-resistant cell states. Cancer Res. 2023;83:264–84.PubMedCrossRef
118.
go back to reference Chen S, Paul MR, Sterner CJ, Belka GK, Wang D, Xu P, et al. PAQR8 promotes breast cancer recurrence and confers resistance to multiple therapies. Breast Cancer Res. 2023;25:1.PubMedPubMedCentralCrossRef Chen S, Paul MR, Sterner CJ, Belka GK, Wang D, Xu P, et al. PAQR8 promotes breast cancer recurrence and confers resistance to multiple therapies. Breast Cancer Res. 2023;25:1.PubMedPubMedCentralCrossRef
119.
go back to reference Mukherjee P, Bagchi A, Banerjee A, Roy H, Bhattacharya A, Biswas A, et al. PDE4 inhibitor eliminates breast cancer stem cells via noncanonical activation of mTOR. J Cell Biochem. 2022;123:1980–96.PubMedCrossRef Mukherjee P, Bagchi A, Banerjee A, Roy H, Bhattacharya A, Biswas A, et al. PDE4 inhibitor eliminates breast cancer stem cells via noncanonical activation of mTOR. J Cell Biochem. 2022;123:1980–96.PubMedCrossRef
120.
go back to reference Persaud L, Mighty J, Zhong X, Francis A, Mendez M, Muharam H, et al. IL-24 promotes apoptosis through cAMP-dependent PKA pathways in human breast cancer cells. Int J Mol Sci. 2018;19:3561.PubMedPubMedCentralCrossRef Persaud L, Mighty J, Zhong X, Francis A, Mendez M, Muharam H, et al. IL-24 promotes apoptosis through cAMP-dependent PKA pathways in human breast cancer cells. Int J Mol Sci. 2018;19:3561.PubMedPubMedCentralCrossRef
121.
go back to reference Illiano M, Sapio L, Salzillo A, Capasso L, Caiafa I, Chiosi E, et al. Forskolin improves sensitivity to doxorubicin of triple negative breast cancer cells via Protein Kinase A-mediated ERK1/2 inhibition. Biochem Pharmacol. 2018;152:104–13.PubMedCrossRef Illiano M, Sapio L, Salzillo A, Capasso L, Caiafa I, Chiosi E, et al. Forskolin improves sensitivity to doxorubicin of triple negative breast cancer cells via Protein Kinase A-mediated ERK1/2 inhibition. Biochem Pharmacol. 2018;152:104–13.PubMedCrossRef
122.
go back to reference Hao N, Shen W, Du R, Jiang S, Zhu J, Chen Y, et al. Phosphodiesterase 3A represents a therapeutic target that drives stem cell-like property and metastasis in breast cancer. Mol Cancer Ther. 2020;19:868–81.PubMedCrossRef Hao N, Shen W, Du R, Jiang S, Zhu J, Chen Y, et al. Phosphodiesterase 3A represents a therapeutic target that drives stem cell-like property and metastasis in breast cancer. Mol Cancer Ther. 2020;19:868–81.PubMedCrossRef
123.
go back to reference Yue W, Ma J, Xiao Y, Wang P, Gu X, Xie B, et al. The apoptotic resistance of BRCA1-deficient ovarian cancer cells is mediated by cAMP. Front Cell Dev Biol. 2022;10:889656.PubMedPubMedCentralCrossRef Yue W, Ma J, Xiao Y, Wang P, Gu X, Xie B, et al. The apoptotic resistance of BRCA1-deficient ovarian cancer cells is mediated by cAMP. Front Cell Dev Biol. 2022;10:889656.PubMedPubMedCentralCrossRef
124.
go back to reference Kang Y, Nagaraja AS, Armaiz-Pena GN, Dorniak PL, Hu W, Rupaimoole R, et al. Adrenergic stimulation of DUSP1 impairs chemotherapy response in ovarian cancer. Clin Cancer Res. 2016;22:1713–24.PubMedCrossRef Kang Y, Nagaraja AS, Armaiz-Pena GN, Dorniak PL, Hu W, Rupaimoole R, et al. Adrenergic stimulation of DUSP1 impairs chemotherapy response in ovarian cancer. Clin Cancer Res. 2016;22:1713–24.PubMedCrossRef
125.
go back to reference Rodríguez CI, Castro-Pérez E, Prabhakar K, Block L, Longley BJ, Wisinski JA, et al. EPAC-RAP1 axis-mediated switch in the response of primary and metastatic melanoma to cyclic AMP. Mol Cancer Res. 2017;15:1792–802.PubMedPubMedCentralCrossRef Rodríguez CI, Castro-Pérez E, Prabhakar K, Block L, Longley BJ, Wisinski JA, et al. EPAC-RAP1 axis-mediated switch in the response of primary and metastatic melanoma to cyclic AMP. Mol Cancer Res. 2017;15:1792–802.PubMedPubMedCentralCrossRef
126.
go back to reference Rodríguez CI, Castro-Pérez E, Longley BJ, Setaluri V. Elevated cyclic AMP levels promote BRAF(CA)/Pten(-/-) mouse melanoma growth but pCREB is negatively correlated with human melanoma progression. Cancer Lett. 2018;414:268–77.PubMedCrossRef Rodríguez CI, Castro-Pérez E, Longley BJ, Setaluri V. Elevated cyclic AMP levels promote BRAF(CA)/Pten(-/-) mouse melanoma growth but pCREB is negatively correlated with human melanoma progression. Cancer Lett. 2018;414:268–77.PubMedCrossRef
127.
go back to reference Krishnan A, Bhasker AI, Singh MK, Rodriguez CI, Pérez EC, Altameemi S, et al. EPAC regulates melanoma growth by stimulating mTORC1 signaling and loss of EPAC signaling dependence correlates with melanoma progression. Mol Cancer Res. 2022;20:1548–60.PubMedPubMedCentralCrossRef Krishnan A, Bhasker AI, Singh MK, Rodriguez CI, Pérez EC, Altameemi S, et al. EPAC regulates melanoma growth by stimulating mTORC1 signaling and loss of EPAC signaling dependence correlates with melanoma progression. Mol Cancer Res. 2022;20:1548–60.PubMedPubMedCentralCrossRef
128.
go back to reference Ostojić J, Yoon YS, Sonntag T, Nguyen B, Vaughan JM, Shokhirev M, et al. Transcriptional co-activator regulates melanocyte differentiation and oncogenesis by integrating cAMP and MAPK/ERK pathways. Cell Rep. 2021;35:109136.PubMedPubMedCentralCrossRef Ostojić J, Yoon YS, Sonntag T, Nguyen B, Vaughan JM, Shokhirev M, et al. Transcriptional co-activator regulates melanocyte differentiation and oncogenesis by integrating cAMP and MAPK/ERK pathways. Cell Rep. 2021;35:109136.PubMedPubMedCentralCrossRef
129.
go back to reference Dagar M, Singh JP, Dagar G, Tyagi RK, Bagchi G. Phosphorylation of HSP90 by protein kinase A is essential for the nuclear translocation of androgen receptor. J Biol Chem. 2019;294:8699–710.PubMedPubMedCentralCrossRef Dagar M, Singh JP, Dagar G, Tyagi RK, Bagchi G. Phosphorylation of HSP90 by protein kinase A is essential for the nuclear translocation of androgen receptor. J Biol Chem. 2019;294:8699–710.PubMedPubMedCentralCrossRef
130.
go back to reference Zhao N, Peacock SO, Lo CH, Heidman LM, Rice MA, Fahrenholtz CD, et al. Arginine vasopressin receptor 1a is a therapeutic target for castration-resistant prostate cancer. Sci Transl Med. 2019;11:eaaw4636.PubMedPubMedCentralCrossRef Zhao N, Peacock SO, Lo CH, Heidman LM, Rice MA, Fahrenholtz CD, et al. Arginine vasopressin receptor 1a is a therapeutic target for castration-resistant prostate cancer. Sci Transl Med. 2019;11:eaaw4636.PubMedPubMedCentralCrossRef
131.
go back to reference Pan W, Zhang Z, Kimball H, Qu F, Berlind K, Stopsack KH, et al. Abiraterone acetate induces CREB1 phosphorylation and enhances the function of the CBP-p300 complex, leading to resistance in prostate cancer cells. Clin Cancer Res. 2021;27:2087–99.PubMedPubMedCentralCrossRef Pan W, Zhang Z, Kimball H, Qu F, Berlind K, Stopsack KH, et al. Abiraterone acetate induces CREB1 phosphorylation and enhances the function of the CBP-p300 complex, leading to resistance in prostate cancer cells. Clin Cancer Res. 2021;27:2087–99.PubMedPubMedCentralCrossRef
132.
go back to reference Zhang Y, Zheng D, Zhou T, Song H, Hulsurkar M, Su N, et al. Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers. Nat Commun. 2018;9:4080.PubMedPubMedCentralCrossRef Zhang Y, Zheng D, Zhou T, Song H, Hulsurkar M, Su N, et al. Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers. Nat Commun. 2018;9:4080.PubMedPubMedCentralCrossRef
133.
go back to reference Cheng Y, Gao XH, Li XJ, Cao QH, Zhao DD, Zhou JR, et al. Depression promotes prostate cancer invasion and metastasis via a sympathetic-cAMP-FAK signaling pathway. Oncogene. 2018;37:2953–66.PubMedPubMedCentralCrossRef Cheng Y, Gao XH, Li XJ, Cao QH, Zhao DD, Zhou JR, et al. Depression promotes prostate cancer invasion and metastasis via a sympathetic-cAMP-FAK signaling pathway. Oncogene. 2018;37:2953–66.PubMedPubMedCentralCrossRef
134.
go back to reference He X, Zhang L, Chen Y, Remke M, Shih D, Lu F, et al. The G protein α subunit Gαs is a tumor suppressor in Sonic Hedgehog-driven medulloblastoma. Nat Med. 2014;20:1035–42.PubMedPubMedCentralCrossRef He X, Zhang L, Chen Y, Remke M, Shih D, Lu F, et al. The G protein α subunit Gαs is a tumor suppressor in Sonic Hedgehog-driven medulloblastoma. Nat Med. 2014;20:1035–42.PubMedPubMedCentralCrossRef
135.
go back to reference Iglesias-Bartolome R, Torres D, Marone R, Feng X, Martin D, Simaan M, et al. Inactivation of a Gα(s)-PKA tumour suppressor pathway in skin stem cells initiates basal-cell carcinogenesis. Nat Cell Biol. 2015;17:793–803.PubMedPubMedCentralCrossRef Iglesias-Bartolome R, Torres D, Marone R, Feng X, Martin D, Simaan M, et al. Inactivation of a Gα(s)-PKA tumour suppressor pathway in skin stem cells initiates basal-cell carcinogenesis. Nat Cell Biol. 2015;17:793–803.PubMedPubMedCentralCrossRef
137.
go back to reference Delidaki M, Gu M, Hein A, Vatish M, Grammatopoulos DK. Interplay of cAMP and MAPK pathways in hCG secretion and fusogenic gene expression in a trophoblast cell line. Mol Cell Endocrinol. 2011;332:213–20.PubMedCrossRef Delidaki M, Gu M, Hein A, Vatish M, Grammatopoulos DK. Interplay of cAMP and MAPK pathways in hCG secretion and fusogenic gene expression in a trophoblast cell line. Mol Cell Endocrinol. 2011;332:213–20.PubMedCrossRef
138.
go back to reference Pan Z, Xu T, Bao L, Hu X, Jin T, Chen J, et al. CREB3L1 promotes tumor growth and metastasis of anaplastic thyroid carcinoma by remodeling the tumor microenvironment. Mol Cancer. 2022;21:190.PubMedPubMedCentralCrossRef Pan Z, Xu T, Bao L, Hu X, Jin T, Chen J, et al. CREB3L1 promotes tumor growth and metastasis of anaplastic thyroid carcinoma by remodeling the tumor microenvironment. Mol Cancer. 2022;21:190.PubMedPubMedCentralCrossRef
139.
go back to reference Rose M, Schubert C, Dierichs L, Gaisa NT, Heer M, Heidenreich A, et al. OASIS/CREB3L1 is epigenetically silenced in human bladder cancer facilitating tumor cell spreading and migration in vitro. Epigenetics. 2014;9:1626–40.PubMedCrossRef Rose M, Schubert C, Dierichs L, Gaisa NT, Heer M, Heidenreich A, et al. OASIS/CREB3L1 is epigenetically silenced in human bladder cancer facilitating tumor cell spreading and migration in vitro. Epigenetics. 2014;9:1626–40.PubMedCrossRef
140.
go back to reference Saito A, Kamikawa Y, Ito T, Matsuhisa K, Kaneko M, Okamoto T, et al. p53-independent tumor suppression by cell-cycle arrest via CREB/ATF transcription factor OASIS. Cell Rep. 2023;42:112479.PubMedCrossRef Saito A, Kamikawa Y, Ito T, Matsuhisa K, Kaneko M, Okamoto T, et al. p53-independent tumor suppression by cell-cycle arrest via CREB/ATF transcription factor OASIS. Cell Rep. 2023;42:112479.PubMedCrossRef
141.
go back to reference Feng YX, Jin DX, Sokol ES, Reinhardt F, Miller DH, Gupta PB. Cancer-specific PERK signaling drives invasion and metastasis through CREB3L1. Nat Commun. 2017;8:1079.PubMedPubMedCentralCrossRef Feng YX, Jin DX, Sokol ES, Reinhardt F, Miller DH, Gupta PB. Cancer-specific PERK signaling drives invasion and metastasis through CREB3L1. Nat Commun. 2017;8:1079.PubMedPubMedCentralCrossRef
142.
go back to reference Mellor P, Kendall S, Smith S, Saxena A, Anderson DH. Reduced CREB3L1 expression in triple negative and luminal a breast cancer cells contributes to enhanced cell migration, anchorage-independent growth and metastasis. PLoS ONE. 2022;17:e0271090.PubMedPubMedCentralCrossRef Mellor P, Kendall S, Smith S, Saxena A, Anderson DH. Reduced CREB3L1 expression in triple negative and luminal a breast cancer cells contributes to enhanced cell migration, anchorage-independent growth and metastasis. PLoS ONE. 2022;17:e0271090.PubMedPubMedCentralCrossRef
143.
go back to reference Sharifnia T, Wawer MJ, Goodale A, Lee Y, Kazachkova M, Dempster JM, et al. Mapping the landscape of genetic dependencies in chordoma. Nat Commun. 2023;14:1933.PubMedPubMedCentralCrossRef Sharifnia T, Wawer MJ, Goodale A, Lee Y, Kazachkova M, Dempster JM, et al. Mapping the landscape of genetic dependencies in chordoma. Nat Commun. 2023;14:1933.PubMedPubMedCentralCrossRef
144.
go back to reference Cheng JC, Kinjo K, Judelson DR, Chang J, Wu WS, Schmid I, et al. CREB is a critical regulator of normal hematopoiesis and leukemogenesis. Blood. 2008;111:1182–92.PubMedPubMedCentralCrossRef Cheng JC, Kinjo K, Judelson DR, Chang J, Wu WS, Schmid I, et al. CREB is a critical regulator of normal hematopoiesis and leukemogenesis. Blood. 2008;111:1182–92.PubMedPubMedCentralCrossRef
146.
147.
go back to reference Li Y, Chen J, Yang W, Liu H, Wang J, Xiao J, et al. mPGES-1/PGE2 promotes the growth of T-ALL cells in vitro and in vivo by regulating the expression of MTDH via the EP3/cAMP/PKA/CREB pathway. Cell Death Dis. 2020;11:221.PubMedPubMedCentralCrossRef Li Y, Chen J, Yang W, Liu H, Wang J, Xiao J, et al. mPGES-1/PGE2 promotes the growth of T-ALL cells in vitro and in vivo by regulating the expression of MTDH via the EP3/cAMP/PKA/CREB pathway. Cell Death Dis. 2020;11:221.PubMedPubMedCentralCrossRef
149.
go back to reference Skah S, Richartz N, Duthil E, Gilljam KM, Bindesbøll C, Naderi EH, et al. cAMP-mediated autophagy inhibits DNA damage-induced death of leukemia cells independent of p53. Oncotarget. 2018;9:30434–49.PubMedPubMedCentralCrossRef Skah S, Richartz N, Duthil E, Gilljam KM, Bindesbøll C, Naderi EH, et al. cAMP-mediated autophagy inhibits DNA damage-induced death of leukemia cells independent of p53. Oncotarget. 2018;9:30434–49.PubMedPubMedCentralCrossRef
150.
go back to reference Richartz N, Pietka W, Gilljam KM, Skah S, Skålhegg BS, Bhagwat S, et al. cAMP-mediated autophagy promotes cell survival via ROS-Induced activation of PARP1: implications for treatment of acute lymphoblastic leukemia. Mol Cancer Res. 2022;20:400–11.PubMedCrossRef Richartz N, Pietka W, Gilljam KM, Skah S, Skålhegg BS, Bhagwat S, et al. cAMP-mediated autophagy promotes cell survival via ROS-Induced activation of PARP1: implications for treatment of acute lymphoblastic leukemia. Mol Cancer Res. 2022;20:400–11.PubMedCrossRef
151.
go back to reference Byun JM, Min CK, Kim K, Bang SM, Lee JJ, Kim JS, et al. Phase II trial of daratumumab with DCEP in relapsed/refractory multiple myeloma patients with extramedullary disease. J Hematol Oncol. 2022;15:150.PubMedPubMedCentralCrossRef Byun JM, Min CK, Kim K, Bang SM, Lee JJ, Kim JS, et al. Phase II trial of daratumumab with DCEP in relapsed/refractory multiple myeloma patients with extramedullary disease. J Hematol Oncol. 2022;15:150.PubMedPubMedCentralCrossRef
152.
go back to reference Korsos V, Miller WH Jr. How retinoic acid and arsenic transformed acute promyelocytic leukemia therapy. J Mol Endocrinol. 2022;69:T69-t83.PubMedCrossRef Korsos V, Miller WH Jr. How retinoic acid and arsenic transformed acute promyelocytic leukemia therapy. J Mol Endocrinol. 2022;69:T69-t83.PubMedCrossRef
153.
go back to reference Zhao Q, Tao J, Zhu Q, Jia PM, Dou AX, Li X, et al. Rapid induction of cAMP/PKA pathway during retinoic acid-induced acute promyelocytic leukemia cell differentiation. Leukemia. 2004;18:285–92.PubMedCrossRef Zhao Q, Tao J, Zhu Q, Jia PM, Dou AX, Li X, et al. Rapid induction of cAMP/PKA pathway during retinoic acid-induced acute promyelocytic leukemia cell differentiation. Leukemia. 2004;18:285–92.PubMedCrossRef
154.
go back to reference He B, Chang Y, Yang C, Zhang Z, Xu G, Feng X, et al. Adenylate cyclase 7 regulated by miR-192 promotes ATRA-induced differentiation of acute promyelocytic leukemia cells. Biochem Biophys Res Commun. 2018;506:543–7.PubMedCrossRef He B, Chang Y, Yang C, Zhang Z, Xu G, Feng X, et al. Adenylate cyclase 7 regulated by miR-192 promotes ATRA-induced differentiation of acute promyelocytic leukemia cells. Biochem Biophys Res Commun. 2018;506:543–7.PubMedCrossRef
155.
go back to reference Zhuang LK, Xu GP, Pan XR, Lou YJ, Zou QP, Xia D, et al. MicroRNA-181a-mediated downregulation of AC9 protein decreases intracellular cAMP level and inhibits ATRA-induced APL cell differentiation. Cell Death Dis. 2014;5:e1161.PubMedPubMedCentralCrossRef Zhuang LK, Xu GP, Pan XR, Lou YJ, Zou QP, Xia D, et al. MicroRNA-181a-mediated downregulation of AC9 protein decreases intracellular cAMP level and inhibits ATRA-induced APL cell differentiation. Cell Death Dis. 2014;5:e1161.PubMedPubMedCentralCrossRef
157.
go back to reference Baiocchi L, Lenci I, Milana M, Kennedy L, Sato K, Zhang W, et al. Cyclic AMP signaling in biliary proliferation: A possible target for cholangiocarcinoma treatment? Cells. 2021;10:1692.PubMedPubMedCentralCrossRef Baiocchi L, Lenci I, Milana M, Kennedy L, Sato K, Zhang W, et al. Cyclic AMP signaling in biliary proliferation: A possible target for cholangiocarcinoma treatment? Cells. 2021;10:1692.PubMedPubMedCentralCrossRef
158.
go back to reference Komiya T, Coxon A, Park Y, Chen WD, Zajac-Kaye M, Meltzer P, et al. Enhanced activity of the CREB co-activator Crtc1 in LKB1 null lung cancer. Oncogene. 2010;29:1672–80.PubMedCrossRef Komiya T, Coxon A, Park Y, Chen WD, Zajac-Kaye M, Meltzer P, et al. Enhanced activity of the CREB co-activator Crtc1 in LKB1 null lung cancer. Oncogene. 2010;29:1672–80.PubMedCrossRef
159.
go back to reference Sapkota GP, Kieloch A, Lizcano JM, Lain S, Arthur JS, Williams MR, et al. Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90(RSK) and cAMP-dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKB1 to suppress cell vrowth. J Biol Chem. 2001;276:19469–82.PubMedCrossRef Sapkota GP, Kieloch A, Lizcano JM, Lain S, Arthur JS, Williams MR, et al. Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90(RSK) and cAMP-dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKB1 to suppress cell vrowth. J Biol Chem. 2001;276:19469–82.PubMedCrossRef
160.
go back to reference Zheng B, Jeong JH, Asara JM, Yuan YY, Granter SR, Chin L, et al. Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. Mol Cell. 2009;33:237–47.PubMedPubMedCentralCrossRef Zheng B, Jeong JH, Asara JM, Yuan YY, Granter SR, Chin L, et al. Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. Mol Cell. 2009;33:237–47.PubMedPubMedCentralCrossRef
161.
go back to reference Pearah A, Ramatchandirin B, Liu T, Wolf RM, Ikeda A, Radovick S, et al. Blocking AMPKαS496 phosphorylation improves mitochondrial dynamics and hyperglycemia in aging and obesity. Cell Chem Biol. 2023;30:1585-600.e6.PubMedCrossRef Pearah A, Ramatchandirin B, Liu T, Wolf RM, Ikeda A, Radovick S, et al. Blocking AMPKαS496 phosphorylation improves mitochondrial dynamics and hyperglycemia in aging and obesity. Cell Chem Biol. 2023;30:1585-600.e6.PubMedCrossRef
162.
go back to reference Alam SK, Wang L, Ren Y, Hernandez CE, Kosari F, Roden AC, et al. ASCL1-regulated DARPP-32 and t-DARPP stimulate small cell lung cancer growth and neuroendocrine tumour cell proliferation. Br J Cancer. 2020;123:819–32.PubMedPubMedCentralCrossRef Alam SK, Wang L, Ren Y, Hernandez CE, Kosari F, Roden AC, et al. ASCL1-regulated DARPP-32 and t-DARPP stimulate small cell lung cancer growth and neuroendocrine tumour cell proliferation. Br J Cancer. 2020;123:819–32.PubMedPubMedCentralCrossRef
163.
go back to reference Rinaldi L, Sepe M, Delle Donne R, Conte K, Arcella A, Borzacchiello D, et al. Mitochondrial AKAP1 supports mTOR pathway and tumor growth. Cell Death Dis. 2017;8:e2842.PubMedPubMedCentralCrossRef Rinaldi L, Sepe M, Delle Donne R, Conte K, Arcella A, Borzacchiello D, et al. Mitochondrial AKAP1 supports mTOR pathway and tumor growth. Cell Death Dis. 2017;8:e2842.PubMedPubMedCentralCrossRef
164.
go back to reference Mo J, Deng L, Peng K, Ouyang S, Ding W, Lou L, et al. Targeting STAT3-VISTA axis to suppress tumor aggression and burden in acute myeloid leukemia. J Hematol Oncol. 2023;16:15.PubMedPubMedCentralCrossRef Mo J, Deng L, Peng K, Ouyang S, Ding W, Lou L, et al. Targeting STAT3-VISTA axis to suppress tumor aggression and burden in acute myeloid leukemia. J Hematol Oncol. 2023;16:15.PubMedPubMedCentralCrossRef
165.
go back to reference Yan Y, Pan J, Chen Y, Xing W, Li Q, Wang D, et al. Increased dopamine and its receptor dopamine receptor D1 promote tumor growth in human hepatocellular carcinoma. Cancer Commun (Lond). 2020;40:694–710.PubMedCrossRef Yan Y, Pan J, Chen Y, Xing W, Li Q, Wang D, et al. Increased dopamine and its receptor dopamine receptor D1 promote tumor growth in human hepatocellular carcinoma. Cancer Commun (Lond). 2020;40:694–710.PubMedCrossRef
166.
go back to reference Xia S, Ma J, Bai X, Zhang H, Cheng S, Zhang M, et al. Prostaglandin E2 promotes the cell growth and invasive ability of hepatocellular carcinoma cells by upregulating c-Myc expression via EP4 receptor and the PKA signaling pathway. Oncol Rep. 2014;32:1521–30.PubMedCrossRef Xia S, Ma J, Bai X, Zhang H, Cheng S, Zhang M, et al. Prostaglandin E2 promotes the cell growth and invasive ability of hepatocellular carcinoma cells by upregulating c-Myc expression via EP4 receptor and the PKA signaling pathway. Oncol Rep. 2014;32:1521–30.PubMedCrossRef
167.
go back to reference Yi H, Wang K, Jin JF, Jin H, Yang L, Zou Y, et al. Elevated adenylyl cyclase 9 expression is a potential prognostic biomarker for patients with colon cancer. Med Sci Monit. 2018;24:19–25.PubMedPubMedCentralCrossRef Yi H, Wang K, Jin JF, Jin H, Yang L, Zou Y, et al. Elevated adenylyl cyclase 9 expression is a potential prognostic biomarker for patients with colon cancer. Med Sci Monit. 2018;24:19–25.PubMedPubMedCentralCrossRef
168.
go back to reference Pleiman JK, Irving AA, Wang Z, Toraason E, Clipson L, Dove WF, et al. The conserved protective cyclic AMP-phosphodiesterase function PDE4B is expressed in the adenoma and adjacent normal colonic epithelium of mammals and silenced in colorectal cancer. PLOS Genet. 2018;14:e1007611.PubMedPubMedCentralCrossRef Pleiman JK, Irving AA, Wang Z, Toraason E, Clipson L, Dove WF, et al. The conserved protective cyclic AMP-phosphodiesterase function PDE4B is expressed in the adenoma and adjacent normal colonic epithelium of mammals and silenced in colorectal cancer. PLOS Genet. 2018;14:e1007611.PubMedPubMedCentralCrossRef
169.
go back to reference Sivaprakasam S, Gurav A, Paschall AV, Coe GL, Chaudhary K, Cai Y, et al. An essential role of Ffar2 (Gpr43) in dietary fibre-mediated promotion of healthy composition of gut microbiota and suppression of intestinal carcinogenesis. Oncogenesis. 2016;5:e238.PubMedPubMedCentralCrossRef Sivaprakasam S, Gurav A, Paschall AV, Coe GL, Chaudhary K, Cai Y, et al. An essential role of Ffar2 (Gpr43) in dietary fibre-mediated promotion of healthy composition of gut microbiota and suppression of intestinal carcinogenesis. Oncogenesis. 2016;5:e238.PubMedPubMedCentralCrossRef
170.
go back to reference Fujishita T, Kojima Y, Kajino-Sakamoto R, Mishiro-Sato E, Shimizu Y, Hosoda W, et al. The cAMP/PKA/CREB and TGFβ/SMAD4 pathways regulate stemness and metastatic potential in colorectal cancer cells. Cancer Res. 2022;82:4179–90.PubMedCrossRef Fujishita T, Kojima Y, Kajino-Sakamoto R, Mishiro-Sato E, Shimizu Y, Hosoda W, et al. The cAMP/PKA/CREB and TGFβ/SMAD4 pathways regulate stemness and metastatic potential in colorectal cancer cells. Cancer Res. 2022;82:4179–90.PubMedCrossRef
171.
go back to reference Steven A, Heiduk M, Recktenwald CV, Hiebl B, Wickenhauser C, Massa C, et al. Colorectal carcinogenesis: connecting K-RAS-induced transformation and CREB activity in vitro and In vivo. Mol Cancer Res. 2015;13:1248–62.PubMedCrossRef Steven A, Heiduk M, Recktenwald CV, Hiebl B, Wickenhauser C, Massa C, et al. Colorectal carcinogenesis: connecting K-RAS-induced transformation and CREB activity in vitro and In vivo. Mol Cancer Res. 2015;13:1248–62.PubMedCrossRef
172.
go back to reference Walia MK, Taylor S, Ho PWM, Martin TJ, Walkley CR. Tolerance to sustained activation of the cAMP/Creb pathway activity in osteoblastic cells is enabled by loss of p53. Cell Death Dis. 2018;9:844.PubMedPubMedCentralCrossRef Walia MK, Taylor S, Ho PWM, Martin TJ, Walkley CR. Tolerance to sustained activation of the cAMP/Creb pathway activity in osteoblastic cells is enabled by loss of p53. Cell Death Dis. 2018;9:844.PubMedPubMedCentralCrossRef
173.
go back to reference Safa M, Kazemi A, Zaker F, Razmkhah F. Cyclic AMP-induced p53 destabilization is independent of EPAC in pre-B acute lymphoblastic leukemia cells in vitro. J Recept Signal Transduct Res. 2011;31:256–63.PubMedCrossRef Safa M, Kazemi A, Zaker F, Razmkhah F. Cyclic AMP-induced p53 destabilization is independent of EPAC in pre-B acute lymphoblastic leukemia cells in vitro. J Recept Signal Transduct Res. 2011;31:256–63.PubMedCrossRef
174.
go back to reference Naderi EH, Skah S, Ugland H, Myklebost O, Sandnes DL, Torgersen ML, et al. Bone marrow stroma-derived PGE2 protects BCP-ALL cells from DNA damage-induced p53 accumulation and cell death. Mol Cancer. 2015;14:14.PubMedPubMedCentralCrossRef Naderi EH, Skah S, Ugland H, Myklebost O, Sandnes DL, Torgersen ML, et al. Bone marrow stroma-derived PGE2 protects BCP-ALL cells from DNA damage-induced p53 accumulation and cell death. Mol Cancer. 2015;14:14.PubMedPubMedCentralCrossRef
175.
go back to reference Zandi Z, Kashani B, Alishahi Z, Pourbagheri-Sigaroodi A, Esmaeili F, Ghaffari SH, et al. Dual-specificity phosphatases: therapeutic targets in cancer therapy resistance. J Cancer Res Clin Oncol. 2022;148:57–70.PubMedCrossRef Zandi Z, Kashani B, Alishahi Z, Pourbagheri-Sigaroodi A, Esmaeili F, Ghaffari SH, et al. Dual-specificity phosphatases: therapeutic targets in cancer therapy resistance. J Cancer Res Clin Oncol. 2022;148:57–70.PubMedCrossRef
176.
go back to reference Gong S, Chen Y, Meng F, Zhang Y, Li C, Zhang G, et al. Roflumilast enhances cisplatin-sensitivity and reverses cisplatin-resistance of ovarian cancer cells via cAMP/PKA/CREB-FtMt signalling axis. Cell Prolif. 2018;51:e12474.PubMedPubMedCentralCrossRef Gong S, Chen Y, Meng F, Zhang Y, Li C, Zhang G, et al. Roflumilast enhances cisplatin-sensitivity and reverses cisplatin-resistance of ovarian cancer cells via cAMP/PKA/CREB-FtMt signalling axis. Cell Prolif. 2018;51:e12474.PubMedPubMedCentralCrossRef
177.
go back to reference Huang H, Wang Y, Kandpal M, Zhao G, Cardenas H, Ji Y, et al. FTO-dependent N (6)-methyladenosine modifications inhibit ovarian cancer stem cell self-renewal by blocking cAMP signaling. Cancer Res. 2020;80:3200–14.PubMedPubMedCentralCrossRef Huang H, Wang Y, Kandpal M, Zhao G, Cardenas H, Ji Y, et al. FTO-dependent N (6)-methyladenosine modifications inhibit ovarian cancer stem cell self-renewal by blocking cAMP signaling. Cancer Res. 2020;80:3200–14.PubMedPubMedCentralCrossRef
178.
go back to reference Ma M, Dai J, Tang H, Xu T, Yu S, Si L, et al. MicroRNA-23a-3p inhibits mucosal melanoma growth and progression through targeting adenylate cyclase 1 and attenuating cAMP and MAPK pathways. Theranostics. 2019;9:945–60.PubMedPubMedCentralCrossRef Ma M, Dai J, Tang H, Xu T, Yu S, Si L, et al. MicroRNA-23a-3p inhibits mucosal melanoma growth and progression through targeting adenylate cyclase 1 and attenuating cAMP and MAPK pathways. Theranostics. 2019;9:945–60.PubMedPubMedCentralCrossRef
179.
go back to reference Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS, et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev. 2006;20:3426–39.PubMedPubMedCentralCrossRef Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS, et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev. 2006;20:3426–39.PubMedPubMedCentralCrossRef
180.
go back to reference Budillon A, Cereseto A, Kondrashin A, Nesterova M, Merlo G, Clair T, et al. Point mutation of the autophosphorylation site or in the nuclear location signal causes protein kinase A RII beta regulatory subunit to lose its ability to revert transformed fibroblasts. Proc Natl Acad Sci USA. 1995;92:10634–8.PubMedPubMedCentralCrossRef Budillon A, Cereseto A, Kondrashin A, Nesterova M, Merlo G, Clair T, et al. Point mutation of the autophosphorylation site or in the nuclear location signal causes protein kinase A RII beta regulatory subunit to lose its ability to revert transformed fibroblasts. Proc Natl Acad Sci USA. 1995;92:10634–8.PubMedPubMedCentralCrossRef
181.
go back to reference Neary CL, Nesterova M, Cho YS, Cheadle C, Becker KG, Cho-Chung YS. Protein kinase A isozyme switching: eliciting differential cAMP signaling and tumor reversion. Oncogene. 2004;23:8847–56.PubMedCrossRef Neary CL, Nesterova M, Cho YS, Cheadle C, Becker KG, Cho-Chung YS. Protein kinase A isozyme switching: eliciting differential cAMP signaling and tumor reversion. Oncogene. 2004;23:8847–56.PubMedCrossRef
182.
go back to reference Mantovani G, Bondioni S, Lania AG, Rodolfo M, Peverelli E, Polentarutti N, et al. High expression of PKA regulatory subunit 1A protein is related to proliferation of human melanoma cells. Oncogene. 2008;27:1834–43.PubMedCrossRef Mantovani G, Bondioni S, Lania AG, Rodolfo M, Peverelli E, Polentarutti N, et al. High expression of PKA regulatory subunit 1A protein is related to proliferation of human melanoma cells. Oncogene. 2008;27:1834–43.PubMedCrossRef
183.
go back to reference Hwang JH, Seo JH, Beshiri ML, Wankowicz S, Liu D, Cheung A, et al. CREB5 promotes resistance to androgen-receptor antagonists and androgen deprivation in prostate cancer. Cell Rep. 2019;29:2355-70.e6.PubMedPubMedCentralCrossRef Hwang JH, Seo JH, Beshiri ML, Wankowicz S, Liu D, Cheung A, et al. CREB5 promotes resistance to androgen-receptor antagonists and androgen deprivation in prostate cancer. Cell Rep. 2019;29:2355-70.e6.PubMedPubMedCentralCrossRef
184.
go back to reference Hwang JH, Arafeh R, Seo JH, Baca SC, Ludwig M, Arnoff TE, et al. CREB5 reprograms FOXA1 nuclear interactions to promote resistance to androgen receptor-targeting therapies. Elife. 2022;11:e73223.PubMedPubMedCentralCrossRef Hwang JH, Arafeh R, Seo JH, Baca SC, Ludwig M, Arnoff TE, et al. CREB5 reprograms FOXA1 nuclear interactions to promote resistance to androgen receptor-targeting therapies. Elife. 2022;11:e73223.PubMedPubMedCentralCrossRef
185.
go back to reference Patra KC, Kato Y, Mizukami Y, Widholz S, Boukhali M, Revenco I, et al. Mutant GNAS drives pancreatic tumourigenesis by inducing PKA-mediated SIK suppression and reprogramming lipid metabolism. Nat Cell Biol. 2018;20:811–22.PubMedPubMedCentralCrossRef Patra KC, Kato Y, Mizukami Y, Widholz S, Boukhali M, Revenco I, et al. Mutant GNAS drives pancreatic tumourigenesis by inducing PKA-mediated SIK suppression and reprogramming lipid metabolism. Nat Cell Biol. 2018;20:811–22.PubMedPubMedCentralCrossRef
186.
go back to reference Rao R, Salloum R, Xin M, Lu QR. The G protein Gαs acts as a tumor suppressor in sonic hedgehog signaling-driven tumorigenesis. Cell Cycle. 2016;15:1325–30.PubMedPubMedCentralCrossRef Rao R, Salloum R, Xin M, Lu QR. The G protein Gαs acts as a tumor suppressor in sonic hedgehog signaling-driven tumorigenesis. Cell Cycle. 2016;15:1325–30.PubMedPubMedCentralCrossRef
187.
go back to reference Pan Y, Wang C, Wang B. Phosphorylation of Gli2 by protein kinase A is required for Gli2 processing and degradation and the Sonic Hedgehog-regulated mouse development. Dev Biol. 2009;326:177–89.PubMedCrossRef Pan Y, Wang C, Wang B. Phosphorylation of Gli2 by protein kinase A is required for Gli2 processing and degradation and the Sonic Hedgehog-regulated mouse development. Dev Biol. 2009;326:177–89.PubMedCrossRef
188.
go back to reference Happ JT, Arveseth CD, Bruystens J, Bertinetti D, Nelson IB, Olivieri C, et al. A PKA inhibitor motif within SMOOTHENED controls Hedgehog signal transduction. Nat Struct Mol Biol. 2022;29:990–9.PubMedPubMedCentralCrossRef Happ JT, Arveseth CD, Bruystens J, Bertinetti D, Nelson IB, Olivieri C, et al. A PKA inhibitor motif within SMOOTHENED controls Hedgehog signal transduction. Nat Struct Mol Biol. 2022;29:990–9.PubMedPubMedCentralCrossRef
189.
go back to reference Feng H, Hu B, Vuori K, Sarkaria JN, Furnari FB, Cavenee WK, et al. EGFRvIII stimulates glioma growth and invasion through PKA-dependent serine phosphorylation of Dock180. Oncogene. 2014;33:2504–12.PubMedCrossRef Feng H, Hu B, Vuori K, Sarkaria JN, Furnari FB, Cavenee WK, et al. EGFRvIII stimulates glioma growth and invasion through PKA-dependent serine phosphorylation of Dock180. Oncogene. 2014;33:2504–12.PubMedCrossRef
190.
go back to reference Lo HW, Antoun GR, Ali-Osman F. The human glutathione S-transferase P1 protein is phosphorylated and its metabolic function enhanced by the Ser/Thr protein kinases, cAMP-dependent protein kinase and protein kinase C, in glioblastoma cells. Cancer Res. 2004;64:9131–8.PubMedCrossRef Lo HW, Antoun GR, Ali-Osman F. The human glutathione S-transferase P1 protein is phosphorylated and its metabolic function enhanced by the Ser/Thr protein kinases, cAMP-dependent protein kinase and protein kinase C, in glioblastoma cells. Cancer Res. 2004;64:9131–8.PubMedCrossRef
191.
go back to reference Qiu J, Li Q, Li J, Zhou F, Sang P, Xia Z, et al. Complementary roles of EP2 and EP4 receptors in malignant glioma. Br J Pharmacol. 2023;180:2623–40.PubMedCrossRef Qiu J, Li Q, Li J, Zhou F, Sang P, Xia Z, et al. Complementary roles of EP2 and EP4 receptors in malignant glioma. Br J Pharmacol. 2023;180:2623–40.PubMedCrossRef
192.
go back to reference Simko V, Iuliano F, Sevcikova A, Labudova M, Barathova M, Radvak P, et al. Hypoxia induces cancer-associated cAMP/PKA signalling through HIF-mediated transcriptional control of adenylyl cyclases VI and VII. Sci Rep. 2017;7:10121.PubMedPubMedCentralCrossRef Simko V, Iuliano F, Sevcikova A, Labudova M, Barathova M, Radvak P, et al. Hypoxia induces cancer-associated cAMP/PKA signalling through HIF-mediated transcriptional control of adenylyl cyclases VI and VII. Sci Rep. 2017;7:10121.PubMedPubMedCentralCrossRef
193.
go back to reference Nakayama K. cAMP-response element-binding protein (CREB) and NF-κB transcription factors are activated during prolonged hypoxia and cooperatively regulate the induction of matrix metalloproteinase MMP1. J Biol Chem. 2013;288:22584–95.PubMedPubMedCentralCrossRef Nakayama K. cAMP-response element-binding protein (CREB) and NF-κB transcription factors are activated during prolonged hypoxia and cooperatively regulate the induction of matrix metalloproteinase MMP1. J Biol Chem. 2013;288:22584–95.PubMedPubMedCentralCrossRef
194.
go back to reference Feng J, Yang H, Zhang Y, Wei H, Zhu Z, Zhu B, et al. Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells. Oncogene. 2017;36:5829–39.PubMedCrossRef Feng J, Yang H, Zhang Y, Wei H, Zhu Z, Zhu B, et al. Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells. Oncogene. 2017;36:5829–39.PubMedCrossRef
195.
go back to reference Luo M, Zhu J, Ren J, Tong Y, Wang L, Ma S, et al. Lactate increases tumor malignancy by promoting tumor small extracellular vesicles production via the GPR81-cAMP-PKA-HIF-1α axis. Front Oncol. 2022;12:1036543.PubMedPubMedCentralCrossRef Luo M, Zhu J, Ren J, Tong Y, Wang L, Ma S, et al. Lactate increases tumor malignancy by promoting tumor small extracellular vesicles production via the GPR81-cAMP-PKA-HIF-1α axis. Front Oncol. 2022;12:1036543.PubMedPubMedCentralCrossRef
196.
go back to reference Qu J, Sun Z, Peng C, Li D, Yan W, Xu Z, et al. C. tropicalis promotes chemotherapy resistance in colon cancer through increasing lactate production to regulate the mismatch repair system. Int J Biol Sci. 2021;17:2756–69.PubMedPubMedCentralCrossRef Qu J, Sun Z, Peng C, Li D, Yan W, Xu Z, et al. C. tropicalis promotes chemotherapy resistance in colon cancer through increasing lactate production to regulate the mismatch repair system. Int J Biol Sci. 2021;17:2756–69.PubMedPubMedCentralCrossRef
197.
go back to reference Boedtkjer E, Pedersen SF. The acidic tumor microenvironment as a driver of cancer. Annu Rev Physiol. 2020;82:103–26.PubMedCrossRef Boedtkjer E, Pedersen SF. The acidic tumor microenvironment as a driver of cancer. Annu Rev Physiol. 2020;82:103–26.PubMedCrossRef
198.
go back to reference Zhong X, He X, Wang Y, Hu Z, Huang H, Zhao S, et al. Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications. J Hematol Oncol. 2022;15:160.PubMedPubMedCentralCrossRef Zhong X, He X, Wang Y, Hu Z, Huang H, Zhao S, et al. Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications. J Hematol Oncol. 2022;15:160.PubMedPubMedCentralCrossRef
200.
go back to reference Rowe JB, Kapolka NJ, Taghon GJ, Morgan WM, Isom DG. The evolution and mechanism of GPCR proton sensing. J Biol Chem. 2021;296:100167.PubMedCrossRef Rowe JB, Kapolka NJ, Taghon GJ, Morgan WM, Isom DG. The evolution and mechanism of GPCR proton sensing. J Biol Chem. 2021;296:100167.PubMedCrossRef
201.
go back to reference Jing Z, Xu H, Chen X, Zhong Q, Huang J, Zhang Y, et al. The proton-sensing G-protein coupled receptor GPR4 promotes angiogenesis in head and neck cancer. PLOS ONE. 2016;11:e0152789.PubMedPubMedCentralCrossRef Jing Z, Xu H, Chen X, Zhong Q, Huang J, Zhang Y, et al. The proton-sensing G-protein coupled receptor GPR4 promotes angiogenesis in head and neck cancer. PLOS ONE. 2016;11:e0152789.PubMedPubMedCentralCrossRef
202.
go back to reference Sin WC, Zhang Y, Zhong W, Adhikarakunnathu S, Powers S, Hoey T, et al. G protein-coupled receptors GPR4 and TDAG8 are oncogenic and overexpressed in human cancers. Oncogene. 2004;23:6299–303.PubMedCrossRef Sin WC, Zhang Y, Zhong W, Adhikarakunnathu S, Powers S, Hoey T, et al. G protein-coupled receptors GPR4 and TDAG8 are oncogenic and overexpressed in human cancers. Oncogene. 2004;23:6299–303.PubMedCrossRef
203.
go back to reference Yu M, Cui R, Huang Y, Luo Y, Qin S, Zhong M. Increased proton-sensing receptor GPR4 signalling promotes colorectal cancer progression by activating the hippo pathway. EBioMedicine. 2019;48:264–76.PubMedPubMedCentralCrossRef Yu M, Cui R, Huang Y, Luo Y, Qin S, Zhong M. Increased proton-sensing receptor GPR4 signalling promotes colorectal cancer progression by activating the hippo pathway. EBioMedicine. 2019;48:264–76.PubMedPubMedCentralCrossRef
204.
go back to reference Klatt W, Wallner S, Brochhausen C, Stolwijk JA, Schreml S. Expression profiles of proton-sensing G-protein coupled receptors in common skin tumors. Sci Rep. 2020;10:15327.PubMedPubMedCentralCrossRef Klatt W, Wallner S, Brochhausen C, Stolwijk JA, Schreml S. Expression profiles of proton-sensing G-protein coupled receptors in common skin tumors. Sci Rep. 2020;10:15327.PubMedPubMedCentralCrossRef
205.
go back to reference Harmon C, Robinson MW, Hand F, Almuaili D, Mentor K, Houlihan DD, et al. Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK cells in colorectal liver metastasis. Cancer Immunol Res. 2019;7:335–46.PubMedCrossRef Harmon C, Robinson MW, Hand F, Almuaili D, Mentor K, Houlihan DD, et al. Lactate-mediated acidification of tumor microenvironment induces apoptosis of liver-resident NK cells in colorectal liver metastasis. Cancer Immunol Res. 2019;7:335–46.PubMedCrossRef
206.
go back to reference Stolwijk JA, Wallner S, Heider J, Kurz B, Pütz L, Michaelis S, et al. GPR4 in the pH-dependent migration of melanoma cells in the tumor microenvironment. Exp Dermatol. 2023;32:479–90.PubMedCrossRef Stolwijk JA, Wallner S, Heider J, Kurz B, Pütz L, Michaelis S, et al. GPR4 in the pH-dependent migration of melanoma cells in the tumor microenvironment. Exp Dermatol. 2023;32:479–90.PubMedCrossRef
207.
go back to reference Ihara Y, Kihara Y, Hamano F, Yanagida K, Morishita Y, Kunita A, et al. The G protein-coupled receptor T-cell death-associated gene 8 (TDAG8) facilitates tumor development by serving as an extracellular pH sensor. Proc Natl Acad Sci USA. 2010;107:17309–14.PubMedPubMedCentralCrossRef Ihara Y, Kihara Y, Hamano F, Yanagida K, Morishita Y, Kunita A, et al. The G protein-coupled receptor T-cell death-associated gene 8 (TDAG8) facilitates tumor development by serving as an extracellular pH sensor. Proc Natl Acad Sci USA. 2010;107:17309–14.PubMedPubMedCentralCrossRef
208.
go back to reference Mori D, Tsujikawa T, Sugiyama Y, Kotani SI, Fuse S, Ohmura G, et al. Extracellular acidity in tumor tissue upregulates programmed cell death protein 1 expression on tumor cells via proton-sensing G protein-coupled receptors. Int J Cancer. 2021;149:2116–24.PubMedCrossRef Mori D, Tsujikawa T, Sugiyama Y, Kotani SI, Fuse S, Ohmura G, et al. Extracellular acidity in tumor tissue upregulates programmed cell death protein 1 expression on tumor cells via proton-sensing G protein-coupled receptors. Int J Cancer. 2021;149:2116–24.PubMedCrossRef
210.
go back to reference Vijayan D, Young A, Teng MWL, Smyth MJ. Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer. 2017;17:709–24.PubMedCrossRef Vijayan D, Young A, Teng MWL, Smyth MJ. Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer. 2017;17:709–24.PubMedCrossRef
211.
go back to reference Guieu R, Degioanni C, Fromonot J, De Maria L, Ruf J, Deharo JC, et al. Adenosine, adenosine receptors and neurohumoral syncope: from molecular basis to personalized treatment. Biomedicines. 2022;10:1127.PubMedPubMedCentralCrossRef Guieu R, Degioanni C, Fromonot J, De Maria L, Ruf J, Deharo JC, et al. Adenosine, adenosine receptors and neurohumoral syncope: from molecular basis to personalized treatment. Biomedicines. 2022;10:1127.PubMedPubMedCentralCrossRef
212.
go back to reference Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, et al. Autonomic nerve development contributes to prostate cancer progression. Science. 2013;341:1236361.PubMedCrossRef Magnon C, Hall SJ, Lin J, Xue X, Gerber L, Freedland SJ, et al. Autonomic nerve development contributes to prostate cancer progression. Science. 2013;341:1236361.PubMedCrossRef
213.
go back to reference Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R, Tomita H, et al. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell. 2017;31:21–34.PubMedCrossRef Hayakawa Y, Sakitani K, Konishi M, Asfaha S, Niikura R, Tomita H, et al. Nerve growth factor promotes gastric tumorigenesis through aberrant cholinergic signaling. Cancer Cell. 2017;31:21–34.PubMedCrossRef
214.
go back to reference Peterson SC, Eberl M, Vagnozzi AN, Belkadi A, Veniaminova NA, Verhaegen ME, et al. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell. 2015;16:400–12.PubMedPubMedCentralCrossRef Peterson SC, Eberl M, Vagnozzi AN, Belkadi A, Veniaminova NA, Verhaegen ME, et al. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches. Cell Stem Cell. 2015;16:400–12.PubMedPubMedCentralCrossRef
215.
go back to reference Renz BW, Takahashi R, Tanaka T, Macchini M, Hayakawa Y, Dantes Z, et al. β2 adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell. 2018;34:863–7.PubMedPubMedCentralCrossRef Renz BW, Takahashi R, Tanaka T, Macchini M, Hayakawa Y, Dantes Z, et al. β2 adrenergic-neurotrophin feedforward loop promotes pancreatic cancer. Cancer Cell. 2018;34:863–7.PubMedPubMedCentralCrossRef
216.
go back to reference Kamiya A, Hayama Y, Kato S, Shimomura A, Shimomura T, Irie K, et al. Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nat Neurosci. 2019;22:1289–305.PubMedCrossRef Kamiya A, Hayama Y, Kato S, Shimomura A, Shimomura T, Irie K, et al. Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nat Neurosci. 2019;22:1289–305.PubMedCrossRef
217.
go back to reference Vaes N, Idris M, Boesmans W, Alves MM, Melotte V. Nerves in gastrointestinal cancer: from mechanism to modulations. Nat Rev Gastroenterol Hepatol. 2022;19:768–84.PubMedCrossRef Vaes N, Idris M, Boesmans W, Alves MM, Melotte V. Nerves in gastrointestinal cancer: from mechanism to modulations. Nat Rev Gastroenterol Hepatol. 2022;19:768–84.PubMedCrossRef
218.
go back to reference Takahashi R, Ijichi H, Fujishiro M. The role of neural signaling in the pancreatic cancer microenvironment. Cancers (Basel). 2022;14:4269.PubMedCrossRef Takahashi R, Ijichi H, Fujishiro M. The role of neural signaling in the pancreatic cancer microenvironment. Cancers (Basel). 2022;14:4269.PubMedCrossRef
219.
go back to reference Jiang CC, Marsland M, Wang Y, Dowdell A, Eden E, Gao F, et al. Tumor innervation is triggered by endoplasmic reticulum stress. Oncogene. 2022;41:586–99.PubMedCrossRef Jiang CC, Marsland M, Wang Y, Dowdell A, Eden E, Gao F, et al. Tumor innervation is triggered by endoplasmic reticulum stress. Oncogene. 2022;41:586–99.PubMedCrossRef
220.
go back to reference Pon CK, Lane JR, Sloan EK, Halls ML. The β2-adrenoceptor activates a positive cAMP-calcium feedforward loop to drive breast cancer cell invasion. Faseb J. 2016;30:1144–54.PubMedCrossRef Pon CK, Lane JR, Sloan EK, Halls ML. The β2-adrenoceptor activates a positive cAMP-calcium feedforward loop to drive breast cancer cell invasion. Faseb J. 2016;30:1144–54.PubMedCrossRef
221.
go back to reference Allen JK, Armaiz-Pena GN, Nagaraja AS, Sadaoui NC, Ortiz T, Dood R, et al. Sustained adrenergic signaling promotes intratumoral innervation through BDNF induction. Cancer Res. 2018;78:3233–42.PubMedPubMedCentralCrossRef Allen JK, Armaiz-Pena GN, Nagaraja AS, Sadaoui NC, Ortiz T, Dood R, et al. Sustained adrenergic signaling promotes intratumoral innervation through BDNF induction. Cancer Res. 2018;78:3233–42.PubMedPubMedCentralCrossRef
222.
go back to reference Tsai YF, Tseng LM, Hsu CY, Yang MH, Chiu JH, Shyr YM. Brain-derived neurotrophic factor (BDNF) -TrKB signaling modulates cancer-endothelial cells interaction and affects the outcomes of triple negative breast cancer. PLoS ONE. 2017;12:e0178173.PubMedPubMedCentralCrossRef Tsai YF, Tseng LM, Hsu CY, Yang MH, Chiu JH, Shyr YM. Brain-derived neurotrophic factor (BDNF) -TrKB signaling modulates cancer-endothelial cells interaction and affects the outcomes of triple negative breast cancer. PLoS ONE. 2017;12:e0178173.PubMedPubMedCentralCrossRef
223.
go back to reference Contreras-Zárate MJ, Day NL, Ormond DR, Borges VF, Tobet S, Gril B, et al. Estradiol induces BDNF/TrkB signaling in triple-negative breast cancer to promote brain metastases. Oncogene. 2019;38:4685–99.PubMedPubMedCentralCrossRef Contreras-Zárate MJ, Day NL, Ormond DR, Borges VF, Tobet S, Gril B, et al. Estradiol induces BDNF/TrkB signaling in triple-negative breast cancer to promote brain metastases. Oncogene. 2019;38:4685–99.PubMedPubMedCentralCrossRef
224.
go back to reference Edin ML, Howe AK, Juliano RL. Inhibition of PKA blocks fibroblast migration in response to growth factors. Exp Cell Res. 2001;270:214–22.PubMedCrossRef Edin ML, Howe AK, Juliano RL. Inhibition of PKA blocks fibroblast migration in response to growth factors. Exp Cell Res. 2001;270:214–22.PubMedCrossRef
225.
go back to reference Yin S, Song R, Ma J, Liu C, Wu Z, Cao G, et al. Receptor activity-modifying protein 1 regulates mouse skin fibroblast proliferation via the Gαi3-PKA-CREB-YAP axis. Cell Commun Signal. 2022;20:52.PubMedPubMedCentralCrossRef Yin S, Song R, Ma J, Liu C, Wu Z, Cao G, et al. Receptor activity-modifying protein 1 regulates mouse skin fibroblast proliferation via the Gαi3-PKA-CREB-YAP axis. Cell Commun Signal. 2022;20:52.PubMedPubMedCentralCrossRef
226.
go back to reference Wójcik-Pszczoła K, Chłoń-Rzepa G, Jankowska A, Ślusarczyk M, Ferdek PE, Kusiak AA, et al. A novel, pan-PDE inhibitor exerts anti-fibrotic effects in human lung fibroblasts via inhibition of TGF-β signaling and activation of cAMP/PKA signaling. Int J Mol Sci. 2020;21:4008.PubMedPubMedCentralCrossRef Wójcik-Pszczoła K, Chłoń-Rzepa G, Jankowska A, Ślusarczyk M, Ferdek PE, Kusiak AA, et al. A novel, pan-PDE inhibitor exerts anti-fibrotic effects in human lung fibroblasts via inhibition of TGF-β signaling and activation of cAMP/PKA signaling. Int J Mol Sci. 2020;21:4008.PubMedPubMedCentralCrossRef
227.
go back to reference Togo S, Liu X, Wang X, Sugiura H, Kamio K, Kawasaki S, et al. PDE4 inhibitors roflumilast and rolipram augment PGE2 inhibition of TGF-{beta}1-stimulated fibroblasts. Am J Physiol Lung Cell Mol Physiol. 2009;296:L959–69.PubMedCrossRef Togo S, Liu X, Wang X, Sugiura H, Kamio K, Kawasaki S, et al. PDE4 inhibitors roflumilast and rolipram augment PGE2 inhibition of TGF-{beta}1-stimulated fibroblasts. Am J Physiol Lung Cell Mol Physiol. 2009;296:L959–69.PubMedCrossRef
228.
go back to reference Nieman KM, Romero IL, Van Houten B, Lengyel E. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim Biophys Acta. 2013;1831:1533–41.PubMedPubMedCentralCrossRef Nieman KM, Romero IL, Van Houten B, Lengyel E. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim Biophys Acta. 2013;1831:1533–41.PubMedPubMedCentralCrossRef
229.
go back to reference Kim HS, Jung M, Choi SK, Woo J, Piao YJ, Hwang EH, et al. IL-6-mediated cross-talk between human preadipocytes and ductal carcinoma in situ in breast cancer progression. J Exp Clin Cancer Res. 2018;37:200.PubMedPubMedCentralCrossRef Kim HS, Jung M, Choi SK, Woo J, Piao YJ, Hwang EH, et al. IL-6-mediated cross-talk between human preadipocytes and ductal carcinoma in situ in breast cancer progression. J Exp Clin Cancer Res. 2018;37:200.PubMedPubMedCentralCrossRef
230.
go back to reference Amemori S, Ootani A, Aoki S, Fujise T, Shimoda R, Kakimoto T, et al. Adipocytes and preadipocytes promote the proliferation of colon cancer cells in vitro. Am J Physiol Gastrointest Liver Physiol. 2007;292:G923–9.PubMedCrossRef Amemori S, Ootani A, Aoki S, Fujise T, Shimoda R, Kakimoto T, et al. Adipocytes and preadipocytes promote the proliferation of colon cancer cells in vitro. Am J Physiol Gastrointest Liver Physiol. 2007;292:G923–9.PubMedCrossRef
231.
go back to reference Martini CN, Plaza MV, Vila MC. PKA-dependent and independent cAMP signaling in 3T3-L1 fibroblasts differentiation. Mol Cell Endocrinol. 2009;298:42–7.PubMedCrossRef Martini CN, Plaza MV, Vila MC. PKA-dependent and independent cAMP signaling in 3T3-L1 fibroblasts differentiation. Mol Cell Endocrinol. 2009;298:42–7.PubMedCrossRef
232.
go back to reference Lee HL, Qadir AS, Park HJ, Chung E, Lee YS, Woo KM, et al. cAMP/protein kinase A signaling inhibits Dlx5 expression via activation of CREB and subsequent C/EBPβ induction in 3T3-L1 preadipocytes. Int J Mol Sci. 2018;19:3161.PubMedPubMedCentralCrossRef Lee HL, Qadir AS, Park HJ, Chung E, Lee YS, Woo KM, et al. cAMP/protein kinase A signaling inhibits Dlx5 expression via activation of CREB and subsequent C/EBPβ induction in 3T3-L1 preadipocytes. Int J Mol Sci. 2018;19:3161.PubMedPubMedCentralCrossRef
233.
go back to reference Liu T, Han C, Fang P, Ma Z, Wang X, Chen H, et al. Cancer-associated fibroblast-specific lncRNA LINC01614 enhances glutamine uptake in lung adenocarcinoma. J Hematol Oncol. 2022;15:141.PubMedPubMedCentralCrossRef Liu T, Han C, Fang P, Ma Z, Wang X, Chen H, et al. Cancer-associated fibroblast-specific lncRNA LINC01614 enhances glutamine uptake in lung adenocarcinoma. J Hematol Oncol. 2022;15:141.PubMedPubMedCentralCrossRef
234.
go back to reference Wan X, Guan S, Hou Y, Qin Y, Zeng H, Yang L, et al. FOSL2 promotes VEGF-independent angiogenesis by transcriptionnally activating Wnt5a in breast cancer-associated fibroblasts. Theranostics. 2021;11:4975–91.PubMedPubMedCentralCrossRef Wan X, Guan S, Hou Y, Qin Y, Zeng H, Yang L, et al. FOSL2 promotes VEGF-independent angiogenesis by transcriptionnally activating Wnt5a in breast cancer-associated fibroblasts. Theranostics. 2021;11:4975–91.PubMedPubMedCentralCrossRef
235.
go back to reference Yu T, Yang G, Hou Y, Tang X, Wu C, Wu XA, et al. Cytoplasmic GPER translocation in cancer-associated fibroblasts mediates cAMP/PKA/CREB/glycolytic axis to confer tumor cells with multidrug resistance. Oncogene. 2017;36:2131–45.PubMedCrossRef Yu T, Yang G, Hou Y, Tang X, Wu C, Wu XA, et al. Cytoplasmic GPER translocation in cancer-associated fibroblasts mediates cAMP/PKA/CREB/glycolytic axis to confer tumor cells with multidrug resistance. Oncogene. 2017;36:2131–45.PubMedCrossRef
236.
go back to reference Wiley SZ, Sriram K, Liang W, Chang SE, French R, McCann T, et al. GPR68, a proton-sensing GPCR, mediates interaction of cancer-associated fibroblasts and cancer cells. Faseb J. 2018;32:1170–83.PubMedPubMedCentralCrossRef Wiley SZ, Sriram K, Liang W, Chang SE, French R, McCann T, et al. GPR68, a proton-sensing GPCR, mediates interaction of cancer-associated fibroblasts and cancer cells. Faseb J. 2018;32:1170–83.PubMedPubMedCentralCrossRef
237.
go back to reference Orange ST, Leslie J, Ross M, Mann DA, Wackerhage H. The exercise IL-6 enigma in cancer. Trends Endocrinol Metab. 2023;34:749–63.PubMedCrossRef Orange ST, Leslie J, Ross M, Mann DA, Wackerhage H. The exercise IL-6 enigma in cancer. Trends Endocrinol Metab. 2023;34:749–63.PubMedCrossRef
238.
go back to reference Xu L, Zou C, Zhang S, Chu TSM, Zhang Y, Chen W, et al. Reshaping the systemic tumor immune environment (STIE) and tumor immune microenvironment (TIME) to enhance immunotherapy efficacy in solid tumors. J Hematol Oncol. 2022;15:87.PubMedPubMedCentralCrossRef Xu L, Zou C, Zhang S, Chu TSM, Zhang Y, Chen W, et al. Reshaping the systemic tumor immune environment (STIE) and tumor immune microenvironment (TIME) to enhance immunotherapy efficacy in solid tumors. J Hematol Oncol. 2022;15:87.PubMedPubMedCentralCrossRef
240.
go back to reference Jin H, Lee JS, Kim DC, Ko YS, Lee GW, Kim HJ. Increased extracellular adenosine in radiotherapy-resistant breast cancer cells enhances tumor progression through A2AR-Akt-β-catenin signaling. Cancers (Basel). 2021;13:2105.PubMedPubMedCentralCrossRef Jin H, Lee JS, Kim DC, Ko YS, Lee GW, Kim HJ. Increased extracellular adenosine in radiotherapy-resistant breast cancer cells enhances tumor progression through A2AR-Akt-β-catenin signaling. Cancers (Basel). 2021;13:2105.PubMedPubMedCentralCrossRef
241.
go back to reference Hajizadeh F, Masjedi A, Heydarzedeh Asl S, Karoon Kiani F, Peydaveisi M, Ghalamfarsa G, et al. Adenosine and adenosine receptors in colorectal cancer. Int Immunopharmacol. 2020;87:106853.PubMedCrossRef Hajizadeh F, Masjedi A, Heydarzedeh Asl S, Karoon Kiani F, Peydaveisi M, Ghalamfarsa G, et al. Adenosine and adenosine receptors in colorectal cancer. Int Immunopharmacol. 2020;87:106853.PubMedCrossRef
242.
go back to reference Guan S, Suman S, Amann JM, Wu R, Carbone DP, Wang J, et al. Metabolic reprogramming by adenosine antagonism and implications in non-small cell lung cancer therapy. Neoplasia. 2022;32:100824.PubMedPubMedCentralCrossRef Guan S, Suman S, Amann JM, Wu R, Carbone DP, Wang J, et al. Metabolic reprogramming by adenosine antagonism and implications in non-small cell lung cancer therapy. Neoplasia. 2022;32:100824.PubMedPubMedCentralCrossRef
243.
go back to reference Li N, Tang N, Cheng C, Hu T, Wei X, Han W, et al. Improving the anti-solid tumor efficacy of CAR-T cells by inhibiting adenosine signaling pathway. Oncoimmunology. 2020;9:1824643.PubMedPubMedCentralCrossRef Li N, Tang N, Cheng C, Hu T, Wei X, Han W, et al. Improving the anti-solid tumor efficacy of CAR-T cells by inhibiting adenosine signaling pathway. Oncoimmunology. 2020;9:1824643.PubMedPubMedCentralCrossRef
244.
go back to reference Paluskievicz CM, Cao X, Abdi R, Zheng P, Liu Y, Bromberg JS. T regulatory cells and priming the suppressive tumor microenvironment. Front Immunol. 2019;10:2453.PubMedPubMedCentralCrossRef Paluskievicz CM, Cao X, Abdi R, Zheng P, Liu Y, Bromberg JS. T regulatory cells and priming the suppressive tumor microenvironment. Front Immunol. 2019;10:2453.PubMedPubMedCentralCrossRef
245.
go back to reference Whiteside TL, Jackson EK. Adenosine and prostaglandin e2 production by human inducible regulatory T cells in health and disease. Front Immunol. 2013;4:212.PubMedPubMedCentralCrossRef Whiteside TL, Jackson EK. Adenosine and prostaglandin e2 production by human inducible regulatory T cells in health and disease. Front Immunol. 2013;4:212.PubMedPubMedCentralCrossRef
246.
go back to reference Mandapathil M, Szczepanski MJ, Szajnik M, Ren J, Jackson EK, Johnson JT, et al. Adenosine and prostaglandin E2 cooperate in the suppression of immune responses mediated by adaptive regulatory T cells. J Biol Chem. 2010;285:27571–80.PubMedPubMedCentralCrossRef Mandapathil M, Szczepanski MJ, Szajnik M, Ren J, Jackson EK, Johnson JT, et al. Adenosine and prostaglandin E2 cooperate in the suppression of immune responses mediated by adaptive regulatory T cells. J Biol Chem. 2010;285:27571–80.PubMedPubMedCentralCrossRef
247.
go back to reference Tanaka A, Sakaguchi S. Targeting Treg cells in cancer immunotherapy. Eur J Immunol. 2019;49:1140–6.PubMedCrossRef Tanaka A, Sakaguchi S. Targeting Treg cells in cancer immunotherapy. Eur J Immunol. 2019;49:1140–6.PubMedCrossRef
248.
249.
go back to reference Bazhin AV, Kahnert S, Kimpfler S, Schadendorf D, Umansky V. Distinct metabolism of cyclic adenosine monophosphate in regulatory and helper CD4+ T cells. Mol Immunol. 2010;47:678–84.PubMedCrossRef Bazhin AV, Kahnert S, Kimpfler S, Schadendorf D, Umansky V. Distinct metabolism of cyclic adenosine monophosphate in regulatory and helper CD4+ T cells. Mol Immunol. 2010;47:678–84.PubMedCrossRef
250.
go back to reference Kuchen S, Resch W, Yamane A, Kuo N, Li Z, Chakraborty T, et al. Regulation of microRNA expression and abundance during lymphopoiesis. Immunity. 2010;32:828–39.PubMedPubMedCentralCrossRef Kuchen S, Resch W, Yamane A, Kuo N, Li Z, Chakraborty T, et al. Regulation of microRNA expression and abundance during lymphopoiesis. Immunity. 2010;32:828–39.PubMedPubMedCentralCrossRef
251.
go back to reference Anandagoda N, Willis JC, Hertweck A, Roberts LB, Jackson I, Gökmen MR, et al. microRNA-142-mediated repression of phosphodiesterase 3B critically regulates peripheral immune tolerance. J Clin Invest. 2019;129:1257–71.PubMedPubMedCentralCrossRef Anandagoda N, Willis JC, Hertweck A, Roberts LB, Jackson I, Gökmen MR, et al. microRNA-142-mediated repression of phosphodiesterase 3B critically regulates peripheral immune tolerance. J Clin Invest. 2019;129:1257–71.PubMedPubMedCentralCrossRef
252.
go back to reference Vang AG, Housley W, Dong H, Basole C, Ben-Sasson SZ, Kream BE, et al. Regulatory T-cells and cAMP suppress effector T-cells independently of PKA-CREM/ICER: a potential role for Epac. Biochem J. 2013;456:463–73.PubMedCrossRef Vang AG, Housley W, Dong H, Basole C, Ben-Sasson SZ, Kream BE, et al. Regulatory T-cells and cAMP suppress effector T-cells independently of PKA-CREM/ICER: a potential role for Epac. Biochem J. 2013;456:463–73.PubMedCrossRef
253.
255.
go back to reference Valdebenito S, Barreto A, Eugenin EA. The role of connexin and pannexin containing channels in the innate and acquired immune response. Biochim Biophys Acta Biomembr. 2018;1860:154–65.PubMedCrossRef Valdebenito S, Barreto A, Eugenin EA. The role of connexin and pannexin containing channels in the innate and acquired immune response. Biochim Biophys Acta Biomembr. 2018;1860:154–65.PubMedCrossRef
256.
go back to reference Shi L, Feng M, Du S, Wei X, Song H, Yixin X, et al. Adenosine generated by regulatory T cells induces CD8(+) T cell exhaustion in gastric cancer through A2aR pathway. Biomed Res Int. 2019;2019:4093214.PubMedPubMedCentralCrossRef Shi L, Feng M, Du S, Wei X, Song H, Yixin X, et al. Adenosine generated by regulatory T cells induces CD8(+) T cell exhaustion in gastric cancer through A2aR pathway. Biomed Res Int. 2019;2019:4093214.PubMedPubMedCentralCrossRef
257.
go back to reference Riccomi A, Gesa V, Sacchi A, De Magistris MT, Vendetti S. Modulation of phenotype and function of human CD4(+)CD25(+) T regulatory lymphocytes mediated by cAMP-elevating agents. Front Immunol. 2016;7:358.PubMedPubMedCentralCrossRef Riccomi A, Gesa V, Sacchi A, De Magistris MT, Vendetti S. Modulation of phenotype and function of human CD4(+)CD25(+) T regulatory lymphocytes mediated by cAMP-elevating agents. Front Immunol. 2016;7:358.PubMedPubMedCentralCrossRef
258.
go back to reference Guereschi MG, Araujo LP, Maricato JT, Takenaka MC, Nascimento VM, Vivanco BC, et al. Beta2-adrenergic receptor signaling in CD4+ Foxp3+ regulatory T cells enhances their suppressive function in a PKA-dependent manner. Eur J Immunol. 2013;43:1001–12.PubMedCrossRef Guereschi MG, Araujo LP, Maricato JT, Takenaka MC, Nascimento VM, Vivanco BC, et al. Beta2-adrenergic receptor signaling in CD4+ Foxp3+ regulatory T cells enhances their suppressive function in a PKA-dependent manner. Eur J Immunol. 2013;43:1001–12.PubMedCrossRef
259.
go back to reference Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci USA. 2006;103:13132–7.PubMedPubMedCentralCrossRef Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci USA. 2006;103:13132–7.PubMedPubMedCentralCrossRef
260.
go back to reference Yano S, Ghosh P, Kusaba H, Buchholz M, Longo DL. Effect of promoter methylation on the regulation of IFN-gamma gene during in vitro differentiation of human peripheral blood T cells into a Th2 population. J Immunol. 2003;171:2510–6.PubMedCrossRef Yano S, Ghosh P, Kusaba H, Buchholz M, Longo DL. Effect of promoter methylation on the regulation of IFN-gamma gene during in vitro differentiation of human peripheral blood T cells into a Th2 population. J Immunol. 2003;171:2510–6.PubMedCrossRef
261.
go back to reference Vaeth M, Gogishvili T, Bopp T, Klein M, Berberich-Siebelt F, Gattenloehner S, et al. Regulatory T cells facilitate the nuclear accumulation of inducible cAMP early repressor (ICER) and suppress nuclear factor of activated T cell c1 (NFATc1). Proc Natl Acad Sci USA. 2011;108:2480–5.PubMedPubMedCentralCrossRef Vaeth M, Gogishvili T, Bopp T, Klein M, Berberich-Siebelt F, Gattenloehner S, et al. Regulatory T cells facilitate the nuclear accumulation of inducible cAMP early repressor (ICER) and suppress nuclear factor of activated T cell c1 (NFATc1). Proc Natl Acad Sci USA. 2011;108:2480–5.PubMedPubMedCentralCrossRef
262.
go back to reference Jenabian MA, Seddiki N, Yatim A, Carriere M, Hulin A, Younas M, et al. Regulatory T cells negatively affect IL-2 production of effector T cells through CD39/adenosine pathway in HIV infection. PLOS Pathog. 2013;9:e1003319.PubMedPubMedCentralCrossRef Jenabian MA, Seddiki N, Yatim A, Carriere M, Hulin A, Younas M, et al. Regulatory T cells negatively affect IL-2 production of effector T cells through CD39/adenosine pathway in HIV infection. PLOS Pathog. 2013;9:e1003319.PubMedPubMedCentralCrossRef
263.
go back to reference Wehbi VL, Taskén K. Molecular mechanisms for cAMP-mediated immunoregulation in T cells-role of anchored protein kinase A signaling units. Front Immunol. 2016;7:222.PubMedPubMedCentralCrossRef Wehbi VL, Taskén K. Molecular mechanisms for cAMP-mediated immunoregulation in T cells-role of anchored protein kinase A signaling units. Front Immunol. 2016;7:222.PubMedPubMedCentralCrossRef
264.
go back to reference Bodor J, Bopp T, Vaeth M, Klein M, Serfling E, Hünig T, et al. Cyclic AMP underpins suppression by regulatory T cells. Eur J Immunol. 2012;42:1375–84.PubMedCrossRef Bodor J, Bopp T, Vaeth M, Klein M, Serfling E, Hünig T, et al. Cyclic AMP underpins suppression by regulatory T cells. Eur J Immunol. 2012;42:1375–84.PubMedCrossRef
265.
go back to reference Tasken K, Ruppelt A. Negative regulation of T-cell receptor activation by the cAMP-PKA-Csk signalling pathway in T-cell lipid rafts. Front Biosci. 2006;11:2929–39.PubMedCrossRef Tasken K, Ruppelt A. Negative regulation of T-cell receptor activation by the cAMP-PKA-Csk signalling pathway in T-cell lipid rafts. Front Biosci. 2006;11:2929–39.PubMedCrossRef
266.
go back to reference Kurelic R, Krieg PF, Sonner JK, Bhaiyan G, Ramos GC, Frantz S, et al. Upregulation of phosphodiesterase 2A augments T cell activation by changing cGMP/cAMP cross-talk. Front Pharmacol. 2021;12:748798.PubMedPubMedCentralCrossRef Kurelic R, Krieg PF, Sonner JK, Bhaiyan G, Ramos GC, Frantz S, et al. Upregulation of phosphodiesterase 2A augments T cell activation by changing cGMP/cAMP cross-talk. Front Pharmacol. 2021;12:748798.PubMedPubMedCentralCrossRef
267.
go back to reference Mosenden R, Taskén K. Cyclic AMP-mediated immune regulation–overview of mechanisms of action in T cells. Cell Signal. 2011;23:1009–16.PubMedCrossRef Mosenden R, Taskén K. Cyclic AMP-mediated immune regulation–overview of mechanisms of action in T cells. Cell Signal. 2011;23:1009–16.PubMedCrossRef
268.
go back to reference Peter D, Jin SL, Conti M, Hatzelmann A, Zitt C. Differential expression and function of phosphodiesterase 4 (PDE4) subtypes in human primary CD4+ T cells: predominant role of PDE4D. J Immunol. 2007;178:4820–31.PubMedCrossRef Peter D, Jin SL, Conti M, Hatzelmann A, Zitt C. Differential expression and function of phosphodiesterase 4 (PDE4) subtypes in human primary CD4+ T cells: predominant role of PDE4D. J Immunol. 2007;178:4820–31.PubMedCrossRef
269.
go back to reference Almahariq M, Mei FC, Wang H, Cao AT, Yao S, Soong L, et al. Exchange protein directly activated by cAMP modulates regulatory T-cell-mediated immunosuppression. Biochem J. 2015;465:295–303.PubMedCrossRef Almahariq M, Mei FC, Wang H, Cao AT, Yao S, Soong L, et al. Exchange protein directly activated by cAMP modulates regulatory T-cell-mediated immunosuppression. Biochem J. 2015;465:295–303.PubMedCrossRef
270.
go back to reference Wang Y, Johnson KCC, Gatti-Mays ME, Li Z. Emerging strategies in targeting tumor-resident myeloid cells for cancer immunotherapy. J Hematol Oncol. 2022;15:118.PubMedPubMedCentralCrossRef Wang Y, Johnson KCC, Gatti-Mays ME, Li Z. Emerging strategies in targeting tumor-resident myeloid cells for cancer immunotherapy. J Hematol Oncol. 2022;15:118.PubMedPubMedCentralCrossRef
271.
go back to reference Chinn AM, Salmerón C, Lee J, Sriram K, Raz E, Insel PA. PDE4B Is a homeostatic regulator of cyclic AMP in dendritic cells. Front Pharmacol. 2022;13:833832.PubMedPubMedCentralCrossRef Chinn AM, Salmerón C, Lee J, Sriram K, Raz E, Insel PA. PDE4B Is a homeostatic regulator of cyclic AMP in dendritic cells. Front Pharmacol. 2022;13:833832.PubMedPubMedCentralCrossRef
272.
go back to reference Rueda CM, Jackson CM, Chougnet CA. Regulatory T-cell-mediated suppression of conventional T-cells and dendritic cells by different cAMP intracellular pathways. Front Immunol. 2016;7:216.PubMedPubMedCentralCrossRef Rueda CM, Jackson CM, Chougnet CA. Regulatory T-cell-mediated suppression of conventional T-cells and dendritic cells by different cAMP intracellular pathways. Front Immunol. 2016;7:216.PubMedPubMedCentralCrossRef
273.
go back to reference Ring S, Pushkarevskaya A, Schild H, Probst HC, Jendrossek V, Wirsdörfer F, et al. Regulatory T cell-derived adenosine induces dendritic cell migration through the Epac-Rap1 pathway. J Immunol. 2015;194:3735–44.PubMedCrossRef Ring S, Pushkarevskaya A, Schild H, Probst HC, Jendrossek V, Wirsdörfer F, et al. Regulatory T cell-derived adenosine induces dendritic cell migration through the Epac-Rap1 pathway. J Immunol. 2015;194:3735–44.PubMedCrossRef
274.
go back to reference Kayhan M, Koyas A, Akdemir I, Savas AC, Cekic C. Adenosine receptor signaling targets both PKA and Epac pathways to polarize dendritic cells to a suppressive phenotype. J Immunol. 2019;203:3247–55.PubMedCrossRef Kayhan M, Koyas A, Akdemir I, Savas AC, Cekic C. Adenosine receptor signaling targets both PKA and Epac pathways to polarize dendritic cells to a suppressive phenotype. J Immunol. 2019;203:3247–55.PubMedCrossRef
275.
go back to reference Fassbender M, Gerlitzki B, Ullrich N, Lupp C, Klein M, Radsak MP, et al. Cyclic adenosine monophosphate and IL-10 coordinately contribute to nTreg cell-mediated suppression of dendritic cell activation. Cell Immunol. 2010;265:91–6.PubMedCrossRef Fassbender M, Gerlitzki B, Ullrich N, Lupp C, Klein M, Radsak MP, et al. Cyclic adenosine monophosphate and IL-10 coordinately contribute to nTreg cell-mediated suppression of dendritic cell activation. Cell Immunol. 2010;265:91–6.PubMedCrossRef
276.
go back to reference Ring S, Karakhanova S, Johnson T, Enk AH, Mahnke K. Gap junctions between regulatory T cells and dendritic cells prevent sensitization of CD8(+) T cells. J Allergy Clin Immunol. 2010;125:237–46.PubMedCrossRef Ring S, Karakhanova S, Johnson T, Enk AH, Mahnke K. Gap junctions between regulatory T cells and dendritic cells prevent sensitization of CD8(+) T cells. J Allergy Clin Immunol. 2010;125:237–46.PubMedCrossRef
277.
go back to reference Ohl K, Schippers A, Tenbrock K. CD11c-specific deletion reveals CREB as a critical regulator of DC function during the germinal center response. J Immunol Res. 2018;2018:8947230.PubMedPubMedCentralCrossRef Ohl K, Schippers A, Tenbrock K. CD11c-specific deletion reveals CREB as a critical regulator of DC function during the germinal center response. J Immunol Res. 2018;2018:8947230.PubMedPubMedCentralCrossRef
278.
go back to reference Al-Huseini LM, Aw Yeang HX, Hamdam JM, Sethu S, Alhumeed N, Wong W, et al. Heme oxygenase-1 regulates dendritic cell function through modulation of p38 MAPK-CREB/ATF1 signaling. J Biol Chem. 2014;289:16442–51.PubMedPubMedCentralCrossRef Al-Huseini LM, Aw Yeang HX, Hamdam JM, Sethu S, Alhumeed N, Wong W, et al. Heme oxygenase-1 regulates dendritic cell function through modulation of p38 MAPK-CREB/ATF1 signaling. J Biol Chem. 2014;289:16442–51.PubMedPubMedCentralCrossRef
279.
go back to reference van Vliet SJ, Bay S, Vuist IM, Kalay H, García-Vallejo JJ, Leclerc C, et al. MGL signaling augments TLR2-mediated responses for enhanced IL-10 and TNF-α secretion. J Leukoc Biol. 2013;94:315–23.PubMedCrossRef van Vliet SJ, Bay S, Vuist IM, Kalay H, García-Vallejo JJ, Leclerc C, et al. MGL signaling augments TLR2-mediated responses for enhanced IL-10 and TNF-α secretion. J Leukoc Biol. 2013;94:315–23.PubMedCrossRef
280.
go back to reference Illario M, Giardino-Torchia ML, Sankar U, Ribar TJ, Galgani M, Vitiello L, et al. Calmodulin-dependent kinase IV links Toll-like receptor 4 signaling with survival pathway of activated dendritic cells. Blood. 2008;111:723–31.PubMedPubMedCentralCrossRef Illario M, Giardino-Torchia ML, Sankar U, Ribar TJ, Galgani M, Vitiello L, et al. Calmodulin-dependent kinase IV links Toll-like receptor 4 signaling with survival pathway of activated dendritic cells. Blood. 2008;111:723–31.PubMedPubMedCentralCrossRef
281.
go back to reference Silva-Vilches C, Pletinckx K, Lohnert M, Pavlovic V, Ashour D, John V, et al. Low doses of cholera toxin and its mediator cAMP induce CTLA-2 secretion by dendritic cells to enhance regulatory T cell conversion. PLOS ONE. 2017;12:e0178114.PubMedPubMedCentralCrossRef Silva-Vilches C, Pletinckx K, Lohnert M, Pavlovic V, Ashour D, John V, et al. Low doses of cholera toxin and its mediator cAMP induce CTLA-2 secretion by dendritic cells to enhance regulatory T cell conversion. PLOS ONE. 2017;12:e0178114.PubMedPubMedCentralCrossRef
282.
go back to reference Lee J, Kim TH, Murray F, Li X, Choi SS, Broide DH, et al. Cyclic AMP concentrations in dendritic cells induce and regulate Th2 immunity and allergic asthma. Proc Natl Acad Sci USA. 2015;112:1529–34.PubMedPubMedCentralCrossRef Lee J, Kim TH, Murray F, Li X, Choi SS, Broide DH, et al. Cyclic AMP concentrations in dendritic cells induce and regulate Th2 immunity and allergic asthma. Proc Natl Acad Sci USA. 2015;112:1529–34.PubMedPubMedCentralCrossRef
283.
go back to reference Datta SK, Sabet M, Nguyen KP, Valdez PA, Gonzalez-Navajas JM, Islam S, et al. Mucosal adjuvant activity of cholera toxin requires Th17 cells and protects against inhalation anthrax. Proc Natl Acad Sci USA. 2010;107:10638–43.PubMedPubMedCentralCrossRef Datta SK, Sabet M, Nguyen KP, Valdez PA, Gonzalez-Navajas JM, Islam S, et al. Mucosal adjuvant activity of cholera toxin requires Th17 cells and protects against inhalation anthrax. Proc Natl Acad Sci USA. 2010;107:10638–43.PubMedPubMedCentralCrossRef
284.
go back to reference Lee J, Zhang J, Chung YJ, Kim JH, Kook CM, González-Navajas JM, et al. Inhibition of IRF4 in dendritic cells by PRR-independent and -dependent signals inhibit Th2 and promote Th17 responses. Elife. 2020;9:e49416.PubMedPubMedCentralCrossRef Lee J, Zhang J, Chung YJ, Kim JH, Kook CM, González-Navajas JM, et al. Inhibition of IRF4 in dendritic cells by PRR-independent and -dependent signals inhibit Th2 and promote Th17 responses. Elife. 2020;9:e49416.PubMedPubMedCentralCrossRef
285.
go back to reference Bros M, Montermann E, Cholaszczyńska A, Reske-Kunz AB. The phosphodiesterase 4 inhibitor roflumilast augments the Th17-promoting capability of dendritic cells by enhancing IL-23 production, and impairs their T cell stimulatory activity due to elevated IL-10. Int Immunopharmacol. 2016;35:174–84.PubMedCrossRef Bros M, Montermann E, Cholaszczyńska A, Reske-Kunz AB. The phosphodiesterase 4 inhibitor roflumilast augments the Th17-promoting capability of dendritic cells by enhancing IL-23 production, and impairs their T cell stimulatory activity due to elevated IL-10. Int Immunopharmacol. 2016;35:174–84.PubMedCrossRef
286.
go back to reference Qian X, Gu L, Ning H, Zhang Y, Hsueh EC, Fu M, et al. Increased Th17 cells in the tumor microenvironment is mediated by IL-23 via tumor-secreted prostaglandin E2. J Immunol. 2013;190:5894–902.PubMedCrossRef Qian X, Gu L, Ning H, Zhang Y, Hsueh EC, Fu M, et al. Increased Th17 cells in the tumor microenvironment is mediated by IL-23 via tumor-secreted prostaglandin E2. J Immunol. 2013;190:5894–902.PubMedCrossRef
287.
go back to reference Ji Y, Zhang W. Th17 cells: positive or negative role in tumor? Cancer Immunol Immunother. 2010;59:979–87.PubMedCrossRef Ji Y, Zhang W. Th17 cells: positive or negative role in tumor? Cancer Immunol Immunother. 2010;59:979–87.PubMedCrossRef
288.
go back to reference Asadzadeh Z, Mohammadi H, Safarzadeh E, Hemmatzadeh M, Mahdian-Shakib A, Jadidi-Niaragh F, et al. The paradox of Th17 cell functions in tumor immunity. Cell Immunol. 2017;322:15–25.PubMedCrossRef Asadzadeh Z, Mohammadi H, Safarzadeh E, Hemmatzadeh M, Mahdian-Shakib A, Jadidi-Niaragh F, et al. The paradox of Th17 cell functions in tumor immunity. Cell Immunol. 2017;322:15–25.PubMedCrossRef
289.
go back to reference Huang R, Cioffi J, Berg K, London R, Cidon M, Maayani S, et al. B cell differentiation factor-induced B cell maturation: regulation via reduction in cAMP. Cell Immunol. 1995;162:49–55.PubMedCrossRef Huang R, Cioffi J, Berg K, London R, Cidon M, Maayani S, et al. B cell differentiation factor-induced B cell maturation: regulation via reduction in cAMP. Cell Immunol. 1995;162:49–55.PubMedCrossRef
290.
go back to reference Roper RL, Phipps RP. Prostaglandin E2 and cAMP inhibit B lymphocyte activation and simultaneously promote IgE and IgG1 synthesis. J Immunol. 1992;149:2984–91.PubMedCrossRef Roper RL, Phipps RP. Prostaglandin E2 and cAMP inhibit B lymphocyte activation and simultaneously promote IgE and IgG1 synthesis. J Immunol. 1992;149:2984–91.PubMedCrossRef
291.
go back to reference Myklebust JH, Josefsen D, Blomhoff HK, Levy FO, Naderi S, Reed JC, et al. Activation of the cAMP signaling pathway increases apoptosis in human B-precursor cells and is associated with downregulation of Mcl-1 expression. J Cell Physiol. 1999;180:71–80.PubMedCrossRef Myklebust JH, Josefsen D, Blomhoff HK, Levy FO, Naderi S, Reed JC, et al. Activation of the cAMP signaling pathway increases apoptosis in human B-precursor cells and is associated with downregulation of Mcl-1 expression. J Cell Physiol. 1999;180:71–80.PubMedCrossRef
292.
go back to reference Minguet S, Huber M, Rosenkranz L, Schamel WW, Reth M, Brummer T. Adenosine and cAMP are potent inhibitors of the NF-kappa B pathway downstream of immunoreceptors. Eur J Immunol. 2005;35:31–41.PubMedCrossRef Minguet S, Huber M, Rosenkranz L, Schamel WW, Reth M, Brummer T. Adenosine and cAMP are potent inhibitors of the NF-kappa B pathway downstream of immunoreceptors. Eur J Immunol. 2005;35:31–41.PubMedCrossRef
293.
go back to reference Blois JT, Mataraza JM, Mecklenbraüker I, Tarakhovsky A, Chiles TC. B cell receptor-induced cAMP-response element-binding protein activation in B lymphocytes requires novel protein kinase Cdelta. J Biol Chem. 2004;279:30123–32.PubMedCrossRef Blois JT, Mataraza JM, Mecklenbraüker I, Tarakhovsky A, Chiles TC. B cell receptor-induced cAMP-response element-binding protein activation in B lymphocytes requires novel protein kinase Cdelta. J Biol Chem. 2004;279:30123–32.PubMedCrossRef
294.
go back to reference Mambetsariev N, Lin WW, Stunz LL, Hanson BM, Hildebrand JM, Bishop GA. Nuclear TRAF3 is a negative regulator of CREB in B cells. Proc Natl Acad Sci USA. 2016;113:1032–7.PubMedPubMedCentralCrossRef Mambetsariev N, Lin WW, Stunz LL, Hanson BM, Hildebrand JM, Bishop GA. Nuclear TRAF3 is a negative regulator of CREB in B cells. Proc Natl Acad Sci USA. 2016;113:1032–7.PubMedPubMedCentralCrossRef
295.
go back to reference Zorea J, Motro Y, Mazor RD, Carmi YK, Shulman Z, Mahajna J, et al. TRAF3 suppression encourages B cell recruitment and prolongs survival of microbiome-intact mice with ovarian cancer. J Exp Clin Cancer Res. 2023;42:107.PubMedPubMedCentralCrossRef Zorea J, Motro Y, Mazor RD, Carmi YK, Shulman Z, Mahajna J, et al. TRAF3 suppression encourages B cell recruitment and prolongs survival of microbiome-intact mice with ovarian cancer. J Exp Clin Cancer Res. 2023;42:107.PubMedPubMedCentralCrossRef
296.
go back to reference Bangalore-Prakash P, Stunz LL, Mambetsariev N, Whillock AL, Hostager BS, Bishop GA. The oncogenic membrane protein LMP1 sequesters TRAF3 in B-cell lymphoma cells to produce functional TRAF3 deficiency. Blood Adv. 2017;1:2712–23.PubMedPubMedCentralCrossRef Bangalore-Prakash P, Stunz LL, Mambetsariev N, Whillock AL, Hostager BS, Bishop GA. The oncogenic membrane protein LMP1 sequesters TRAF3 in B-cell lymphoma cells to produce functional TRAF3 deficiency. Blood Adv. 2017;1:2712–23.PubMedPubMedCentralCrossRef
297.
go back to reference Li W, Wang F, Guo R, Bian Z, Song Y. Targeting macrophages in hematological malignancies: recent advances and future directions. J Hematol Oncol. 2022;15:110.PubMedPubMedCentralCrossRef Li W, Wang F, Guo R, Bian Z, Song Y. Targeting macrophages in hematological malignancies: recent advances and future directions. J Hematol Oncol. 2022;15:110.PubMedPubMedCentralCrossRef
298.
go back to reference Peters-Golden M. Putting on the brakes: cyclic AMP as a multipronged controller of macrophage function. Sci Signal. 2009;2:pe37.PubMedCrossRef Peters-Golden M. Putting on the brakes: cyclic AMP as a multipronged controller of macrophage function. Sci Signal. 2009;2:pe37.PubMedCrossRef
299.
go back to reference Aronoff DM, Canetti C, Serezani CH, Luo M, Peters-Golden M. Cutting edge: macrophage inhibition by cyclic AMP (cAMP): differential roles of protein kinase A and exchange protein directly activated by cAMP-1. J Immunol. 2005;174:595–9.PubMedCrossRef Aronoff DM, Canetti C, Serezani CH, Luo M, Peters-Golden M. Cutting edge: macrophage inhibition by cyclic AMP (cAMP): differential roles of protein kinase A and exchange protein directly activated by cAMP-1. J Immunol. 2005;174:595–9.PubMedCrossRef
300.
go back to reference Wall EA, Zavzavadjian JR, Chang MS, Randhawa B, Zhu X, Hsueh RC, et al. Suppression of LPS-induced TNF-alpha production in macrophages by cAMP is mediated by PKA-AKAP95-p105. Sci Signal. 2009;2:28.CrossRef Wall EA, Zavzavadjian JR, Chang MS, Randhawa B, Zhu X, Hsueh RC, et al. Suppression of LPS-induced TNF-alpha production in macrophages by cAMP is mediated by PKA-AKAP95-p105. Sci Signal. 2009;2:28.CrossRef
301.
go back to reference Goldsmith M, Avni D, Ernst O, Glucksam Y, Levy-Rimler G, Meijler MM, et al. Synergistic IL-10 induction by LPS and the ceramide-1-phosphate analog PCERA-1 is mediated by the cAMP and p38 MAP kinase pathways. Mol Immunol. 2009;46:1979–87.PubMedCrossRef Goldsmith M, Avni D, Ernst O, Glucksam Y, Levy-Rimler G, Meijler MM, et al. Synergistic IL-10 induction by LPS and the ceramide-1-phosphate analog PCERA-1 is mediated by the cAMP and p38 MAP kinase pathways. Mol Immunol. 2009;46:1979–87.PubMedCrossRef
302.
go back to reference Ernst O, Glucksam-Galnoy Y, Bhatta B, Athamna M, Ben-Dror I, Glick Y, et al. Exclusive temporal stimulation of IL-10 expression in LPS-stimulated mouse macrophages by cAMP inducers and type I interferons. Front Immunol. 2019;10:1788.PubMedPubMedCentralCrossRef Ernst O, Glucksam-Galnoy Y, Bhatta B, Athamna M, Ben-Dror I, Glick Y, et al. Exclusive temporal stimulation of IL-10 expression in LPS-stimulated mouse macrophages by cAMP inducers and type I interferons. Front Immunol. 2019;10:1788.PubMedPubMedCentralCrossRef
303.
go back to reference Ernst O, Glucksam-Galnoy Y, Athamna M, Ben-Dror I, Ben-Arosh H, Levy-Rimler G, et al. The cAMP pathway amplifies early MyD88-dependent and type I interferon-independent LPS-induced interleukin-10 expression in mouse macrophages. Mediators Inflamm. 2019;2019:3451461.PubMedPubMedCentralCrossRef Ernst O, Glucksam-Galnoy Y, Athamna M, Ben-Dror I, Ben-Arosh H, Levy-Rimler G, et al. The cAMP pathway amplifies early MyD88-dependent and type I interferon-independent LPS-induced interleukin-10 expression in mouse macrophages. Mediators Inflamm. 2019;2019:3451461.PubMedPubMedCentralCrossRef
304.
go back to reference Qian X, Zhang J, Liu J. Tumor-secreted PGE2 inhibits CCL5 production in activated macrophages through cAMP/PKA signaling pathway. J Biol Chem. 2011;286:2111–20.PubMedCrossRef Qian X, Zhang J, Liu J. Tumor-secreted PGE2 inhibits CCL5 production in activated macrophages through cAMP/PKA signaling pathway. J Biol Chem. 2011;286:2111–20.PubMedCrossRef
305.
go back to reference Polumuri S, Perkins DJ, Vogel SN. cAMP levels regulate macrophage alternative activation marker expression. Innate Immun. 2021;27:133–42.PubMedCrossRef Polumuri S, Perkins DJ, Vogel SN. cAMP levels regulate macrophage alternative activation marker expression. Innate Immun. 2021;27:133–42.PubMedCrossRef
306.
go back to reference Luan B, Yoon YS, Le Lay J, Kaestner KH, Hedrick S, Montminy M. CREB pathway links PGE2 signaling with macrophage polarization. Proc Natl Acad Sci USA. 2015;112:15642–7.PubMedPubMedCentralCrossRef Luan B, Yoon YS, Le Lay J, Kaestner KH, Hedrick S, Montminy M. CREB pathway links PGE2 signaling with macrophage polarization. Proc Natl Acad Sci USA. 2015;112:15642–7.PubMedPubMedCentralCrossRef
307.
go back to reference Negreiros-Lima GL, Lima KM, Moreira IZ, Jardim BLO, Vago JP, Galvão I, et al. Cyclic AMP regulates key features of macrophages via PKA: recruitment, reprogramming and efferocytosis. Cells. 2020;9:128.PubMedPubMedCentralCrossRef Negreiros-Lima GL, Lima KM, Moreira IZ, Jardim BLO, Vago JP, Galvão I, et al. Cyclic AMP regulates key features of macrophages via PKA: recruitment, reprogramming and efferocytosis. Cells. 2020;9:128.PubMedPubMedCentralCrossRef
308.
go back to reference Wu JJ, Yang Y, Peng WT, Sun JC, Sun WY, Wei W. G protein-coupled receptor kinase 2 regulating β2-adrenergic receptor signaling in M2-polarized macrophages contributes to hepatocellular carcinoma progression. Onco Targets Ther. 2019;12:5499–513.PubMedPubMedCentralCrossRef Wu JJ, Yang Y, Peng WT, Sun JC, Sun WY, Wei W. G protein-coupled receptor kinase 2 regulating β2-adrenergic receptor signaling in M2-polarized macrophages contributes to hepatocellular carcinoma progression. Onco Targets Ther. 2019;12:5499–513.PubMedPubMedCentralCrossRef
309.
go back to reference LamersKok N, Panella D, Georgoudaki AM, Liu H, Özkazanc D, Kučerová L, et al. Natural killer cells in clinical development as non-engineered, engineered, and combination therapies. J Hematol Oncol. 2022;15:164. LamersKok N, Panella D, Georgoudaki AM, Liu H, Özkazanc D, Kučerová L, et al. Natural killer cells in clinical development as non-engineered, engineered, and combination therapies. J Hematol Oncol. 2022;15:164.
310.
go back to reference Whalen MM, Crews JD. Inhibition of a phosphodiesterase III in the lysis-sensitive target-induced elevation of cyclic AMP (cAMP) in human natural killer cells. Biochem Pharmacol. 2000;60:499–506.PubMedCrossRef Whalen MM, Crews JD. Inhibition of a phosphodiesterase III in the lysis-sensitive target-induced elevation of cyclic AMP (cAMP) in human natural killer cells. Biochem Pharmacol. 2000;60:499–506.PubMedCrossRef
311.
go back to reference Sun Z, Hou D, Liu S, Fu W, Wang J, Liang Z. Norepinephrine inhibits the cytotoxicity of NK92-MI cells via the β2-adrenoceptor/cAMP/PKA/p-CREB signaling pathway. Mol Med Rep. 2018;17:8530–5.PubMed Sun Z, Hou D, Liu S, Fu W, Wang J, Liang Z. Norepinephrine inhibits the cytotoxicity of NK92-MI cells via the β2-adrenoceptor/cAMP/PKA/p-CREB signaling pathway. Mol Med Rep. 2018;17:8530–5.PubMed
312.
go back to reference Salinthone S, Schillace RV, Marracci GH, Bourdette DN, Carr DW. Lipoic acid stimulates cAMP production via the EP2 and EP4 prostanoid receptors and inhibits IFN gamma synthesis and cellular cytotoxicity in NK cells. J Neuroimmunol. 2008;199:46–55.PubMedPubMedCentralCrossRef Salinthone S, Schillace RV, Marracci GH, Bourdette DN, Carr DW. Lipoic acid stimulates cAMP production via the EP2 and EP4 prostanoid receptors and inhibits IFN gamma synthesis and cellular cytotoxicity in NK cells. J Neuroimmunol. 2008;199:46–55.PubMedPubMedCentralCrossRef
313.
go back to reference Raskovalova T, Lokshin A, Huang X, Jackson EK, Gorelik E. Adenosine-mediated inhibition of cytotoxic activity and cytokine production by IL-2/NKp46-activated NK cells: involvement of protein kinase A isozyme I (PKA I). Immunol Res. 2006;36:91–9.PubMedCrossRef Raskovalova T, Lokshin A, Huang X, Jackson EK, Gorelik E. Adenosine-mediated inhibition of cytotoxic activity and cytokine production by IL-2/NKp46-activated NK cells: involvement of protein kinase A isozyme I (PKA I). Immunol Res. 2006;36:91–9.PubMedCrossRef
314.
go back to reference Holt D, Ma X, Kundu N, Fulton A. Prostaglandin E(2) (PGE (2)) suppresses natural killer cell function primarily through the PGE(2) receptor EP4. Cancer Immunol Immunother. 2011;60:1577–86.PubMedPubMedCentralCrossRef Holt D, Ma X, Kundu N, Fulton A. Prostaglandin E(2) (PGE (2)) suppresses natural killer cell function primarily through the PGE(2) receptor EP4. Cancer Immunol Immunother. 2011;60:1577–86.PubMedPubMedCentralCrossRef
315.
go back to reference Martinet L, Jean C, Dietrich G, Fournié JJ, Poupot R. PGE2 inhibits natural killer and gamma delta T cell cytotoxicity triggered by NKR and TCR through a cAMP-mediated PKA type I-dependent signaling. Biochem Pharmacol. 2010;80:838–45.PubMedCrossRef Martinet L, Jean C, Dietrich G, Fournié JJ, Poupot R. PGE2 inhibits natural killer and gamma delta T cell cytotoxicity triggered by NKR and TCR through a cAMP-mediated PKA type I-dependent signaling. Biochem Pharmacol. 2010;80:838–45.PubMedCrossRef
316.
go back to reference Chen Z, Yang Y, Neo SY, Shi H, Chen Y, Wagner AK, et al. Phosphodiesterase 4A confers resistance to PGE2-mediated suppression in CD25(+)/CD54(+) NK cells. EMBO Rep. 2021;22:e51329.PubMedPubMedCentralCrossRef Chen Z, Yang Y, Neo SY, Shi H, Chen Y, Wagner AK, et al. Phosphodiesterase 4A confers resistance to PGE2-mediated suppression in CD25(+)/CD54(+) NK cells. EMBO Rep. 2021;22:e51329.PubMedPubMedCentralCrossRef
317.
go back to reference Hoskin DW, Mader JS, Furlong SJ, Conrad DM, Blay J. Inhibition of T cell and natural killer cell function by adenosine and its contribution to immune evasion by tumor cells. Int J Oncol. 2008;32:527–35.PubMed Hoskin DW, Mader JS, Furlong SJ, Conrad DM, Blay J. Inhibition of T cell and natural killer cell function by adenosine and its contribution to immune evasion by tumor cells. Int J Oncol. 2008;32:527–35.PubMed
319.
321.
go back to reference Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S. Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res. 2007;67:4507–13.PubMedCrossRef Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S. Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res. 2007;67:4507–13.PubMedCrossRef
323.
go back to reference Sorrentino C, Miele L, Porta A, Pinto A, Morello S. Myeloid-derived suppressor cells contribute to A2B adenosine receptor-induced VEGF production and angiogenesis in a mouse melanoma model. Oncotarget. 2015;6:27478–89.PubMedPubMedCentralCrossRef Sorrentino C, Miele L, Porta A, Pinto A, Morello S. Myeloid-derived suppressor cells contribute to A2B adenosine receptor-induced VEGF production and angiogenesis in a mouse melanoma model. Oncotarget. 2015;6:27478–89.PubMedPubMedCentralCrossRef
324.
go back to reference Iannone R, Miele L, Maiolino P, Pinto A, Morello S. Blockade of A2b adenosine receptor reduces tumor growth and immune suppression mediated by myeloid-derived suppressor cells in a mouse model of melanoma. Neoplasia. 2013;15:1400–9.PubMedPubMedCentralCrossRef Iannone R, Miele L, Maiolino P, Pinto A, Morello S. Blockade of A2b adenosine receptor reduces tumor growth and immune suppression mediated by myeloid-derived suppressor cells in a mouse model of melanoma. Neoplasia. 2013;15:1400–9.PubMedPubMedCentralCrossRef
325.
go back to reference Liu C, Ke P, Zhang J, Zhang X, Chen X. Protein kinase inhibitor peptide as a tool to specifically inhibit protein kinase A. Front Physiol. 2020;11:574030.PubMedPubMedCentralCrossRef Liu C, Ke P, Zhang J, Zhang X, Chen X. Protein kinase inhibitor peptide as a tool to specifically inhibit protein kinase A. Front Physiol. 2020;11:574030.PubMedPubMedCentralCrossRef
326.
327.
go back to reference Luo W, Xu C, Ayello J, Dela Cruz F, Rosenblum JM, Lessnick SL, et al. Protein phosphatase 1 regulatory subunit 1A in ewing sarcoma tumorigenesis and metastasis. Oncogene. 2018;37:798–809.PubMedCrossRef Luo W, Xu C, Ayello J, Dela Cruz F, Rosenblum JM, Lessnick SL, et al. Protein phosphatase 1 regulatory subunit 1A in ewing sarcoma tumorigenesis and metastasis. Oncogene. 2018;37:798–809.PubMedCrossRef
328.
go back to reference Na YR, Kwon JW, Kim DY, Chung H, Song J, Jung D, et al. Protein kinase A catalytic subunit is a molecular switch that promotes the pro-tumoral function of macrophages. Cell Rep. 2020;31:107643.PubMedCrossRef Na YR, Kwon JW, Kim DY, Chung H, Song J, Jung D, et al. Protein kinase A catalytic subunit is a molecular switch that promotes the pro-tumoral function of macrophages. Cell Rep. 2020;31:107643.PubMedCrossRef
329.
go back to reference Galski H, Sivan H, Lazarovici P, Nagler A. In vitro and in vivo reversal of MDR1-mediated multidrug resistance by KT-5720: implications on hematological malignancies. Leuk Res. 2006;30:1151–8.PubMedCrossRef Galski H, Sivan H, Lazarovici P, Nagler A. In vitro and in vivo reversal of MDR1-mediated multidrug resistance by KT-5720: implications on hematological malignancies. Leuk Res. 2006;30:1151–8.PubMedCrossRef
330.
go back to reference Yang EB, Zhao YN, Zhang K, Mack P. Daphnetin, one of coumarin derivatives, is a protein kinase inhibitor. Biochem Biophys Res Commun. 1999;260:682–5.PubMedCrossRef Yang EB, Zhao YN, Zhang K, Mack P. Daphnetin, one of coumarin derivatives, is a protein kinase inhibitor. Biochem Biophys Res Commun. 1999;260:682–5.PubMedCrossRef
331.
go back to reference Nam G, An SK, Park IC, Bae S, Lee JH. Daphnetin inhibits α-MSH-induced melanogenesis via PKA and ERK signaling pathways in B16F10 melanoma cells. Biosci Biotechnol Biochem. 2022;86:596–609.PubMedCrossRef Nam G, An SK, Park IC, Bae S, Lee JH. Daphnetin inhibits α-MSH-induced melanogenesis via PKA and ERK signaling pathways in B16F10 melanoma cells. Biosci Biotechnol Biochem. 2022;86:596–609.PubMedCrossRef
332.
333.
go back to reference Fan X, Xie M, Zhao F, Li J, Fan C, Zheng H, et al. Daphnetin triggers ROS-induced cell death and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway in ovarian cancer. Phytomedicine. 2021;82:153465.PubMedCrossRef Fan X, Xie M, Zhao F, Li J, Fan C, Zheng H, et al. Daphnetin triggers ROS-induced cell death and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway in ovarian cancer. Phytomedicine. 2021;82:153465.PubMedCrossRef
334.
go back to reference Liu C, Pan J, Liu H, Lin R, Chen Y, Zhang C. Daphnetin inhibits the survival of hepatocellular carcinoma cells through regulating Wnt/β-catenin signaling pathway. Drug Dev Res. 2022;83:952–60.PubMedCrossRef Liu C, Pan J, Liu H, Lin R, Chen Y, Zhang C. Daphnetin inhibits the survival of hepatocellular carcinoma cells through regulating Wnt/β-catenin signaling pathway. Drug Dev Res. 2022;83:952–60.PubMedCrossRef
335.
go back to reference Fukuda H, Nakamura S, Chisaki Y, Takada T, Toda Y, Murata H, et al. Daphnetin inhibits invasion and migration of LM8 murine osteosarcoma cells by decreasing RhoA and Cdc42 expression. Biochem Biophys Res Commun. 2016;471:63–7.PubMedCrossRef Fukuda H, Nakamura S, Chisaki Y, Takada T, Toda Y, Murata H, et al. Daphnetin inhibits invasion and migration of LM8 murine osteosarcoma cells by decreasing RhoA and Cdc42 expression. Biochem Biophys Res Commun. 2016;471:63–7.PubMedCrossRef
336.
go back to reference Finn GJ, Creaven BS, Egan DA. Daphnetin induced differentiation of human renal carcinoma cells and its mediation by p38 mitogen-activated protein kinase. Biochem Pharmacol. 2004;67:1779–88.PubMedCrossRef Finn GJ, Creaven BS, Egan DA. Daphnetin induced differentiation of human renal carcinoma cells and its mediation by p38 mitogen-activated protein kinase. Biochem Pharmacol. 2004;67:1779–88.PubMedCrossRef
337.
go back to reference Li T, Yang G, Hao Q, Zhang X, Zhang X. Daphnetin ameliorates the expansion of chemically induced hepatocellular carcinoma via reduction of inflammation and oxidative stress. J Oleo Sci. 2022;71:575–85.PubMedCrossRef Li T, Yang G, Hao Q, Zhang X, Zhang X. Daphnetin ameliorates the expansion of chemically induced hepatocellular carcinoma via reduction of inflammation and oxidative stress. J Oleo Sci. 2022;71:575–85.PubMedCrossRef
338.
go back to reference Hoy JJ, Salinas Parra N, Park J, Kuhn S, Iglesias-Bartolome R. Protein kinase A inhibitor proteins (PKIs) divert GPCR-Gαs-cAMP signaling toward EPAC and ERK activation and are involved in tumor growth. Faseb J. 2020;34:13900–17.PubMedCrossRef Hoy JJ, Salinas Parra N, Park J, Kuhn S, Iglesias-Bartolome R. Protein kinase A inhibitor proteins (PKIs) divert GPCR-Gαs-cAMP signaling toward EPAC and ERK activation and are involved in tumor growth. Faseb J. 2020;34:13900–17.PubMedCrossRef
339.
go back to reference Li K, Liang J, Lin Y, Zhang H, Xiao X, Tan Y, et al. A classical PKA inhibitor increases the oncolytic effect of M1 virus via activation of exchange protein directly activated by cAMP 1. Oncotarget. 2016;7:48443–55.PubMedPubMedCentralCrossRef Li K, Liang J, Lin Y, Zhang H, Xiao X, Tan Y, et al. A classical PKA inhibitor increases the oncolytic effect of M1 virus via activation of exchange protein directly activated by cAMP 1. Oncotarget. 2016;7:48443–55.PubMedPubMedCentralCrossRef
340.
go back to reference Parnell E, McElroy SP, Wiejak J, Baillie GL, Porter A, Adams DR, et al. Identification of a novel, small molecule partial agonist for the cyclic AMP sensor, EPAC1. Sci Rep. 2017;7:294.PubMedPubMedCentralCrossRef Parnell E, McElroy SP, Wiejak J, Baillie GL, Porter A, Adams DR, et al. Identification of a novel, small molecule partial agonist for the cyclic AMP sensor, EPAC1. Sci Rep. 2017;7:294.PubMedPubMedCentralCrossRef
341.
go back to reference Beck EM, Parnell E, Cowley A, Porter A, Gillespie J, Robinson J, et al. Identification of a novel class of benzofuran oxoacetic acid-derived ligands that selectively activate cellular EPAC1. Cells. 2019;8:1425.PubMedCrossRef Beck EM, Parnell E, Cowley A, Porter A, Gillespie J, Robinson J, et al. Identification of a novel class of benzofuran oxoacetic acid-derived ligands that selectively activate cellular EPAC1. Cells. 2019;8:1425.PubMedCrossRef
342.
go back to reference Almahariq M, Tsalkova T, Mei FC, Chen H, Zhou J, Sastry SK, et al. A novel EPAC-specific inhibitor suppresses pancreatic cancer cell migration and invasion. Mol Pharmacol. 2013;83:122–8.PubMedPubMedCentralCrossRef Almahariq M, Tsalkova T, Mei FC, Chen H, Zhou J, Sastry SK, et al. A novel EPAC-specific inhibitor suppresses pancreatic cancer cell migration and invasion. Mol Pharmacol. 2013;83:122–8.PubMedPubMedCentralCrossRef
343.
go back to reference Wang X, Luo C, Cheng X, Lu M. Lithium and an EPAC-specific inhibitor ESI-09 synergistically suppress pancreatic cancer cell proliferation and survival. Acta Biochim Biophys Sin (Shanghai). 2017;49:573–80.PubMedCrossRef Wang X, Luo C, Cheng X, Lu M. Lithium and an EPAC-specific inhibitor ESI-09 synergistically suppress pancreatic cancer cell proliferation and survival. Acta Biochim Biophys Sin (Shanghai). 2017;49:573–80.PubMedCrossRef
344.
go back to reference Qureshi U, Khan MI, Ashraf S, Hameed A, Hafizur RM, Rafique R, et al. Identification of novel Epac2 antagonists through in silico and in vitro analyses. Eur J Pharm Sci. 2020;153:105492.PubMedCrossRef Qureshi U, Khan MI, Ashraf S, Hameed A, Hafizur RM, Rafique R, et al. Identification of novel Epac2 antagonists through in silico and in vitro analyses. Eur J Pharm Sci. 2020;153:105492.PubMedCrossRef
345.
go back to reference Courilleau D, Bouyssou P, Fischmeister R, Lezoualc’h F, Blondeau JP. The (R)-enantiomer of CE3F4 is a preferential inhibitor of human exchange protein directly activated by cyclic AMP isoform 1 (Epac1). Biochem Biophys Res Commun. 2013;440:443–8.PubMedCrossRef Courilleau D, Bouyssou P, Fischmeister R, Lezoualc’h F, Blondeau JP. The (R)-enantiomer of CE3F4 is a preferential inhibitor of human exchange protein directly activated by cyclic AMP isoform 1 (Epac1). Biochem Biophys Res Commun. 2013;440:443–8.PubMedCrossRef
346.
go back to reference Foret-Lucas C, Figueroa T, Bertin A, Bessière P, Lucas A, Bergonnier D, et al. EPAC1 pharmacological inhibition with AM-001 prevents SARS-CoV-2 and influenza a virus replication in cells. Viruses. 2023;15:319.PubMedPubMedCentralCrossRef Foret-Lucas C, Figueroa T, Bertin A, Bessière P, Lucas A, Bergonnier D, et al. EPAC1 pharmacological inhibition with AM-001 prevents SARS-CoV-2 and influenza a virus replication in cells. Viruses. 2023;15:319.PubMedPubMedCentralCrossRef
347.
go back to reference Kang WB, Yang Q, Guo YY, Wang L, Wang DS, Cheng Q, et al. Analgesic effects of adenylyl cyclase inhibitor NB001 on bone cancer pain in a mouse model. Mol Pain. 2016;12:1744806916652409.PubMedPubMedCentralCrossRef Kang WB, Yang Q, Guo YY, Wang L, Wang DS, Cheng Q, et al. Analgesic effects of adenylyl cyclase inhibitor NB001 on bone cancer pain in a mouse model. Mol Pain. 2016;12:1744806916652409.PubMedPubMedCentralCrossRef
348.
go back to reference Wang W, Chen QY, Zhao P, Zhong J, Wang Y, Li X, et al. Human safety study of a selective neuronal adenylate cyclase 1 inhibitor NB001 which relieves the neuropathic pain and blocks ACC in adult mice. Mol Pain. 2022;18:17448069221089596.PubMedPubMedCentralCrossRef Wang W, Chen QY, Zhao P, Zhong J, Wang Y, Li X, et al. Human safety study of a selective neuronal adenylate cyclase 1 inhibitor NB001 which relieves the neuropathic pain and blocks ACC in adult mice. Mol Pain. 2022;18:17448069221089596.PubMedPubMedCentralCrossRef
349.
go back to reference Brust TF, Alongkronrusmee D, Soto-Velasquez M, Baldwin TA, Ye Z, Dai M, et al. Identification of a selective small-molecule inhibitor of type 1 adenylyl cyclase activity with analgesic properties. Sci Signal. 2017;10:eaah5381.PubMedPubMedCentralCrossRef Brust TF, Alongkronrusmee D, Soto-Velasquez M, Baldwin TA, Ye Z, Dai M, et al. Identification of a selective small-molecule inhibitor of type 1 adenylyl cyclase activity with analgesic properties. Sci Signal. 2017;10:eaah5381.PubMedPubMedCentralCrossRef
350.
go back to reference Kaur J, Soto-Velasquez M, Ding Z, Ghanbarpour A, Lill MA, van Rijn RM, et al. Optimization of a 1,3,4-oxadiazole series for inhibition of Ca(2+)/calmodulin-stimulated activity of adenylyl cyclases 1 and 8 for the treatment of chronic pain. Eur J Med Chem. 2019;162:568–85.PubMedCrossRef Kaur J, Soto-Velasquez M, Ding Z, Ghanbarpour A, Lill MA, van Rijn RM, et al. Optimization of a 1,3,4-oxadiazole series for inhibition of Ca(2+)/calmodulin-stimulated activity of adenylyl cyclases 1 and 8 for the treatment of chronic pain. Eur J Med Chem. 2019;162:568–85.PubMedCrossRef
351.
go back to reference Johann K, Bohn T, Shahneh F, Luther N, Birke A, Jaurich H, et al. Therapeutic melanoma inhibition by local micelle-mediated cyclic nucleotide repression. Nat Commun. 2021;12:5981.PubMedPubMedCentralCrossRef Johann K, Bohn T, Shahneh F, Luther N, Birke A, Jaurich H, et al. Therapeutic melanoma inhibition by local micelle-mediated cyclic nucleotide repression. Nat Commun. 2021;12:5981.PubMedPubMedCentralCrossRef
352.
go back to reference Johannessen CM, Johnson LA, Piccioni F, Townes A, Frederick DT, Donahue MK, et al. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature. 2013;504:138–42.PubMedPubMedCentralCrossRef Johannessen CM, Johnson LA, Piccioni F, Townes A, Frederick DT, Donahue MK, et al. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature. 2013;504:138–42.PubMedPubMedCentralCrossRef
353.
go back to reference Kleinboelting S, Ramos-Espiritu L, Buck H, Colis L, van den Heuvel J, Glickman JF, et al. Bithionol potently inhibits human soluble adenylyl cyclase through binding to the allosteric activator site. J Biol Chem. 2016;291:9776–84.PubMedPubMedCentralCrossRef Kleinboelting S, Ramos-Espiritu L, Buck H, Colis L, van den Heuvel J, Glickman JF, et al. Bithionol potently inhibits human soluble adenylyl cyclase through binding to the allosteric activator site. J Biol Chem. 2016;291:9776–84.PubMedPubMedCentralCrossRef
354.
go back to reference Ayyagari VN, Diaz-Sylvester PL, Hsieh TJ, Brard L. Evaluation of the cytotoxicity of the Bithionol-paclitaxel combination in a panel of human ovarian cancer cell lines. PLOS ONE. 2017;12:e0185111.PubMedPubMedCentralCrossRef Ayyagari VN, Diaz-Sylvester PL, Hsieh TJ, Brard L. Evaluation of the cytotoxicity of the Bithionol-paclitaxel combination in a panel of human ovarian cancer cell lines. PLOS ONE. 2017;12:e0185111.PubMedPubMedCentralCrossRef
355.
go back to reference Jakobsen E, Lange SC, Andersen JV, Desler C, Kihl HF, Hohnholt MC, et al. The inhibitors of soluble adenylate cyclase 2-OHE, KH7, and bithionol compromise mitochondrial ATP production by distinct mechanisms. Biochem Pharmacol. 2018;155:92–101.PubMedCrossRef Jakobsen E, Lange SC, Andersen JV, Desler C, Kihl HF, Hohnholt MC, et al. The inhibitors of soluble adenylate cyclase 2-OHE, KH7, and bithionol compromise mitochondrial ATP production by distinct mechanisms. Biochem Pharmacol. 2018;155:92–101.PubMedCrossRef
356.
go back to reference Wu JF, Dhakal B. BCMA-targeted CAR-T cell therapies in relapsed and/or refractory multiple myeloma: latest updates from 2023 ASCO Annual Meeting. J Hematol Oncol. 2023;16:86.PubMedPubMedCentralCrossRef Wu JF, Dhakal B. BCMA-targeted CAR-T cell therapies in relapsed and/or refractory multiple myeloma: latest updates from 2023 ASCO Annual Meeting. J Hematol Oncol. 2023;16:86.PubMedPubMedCentralCrossRef
357.
go back to reference Kjaergaard J, Hatfield S, Jones G, Ohta A, Sitkovsky M. A(2A) adenosine receptor gene deletion or synthetic A(2A) sntagonist liberate tumor-reactive CD8(+) T cells from tumor-induced immunosuppression. J Immunol. 2018;201:782–91.PubMedCrossRef Kjaergaard J, Hatfield S, Jones G, Ohta A, Sitkovsky M. A(2A) adenosine receptor gene deletion or synthetic A(2A) sntagonist liberate tumor-reactive CD8(+) T cells from tumor-induced immunosuppression. J Immunol. 2018;201:782–91.PubMedCrossRef
358.
go back to reference Masoumi E, Jafarzadeh L, Mirzaei HR, Alishah K, Fallah-Mehrjardi K, Rostamian H, et al. Genetic and pharmacological targeting of A2a receptor improves function of anti-mesothelin CAR T cells. J Exp Clin Cancer Res. 2020;39:49.PubMedPubMedCentralCrossRef Masoumi E, Jafarzadeh L, Mirzaei HR, Alishah K, Fallah-Mehrjardi K, Rostamian H, et al. Genetic and pharmacological targeting of A2a receptor improves function of anti-mesothelin CAR T cells. J Exp Clin Cancer Res. 2020;39:49.PubMedPubMedCentralCrossRef
359.
go back to reference Giuffrida L, Sek K, Henderson MA, Lai J, Chen AXY, Meyran D, et al. CRISPR/Cas9 mediated deletion of the adenosine A2A receptor enhances CAR T cell efficacy. Nat Commun. 2021;12:3236.PubMedPubMedCentralCrossRef Giuffrida L, Sek K, Henderson MA, Lai J, Chen AXY, Meyran D, et al. CRISPR/Cas9 mediated deletion of the adenosine A2A receptor enhances CAR T cell efficacy. Nat Commun. 2021;12:3236.PubMedPubMedCentralCrossRef
360.
go back to reference Yan T, Zhu L, Chen J. Current advances and challenges in CAR T-Cell therapy for solid tumors: tumor-associated antigens and the tumor microenvironment. Exp Hematol Oncol. 2023;12:14.PubMedPubMedCentralCrossRef Yan T, Zhu L, Chen J. Current advances and challenges in CAR T-Cell therapy for solid tumors: tumor-associated antigens and the tumor microenvironment. Exp Hematol Oncol. 2023;12:14.PubMedPubMedCentralCrossRef
361.
go back to reference Salzillo A, Ragone A, Spina A, Naviglio S, Sapio L. Forskolin affects proliferation, migration and paclitaxel-mediated cytotoxicity in non-small-cell lung cancer cell lines via adenylyl cyclase/cAMP axis. Eur J Cell Biol. 2023;102:151292.PubMedCrossRef Salzillo A, Ragone A, Spina A, Naviglio S, Sapio L. Forskolin affects proliferation, migration and paclitaxel-mediated cytotoxicity in non-small-cell lung cancer cell lines via adenylyl cyclase/cAMP axis. Eur J Cell Biol. 2023;102:151292.PubMedCrossRef
362.
go back to reference Singh D, Singh P, Pradhan A, Srivastava R, Sahoo SK. Reprogramming cancer stem-like cells with nanoforskolin enhances the efficacy of paclitaxel in targeting breast cancer. ACS Appl Bio Mater. 2021;4:3670–85.PubMedCrossRef Singh D, Singh P, Pradhan A, Srivastava R, Sahoo SK. Reprogramming cancer stem-like cells with nanoforskolin enhances the efficacy of paclitaxel in targeting breast cancer. ACS Appl Bio Mater. 2021;4:3670–85.PubMedCrossRef
363.
go back to reference Sapio L, Gallo M, Illiano M, Chiosi E, Naviglio D, Spina A, et al. The natural cAMP elevating compound forskolin in cancer therapy: Is it time? J Cell Physiol. 2017;232:922–7.PubMedCrossRef Sapio L, Gallo M, Illiano M, Chiosi E, Naviglio D, Spina A, et al. The natural cAMP elevating compound forskolin in cancer therapy: Is it time? J Cell Physiol. 2017;232:922–7.PubMedCrossRef
364.
go back to reference Dicitore A, Grassi ES, Caraglia M, Borghi MO, Gaudenzi G, Hofland LJ, et al. The cAMP analogs have potent anti-proliferative effects on medullary thyroid cancer cell lines. Endocrine. 2016;51:101–12.PubMedCrossRef Dicitore A, Grassi ES, Caraglia M, Borghi MO, Gaudenzi G, Hofland LJ, et al. The cAMP analogs have potent anti-proliferative effects on medullary thyroid cancer cell lines. Endocrine. 2016;51:101–12.PubMedCrossRef
365.
go back to reference Wang HM, Qu LQ, Ng JPL, Zeng W, Yu L, Song LL, et al. Natural Citrus flavanone 5-demethylnobiletin stimulates melanogenesis through the activation of cAMP/CREB pathway in B16F10 cells. Phytomedicine. 2022;98:153941.PubMedCrossRef Wang HM, Qu LQ, Ng JPL, Zeng W, Yu L, Song LL, et al. Natural Citrus flavanone 5-demethylnobiletin stimulates melanogenesis through the activation of cAMP/CREB pathway in B16F10 cells. Phytomedicine. 2022;98:153941.PubMedCrossRef
366.
go back to reference Ding H, You Q, Li D, Liu Y. 5-Demethylnobiletin: Insights into its pharmacological activity, mechanisms, pharmacokinetics and toxicity. Phytomedicine. 2022;104:154285.PubMedCrossRef Ding H, You Q, Li D, Liu Y. 5-Demethylnobiletin: Insights into its pharmacological activity, mechanisms, pharmacokinetics and toxicity. Phytomedicine. 2022;104:154285.PubMedCrossRef
367.
go back to reference Wu BN, Lin RJ, Lo YC, Shen KP, Wang CC, Lin YT, Chen IJ. KMUP-1, a xanthine derivative, induces relaxation of guinea-pig isolated trachea: the role of the epithelium cyclic nucleotides and K+ channels. Br J Pharmacol. 2004;142:1105–14.PubMedPubMedCentralCrossRef Wu BN, Lin RJ, Lo YC, Shen KP, Wang CC, Lin YT, Chen IJ. KMUP-1, a xanthine derivative, induces relaxation of guinea-pig isolated trachea: the role of the epithelium cyclic nucleotides and K+ channels. Br J Pharmacol. 2004;142:1105–14.PubMedPubMedCentralCrossRef
368.
go back to reference Vandenberghe P, Hagué P, Hockman SC, Manganiello VC, Demetter P, Erneux C, et al. Phosphodiesterase 3A: a new player in development of interstitial cells of Cajal and a prospective target in gastrointestinal stromal tumors (GIST). Oncotarget. 2017;8:41026–43.PubMedPubMedCentralCrossRef Vandenberghe P, Hagué P, Hockman SC, Manganiello VC, Demetter P, Erneux C, et al. Phosphodiesterase 3A: a new player in development of interstitial cells of Cajal and a prospective target in gastrointestinal stromal tumors (GIST). Oncotarget. 2017;8:41026–43.PubMedPubMedCentralCrossRef
369.
go back to reference Longo J, Pandyra AA, Stachura P, Minden MD, Schimmer AD, Penn LZ. Cyclic AMP-hydrolyzing phosphodiesterase inhibitors potentiate statin-induced cancer cell death. Mol Oncol. 2020;14:2533–45.PubMedPubMedCentralCrossRef Longo J, Pandyra AA, Stachura P, Minden MD, Schimmer AD, Penn LZ. Cyclic AMP-hydrolyzing phosphodiesterase inhibitors potentiate statin-induced cancer cell death. Mol Oncol. 2020;14:2533–45.PubMedPubMedCentralCrossRef
371.
go back to reference Venkataraman C, Chelvarajan RL, Cambier JC, Bondada S. Interleukin-4 overcomes the negative influence of cyclic AMP accumulation on antigen receptor stimulated B lymphocytes. Mol Immunol. 1998;35:997–1014.PubMedCrossRef Venkataraman C, Chelvarajan RL, Cambier JC, Bondada S. Interleukin-4 overcomes the negative influence of cyclic AMP accumulation on antigen receptor stimulated B lymphocytes. Mol Immunol. 1998;35:997–1014.PubMedCrossRef
372.
go back to reference Makhoul S, Trabold K, Gambaryan S, Tenzer S, Pillitteri D, Walter U, et al. cAMP- and cGMP-elevating agents inhibit GPIbα-mediated aggregation but not GPIbα-stimulated Syk activation in human platelets. Cell Commun Signal. 2019;17:122.PubMedPubMedCentralCrossRef Makhoul S, Trabold K, Gambaryan S, Tenzer S, Pillitteri D, Walter U, et al. cAMP- and cGMP-elevating agents inhibit GPIbα-mediated aggregation but not GPIbα-stimulated Syk activation in human platelets. Cell Commun Signal. 2019;17:122.PubMedPubMedCentralCrossRef
373.
go back to reference Williams CH, Hempel JE, Hao J, Frist AY, Williams MM, Fleming JT, et al. An in vivo chemical genetic screen identifies phosphodiesterase 4 as a pharmacological target for hedgehog signaling inhibition. Cell Rep. 2015;11:43–50.PubMedPubMedCentralCrossRef Williams CH, Hempel JE, Hao J, Frist AY, Williams MM, Fleming JT, et al. An in vivo chemical genetic screen identifies phosphodiesterase 4 as a pharmacological target for hedgehog signaling inhibition. Cell Rep. 2015;11:43–50.PubMedPubMedCentralCrossRef
374.
go back to reference Schmidt AL, de Farias CB, Abujamra AL, Kapczinski F, Schwartsmann G, Brunetto AL, et al. BDNF and PDE4, but not the GRPR, regulate viability of human medulloblastoma cells. J Mol Neurosci. 2010;40:303–10.PubMedCrossRef Schmidt AL, de Farias CB, Abujamra AL, Kapczinski F, Schwartsmann G, Brunetto AL, et al. BDNF and PDE4, but not the GRPR, regulate viability of human medulloblastoma cells. J Mol Neurosci. 2010;40:303–10.PubMedCrossRef
375.
go back to reference Pullamsetti SS, Banat GA, Schmall A, Szibor M, Pomagruk D, Hänze J, et al. Phosphodiesterase-4 promotes proliferation and angiogenesis of lung cancer by crosstalk with HIF. Oncogene. 2013;32:1121–34.PubMedCrossRef Pullamsetti SS, Banat GA, Schmall A, Szibor M, Pomagruk D, Hänze J, et al. Phosphodiesterase-4 promotes proliferation and angiogenesis of lung cancer by crosstalk with HIF. Oncogene. 2013;32:1121–34.PubMedCrossRef
376.
go back to reference He N, Kim N, Song M, Park C, Kim S, Park EY, et al. Integrated analysis of transcriptomes of cancer cell lines and patient samples reveals STK11/LKB1-driven regulation of cAMP phosphodiesterase-4D. Mol Cancer Ther. 2014;13:2463–73.PubMedCrossRef He N, Kim N, Song M, Park C, Kim S, Park EY, et al. Integrated analysis of transcriptomes of cancer cell lines and patient samples reveals STK11/LKB1-driven regulation of cAMP phosphodiesterase-4D. Mol Cancer Ther. 2014;13:2463–73.PubMedCrossRef
377.
go back to reference Ge X, Milenkovic L, Suyama K, Hartl T, Purzner T, Winans A, et al. Phosphodiesterase 4D acts downstream of Neuropilin to control Hedgehog signal transduction and the growth of medulloblastoma. Elife. 2015;4:e07068.PubMedPubMedCentralCrossRef Ge X, Milenkovic L, Suyama K, Hartl T, Purzner T, Winans A, et al. Phosphodiesterase 4D acts downstream of Neuropilin to control Hedgehog signal transduction and the growth of medulloblastoma. Elife. 2015;4:e07068.PubMedPubMedCentralCrossRef
378.
go back to reference Powers GL, Hammer KD, Domenech M, Frantskevich K, Malinowski RL, Bushman W, et al. Phosphodiesterase 4D inhibitors limit prostate cancer growth potential. Mol Cancer Res. 2015;13:149–60.PubMedCrossRef Powers GL, Hammer KD, Domenech M, Frantskevich K, Malinowski RL, Bushman W, et al. Phosphodiesterase 4D inhibitors limit prostate cancer growth potential. Mol Cancer Res. 2015;13:149–60.PubMedCrossRef
379.
go back to reference Mishra RR, Belder N, Ansari SA, Kayhan M, Bal H, Raza U, et al. Reactivation of cAMP pathway by PDE4D inhibition represents a novel druggable axis for overcoming tamoxifen resistance in ER-positive breast cancer. Clin Cancer Res. 2018;24:1987–2001.PubMedCrossRef Mishra RR, Belder N, Ansari SA, Kayhan M, Bal H, Raza U, et al. Reactivation of cAMP pathway by PDE4D inhibition represents a novel druggable axis for overcoming tamoxifen resistance in ER-positive breast cancer. Clin Cancer Res. 2018;24:1987–2001.PubMedCrossRef
380.
go back to reference McEwan DG, Brunton VG, Baillie GS, Leslie NR, Houslay MD, Frame MC. Chemoresistant KM12C colon cancer cells are addicted to low cyclic AMP levels in a phosphodiesterase 4-regulated compartment via effects on phosphoinositide 3-kinase. Cancer Res. 2007;67:5248–57.PubMedCrossRef McEwan DG, Brunton VG, Baillie GS, Leslie NR, Houslay MD, Frame MC. Chemoresistant KM12C colon cancer cells are addicted to low cyclic AMP levels in a phosphodiesterase 4-regulated compartment via effects on phosphoinositide 3-kinase. Cancer Res. 2007;67:5248–57.PubMedCrossRef
382.
go back to reference Kim DU, Kwak B, Kim SW. Phosphodiesterase 4B is an effective therapeutic target in colorectal cancer. Biochem Biophys Res Commun. 2019;508:825–31.PubMedCrossRef Kim DU, Kwak B, Kim SW. Phosphodiesterase 4B is an effective therapeutic target in colorectal cancer. Biochem Biophys Res Commun. 2019;508:825–31.PubMedCrossRef
383.
go back to reference Limoncella S, Lazzaretti C, Paradiso E, D’Alessandro S, Barbagallo F, Pacifico S, et al. Phosphodiesterase (PDE) 5 inhibitors sildenafil, tadalafil and vardenafil impact cAMP-specific PDE8 isoforms-linked second messengers and steroid production in a mouse Leydig tumor cell line. Mol Cell Endocrinol. 2022;542:111527.PubMedCrossRef Limoncella S, Lazzaretti C, Paradiso E, D’Alessandro S, Barbagallo F, Pacifico S, et al. Phosphodiesterase (PDE) 5 inhibitors sildenafil, tadalafil and vardenafil impact cAMP-specific PDE8 isoforms-linked second messengers and steroid production in a mouse Leydig tumor cell line. Mol Cell Endocrinol. 2022;542:111527.PubMedCrossRef
384.
go back to reference Klutzny S, Anurin A, Nicke B, Regan JL, Lange M, Schulze L, et al. PDE5 inhibition eliminates cancer stem cells via induction of PKA signaling. Cell Death Dis. 2018;9:192.PubMedPubMedCentralCrossRef Klutzny S, Anurin A, Nicke B, Regan JL, Lange M, Schulze L, et al. PDE5 inhibition eliminates cancer stem cells via induction of PKA signaling. Cell Death Dis. 2018;9:192.PubMedPubMedCentralCrossRef
385.
go back to reference Pantziarka P, Verbaanderd C, Sukhatme V, Rica Capistrano I, Crispino S, Gyawali B, et al. ReDO_DB: the repurposing drugs in oncology database. Ecancermedicalscience. 2018;12:886.PubMedPubMedCentralCrossRef Pantziarka P, Verbaanderd C, Sukhatme V, Rica Capistrano I, Crispino S, Gyawali B, et al. ReDO_DB: the repurposing drugs in oncology database. Ecancermedicalscience. 2018;12:886.PubMedPubMedCentralCrossRef
386.
go back to reference Cruz-Burgos M, Losada-Garcia A, Cruz-Hernández CD, Cortés-Ramírez SA, Camacho-Arroyo I, Gonzalez-Covarrubias V, et al. New approaches in oncology for repositioning drugs: the case of PDE5 inhibitor sildenafil. Front Oncol. 2021;11:627229.PubMedPubMedCentralCrossRef Cruz-Burgos M, Losada-Garcia A, Cruz-Hernández CD, Cortés-Ramírez SA, Camacho-Arroyo I, Gonzalez-Covarrubias V, et al. New approaches in oncology for repositioning drugs: the case of PDE5 inhibitor sildenafil. Front Oncol. 2021;11:627229.PubMedPubMedCentralCrossRef
387.
go back to reference Li Q, Shu Y. Pharmacological modulation of cytotoxicity and cellular uptake of anti-cancer drugs by PDE5 inhibitors in lung cancer cells. Pharm Res. 2014;31:86–96.PubMedCrossRef Li Q, Shu Y. Pharmacological modulation of cytotoxicity and cellular uptake of anti-cancer drugs by PDE5 inhibitors in lung cancer cells. Pharm Res. 2014;31:86–96.PubMedCrossRef
388.
go back to reference Roberts JL, Booth L, Conley A, Cruickshanks N, Malkin M, Kukreja RC, et al. PDE5 inhibitors enhance the lethality of standard of care chemotherapy in pediatric CNS tumor cells. Cancer Biol Ther. 2014;15:758–67.PubMedPubMedCentralCrossRef Roberts JL, Booth L, Conley A, Cruickshanks N, Malkin M, Kukreja RC, et al. PDE5 inhibitors enhance the lethality of standard of care chemotherapy in pediatric CNS tumor cells. Cancer Biol Ther. 2014;15:758–67.PubMedPubMedCentralCrossRef
389.
go back to reference Röhrig T, Pacjuk O, Hernández-Huguet S, Körner J, Scherer K, Richling E. Inhibition of cyclic adenosine monophosphate-specific phosphodiesterase by various food plant-derived phytotherapeutic agents. Medicines (Basel). 2017;4:80.PubMedCrossRef Röhrig T, Pacjuk O, Hernández-Huguet S, Körner J, Scherer K, Richling E. Inhibition of cyclic adenosine monophosphate-specific phosphodiesterase by various food plant-derived phytotherapeutic agents. Medicines (Basel). 2017;4:80.PubMedCrossRef
390.
go back to reference Noori S, Hassan ZM, Rezaei B, Rustaiyan A, Habibi Z, Fallahian F. Artemisinin can inhibit the calmodulin-mediated activation of phosphodiesterase in comparison with Cyclosporin A. Int Immunopharmacol. 2008;8:1744–7.PubMedCrossRef Noori S, Hassan ZM, Rezaei B, Rustaiyan A, Habibi Z, Fallahian F. Artemisinin can inhibit the calmodulin-mediated activation of phosphodiesterase in comparison with Cyclosporin A. Int Immunopharmacol. 2008;8:1744–7.PubMedCrossRef
391.
go back to reference Zhang J, Xu HX, Zhu JQ, Dou YX, Xian YF, Lin ZX. Natural Nrf2 inhibitors: A review of their potential for cancer treatment. Int J Biol Sci. 2023;19:3029–41.PubMedPubMedCentralCrossRef Zhang J, Xu HX, Zhu JQ, Dou YX, Xian YF, Lin ZX. Natural Nrf2 inhibitors: A review of their potential for cancer treatment. Int J Biol Sci. 2023;19:3029–41.PubMedPubMedCentralCrossRef
392.
go back to reference Chen YH, Wu JX, Yang SF, Hsiao YH. Synergistic combination of luteolin and asiatic acid on cervical cancer in vitro and in vivo. Cancers (Basel). 2023;15:548.PubMedCrossRef Chen YH, Wu JX, Yang SF, Hsiao YH. Synergistic combination of luteolin and asiatic acid on cervical cancer in vitro and in vivo. Cancers (Basel). 2023;15:548.PubMedCrossRef
394.
go back to reference Wang J, Zhang J, Guo Z, Hua H, Zhang H, Liu Y, et al. Targeting HSP70 chaperones by rhein sensitizes liver cancer to artemisinin derivatives. Phytomedicine. 2024;122:155156.PubMedCrossRef Wang J, Zhang J, Guo Z, Hua H, Zhang H, Liu Y, et al. Targeting HSP70 chaperones by rhein sensitizes liver cancer to artemisinin derivatives. Phytomedicine. 2024;122:155156.PubMedCrossRef
395.
go back to reference Zou X, Shanmugam SK, Kanner SA, Sampson KJ, Kass RS, Colecraft HM. Divergent regulation of KCNQ1/E1 by targeted recruitment of protein kinase A to distinct sites on the channel complex. Elife. 2023;12:e83466.PubMedPubMedCentralCrossRef Zou X, Shanmugam SK, Kanner SA, Sampson KJ, Kass RS, Colecraft HM. Divergent regulation of KCNQ1/E1 by targeted recruitment of protein kinase A to distinct sites on the channel complex. Elife. 2023;12:e83466.PubMedPubMedCentralCrossRef
396.
go back to reference Ireton KE, Xing X, Kim K, Weiner JC, Jacobi AA, Grover A, et al. Regulation of the Ca(2+) channel Ca(V)1.2 supports spatial memory and its flexibility and LTD. J Neurosci. 2023;43:5559–73.PubMedCrossRef Ireton KE, Xing X, Kim K, Weiner JC, Jacobi AA, Grover A, et al. Regulation of the Ca(2+) channel Ca(V)1.2 supports spatial memory and its flexibility and LTD. J Neurosci. 2023;43:5559–73.PubMedCrossRef
397.
go back to reference Honda T, Fujiyama T, Miyoshi C, Ikkyu A, Hotta-Hirashima N, Kanno S, et al. A single phosphorylation site of SIK3 regulates daily sleep amounts and sleep need in mice. Proc Natl Acad Sci USA. 2018;115:10458–63.PubMedPubMedCentralCrossRef Honda T, Fujiyama T, Miyoshi C, Ikkyu A, Hotta-Hirashima N, Kanno S, et al. A single phosphorylation site of SIK3 regulates daily sleep amounts and sleep need in mice. Proc Natl Acad Sci USA. 2018;115:10458–63.PubMedPubMedCentralCrossRef
398.
go back to reference Wang XT, Zhou L, Dong BB, Xu FX, Wang DJ, Shen EW, et al. cAMP-EPAC-PKCε-RIM1α signaling regulates presynaptic long-term potentiation and motor learning. Elife. 2023;12:e80875.PubMedPubMedCentralCrossRef Wang XT, Zhou L, Dong BB, Xu FX, Wang DJ, Shen EW, et al. cAMP-EPAC-PKCε-RIM1α signaling regulates presynaptic long-term potentiation and motor learning. Elife. 2023;12:e80875.PubMedPubMedCentralCrossRef
399.
400.
go back to reference Gao F, Yang S, Wang J, Zhu G. cAMP-PKA cascade: An outdated topic for depression? Biomed Pharmacother. 2022;150:113030.PubMedCrossRef Gao F, Yang S, Wang J, Zhu G. cAMP-PKA cascade: An outdated topic for depression? Biomed Pharmacother. 2022;150:113030.PubMedCrossRef
401.
go back to reference Baillie GS, Tejeda GS, Kelly MP. Therapeutic targeting of 3’,5’-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nat Rev Drug Discov. 2019;18:770–96.PubMedPubMedCentralCrossRef Baillie GS, Tejeda GS, Kelly MP. Therapeutic targeting of 3’,5’-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nat Rev Drug Discov. 2019;18:770–96.PubMedPubMedCentralCrossRef
402.
go back to reference Kelly K, Mejia A, Suhasini AN, Lin AP, Kuhn J, Karnad AB, et al. Safety and pharmacodynamics of the PDE4 inhibitor roflumilast in advanced B-cell malignancies. Clin Cancer Res. 2017;23:1186–92.PubMedCrossRef Kelly K, Mejia A, Suhasini AN, Lin AP, Kuhn J, Karnad AB, et al. Safety and pharmacodynamics of the PDE4 inhibitor roflumilast in advanced B-cell malignancies. Clin Cancer Res. 2017;23:1186–92.PubMedCrossRef
403.
go back to reference Kim DY, Nam J, Chung JS, Kim SW, Shin HJ. Role of roflumilast combined with ESHAP chemotherapy in relapsed/refractory patients with diffuse large B-cell lymphoma. Cancer Res Treat. 2022;54:301–13.PubMedCrossRef Kim DY, Nam J, Chung JS, Kim SW, Shin HJ. Role of roflumilast combined with ESHAP chemotherapy in relapsed/refractory patients with diffuse large B-cell lymphoma. Cancer Res Treat. 2022;54:301–13.PubMedCrossRef
404.
go back to reference Dixit D, Prager BC, Gimple RC, Miller TE, Wu Q, Yomtoubian S, et al. Glioblastoma stem cells reprogram chromatin in vivo to generate selective therapeutic dependencies on DPY30 and phosphodiesterases. Sci Transl Med. 2022;14:eabf3917.PubMedCrossRef Dixit D, Prager BC, Gimple RC, Miller TE, Wu Q, Yomtoubian S, et al. Glioblastoma stem cells reprogram chromatin in vivo to generate selective therapeutic dependencies on DPY30 and phosphodiesterases. Sci Transl Med. 2022;14:eabf3917.PubMedCrossRef
405.
go back to reference Weed DT, Zilio S, Reis IM, Sargi Z, Abouyared M, Gomez-Fernandez CR, et al. The reversal of immune exclusion mediated by tadalafil and an anti-tumor vaccine also induces PDL1 upregulation in recurrent head and neck squamous cell carcinoma: interim analysis of a phase I clinical trial. Front Immunol. 2019;10:1206.PubMedPubMedCentralCrossRef Weed DT, Zilio S, Reis IM, Sargi Z, Abouyared M, Gomez-Fernandez CR, et al. The reversal of immune exclusion mediated by tadalafil and an anti-tumor vaccine also induces PDL1 upregulation in recurrent head and neck squamous cell carcinoma: interim analysis of a phase I clinical trial. Front Immunol. 2019;10:1206.PubMedPubMedCentralCrossRef
406.
go back to reference Luginbuhl AJ, Johnson JM, Harshyne LA, Linnenbach AJ, Shukla SK, Alnemri A, et al. Tadalafil enhances immune signatures in response to neoadjuvant nivolumab in resectable head and neck squamous cell carcinoma. Clin Cancer Res. 2022;28:915–27.PubMedCrossRef Luginbuhl AJ, Johnson JM, Harshyne LA, Linnenbach AJ, Shukla SK, Alnemri A, et al. Tadalafil enhances immune signatures in response to neoadjuvant nivolumab in resectable head and neck squamous cell carcinoma. Clin Cancer Res. 2022;28:915–27.PubMedCrossRef
407.
go back to reference Booth L, Roberts JL, Rais R, Cutler RE Jr, Diala I, Lalani AS, et al. Neratinib augments the lethality of [regorafenib + sildenafil]. J Cell Physiol. 2019;234:4874–87.PubMedCrossRef Booth L, Roberts JL, Rais R, Cutler RE Jr, Diala I, Lalani AS, et al. Neratinib augments the lethality of [regorafenib + sildenafil]. J Cell Physiol. 2019;234:4874–87.PubMedCrossRef
408.
go back to reference Sutton SS, Magagnoli J, Cummings TH, Hardin JW. The association between phosphodiesterase-5 inhibitors and colorectal cancer in a national cohort of patients. Clin Transl Gastroenterol. 2020;11:e00173.PubMedPubMedCentralCrossRef Sutton SS, Magagnoli J, Cummings TH, Hardin JW. The association between phosphodiesterase-5 inhibitors and colorectal cancer in a national cohort of patients. Clin Transl Gastroenterol. 2020;11:e00173.PubMedPubMedCentralCrossRef
409.
go back to reference Zhang Y, Lo CH, Giovannucci EL. Phosphodiesterase 5 inhibitor use and risk of conventional and serrated precursors of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2021;30:419–21.PubMedCrossRef Zhang Y, Lo CH, Giovannucci EL. Phosphodiesterase 5 inhibitor use and risk of conventional and serrated precursors of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2021;30:419–21.PubMedCrossRef
410.
go back to reference Huang W, Sundquist J, Sundquist K, Ji J. Phosphodiesterase-5 inhibitors use and risk for mortality and metastases among male patients with colorectal cancer. Nat Commun. 2020;11:3191.PubMedPubMedCentralCrossRef Huang W, Sundquist J, Sundquist K, Ji J. Phosphodiesterase-5 inhibitors use and risk for mortality and metastases among male patients with colorectal cancer. Nat Commun. 2020;11:3191.PubMedPubMedCentralCrossRef
411.
go back to reference Ren Y, Zheng J, Yao X, Weng G, Wu L. Essential role of the cGMP/PKG signaling pathway in regulating the proliferation and survival of human renal carcinoma cells. Int J Mol Med. 2014;34:1430–8.PubMedCrossRef Ren Y, Zheng J, Yao X, Weng G, Wu L. Essential role of the cGMP/PKG signaling pathway in regulating the proliferation and survival of human renal carcinoma cells. Int J Mol Med. 2014;34:1430–8.PubMedCrossRef
412.
go back to reference Pusztai L, Zhen JH, Arun B, Rivera E, Whitehead C, Thompson WJ, et al. Phase I and II study of exisulind in combination with capecitabine in patients with metastatic breast cancer. J Clin Oncol. 2003;21:3454–61.PubMedCrossRef Pusztai L, Zhen JH, Arun B, Rivera E, Whitehead C, Thompson WJ, et al. Phase I and II study of exisulind in combination with capecitabine in patients with metastatic breast cancer. J Clin Oncol. 2003;21:3454–61.PubMedCrossRef
413.
go back to reference Witta SE, Gustafson DL, Pierson AS, Menter A, Holden SN, Basche M, et al. A phase I and pharmacokinetic study of exisulind and docetaxel in patients with advanced solid tumors. Clin Cancer Res. 2004;10:7229–37.PubMedCrossRef Witta SE, Gustafson DL, Pierson AS, Menter A, Holden SN, Basche M, et al. A phase I and pharmacokinetic study of exisulind and docetaxel in patients with advanced solid tumors. Clin Cancer Res. 2004;10:7229–37.PubMedCrossRef
414.
go back to reference Califano JA, Khan Z, Noonan KA, Rudraraju L, Zhang Z, Wang H, et al. Tadalafil augments tumor specific immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res. 2015;21:30–8.PubMedPubMedCentralCrossRef Califano JA, Khan Z, Noonan KA, Rudraraju L, Zhang Z, Wang H, et al. Tadalafil augments tumor specific immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res. 2015;21:30–8.PubMedPubMedCentralCrossRef
415.
go back to reference Weed DT, Vella JL, Reis IM, De la Fuente AC, Gomez C, Sargi Z, et al. Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res. 2015;21:39–48.PubMedCrossRef Weed DT, Vella JL, Reis IM, De la Fuente AC, Gomez C, Sargi Z, et al. Tadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinoma. Clin Cancer Res. 2015;21:39–48.PubMedCrossRef
416.
go back to reference Rüland L, Andreatta F, Massalini S, de Sousa Lopes SC, Clevers H, Hendriks D, et al. Organoid models of fibrolamellar carcinoma mutations reveal hepatocyte transdifferentiation through cooperative BAP1 and PRKAR2A loss. Nat Commun. 2023;14:2377.PubMedPubMedCentralCrossRef Rüland L, Andreatta F, Massalini S, de Sousa Lopes SC, Clevers H, Hendriks D, et al. Organoid models of fibrolamellar carcinoma mutations reveal hepatocyte transdifferentiation through cooperative BAP1 and PRKAR2A loss. Nat Commun. 2023;14:2377.PubMedPubMedCentralCrossRef
417.
418.
go back to reference Yan BR, Zhou L, Hu MM, Li M, Lin H, Yang Y, et al. PKACs attenuate innate antiviral response by phosphorylating VISA and priming it for MARCH5-mediated degradation. PLOS Pathog. 2017;13:e1006648.PubMedPubMedCentralCrossRef Yan BR, Zhou L, Hu MM, Li M, Lin H, Yang Y, et al. PKACs attenuate innate antiviral response by phosphorylating VISA and priming it for MARCH5-mediated degradation. PLOS Pathog. 2017;13:e1006648.PubMedPubMedCentralCrossRef
419.
go back to reference Grandoch M, de Jesús ML, Oude Weernink PA, Weber AA, Jakobs KH, Schmidt M. B cell receptor-induced growth arrest and apoptosis in WEHI-231 immature B lymphoma cells involve cyclic AMP and Epac proteins. Cell Signal. 2009;21:609–21.PubMedCrossRef Grandoch M, de Jesús ML, Oude Weernink PA, Weber AA, Jakobs KH, Schmidt M. B cell receptor-induced growth arrest and apoptosis in WEHI-231 immature B lymphoma cells involve cyclic AMP and Epac proteins. Cell Signal. 2009;21:609–21.PubMedCrossRef
420.
go back to reference Sasi B, Ethiraj P, Myers J, Lin AP, Jiang S, Qiu Z, et al. Regulation of PD-L1 expression is a novel facet of cyclic-AMP-mediated immunosuppression. Leukemia. 2021;35:1990–2001.PubMedCrossRef Sasi B, Ethiraj P, Myers J, Lin AP, Jiang S, Qiu Z, et al. Regulation of PD-L1 expression is a novel facet of cyclic-AMP-mediated immunosuppression. Leukemia. 2021;35:1990–2001.PubMedCrossRef
421.
go back to reference Wu M, Huang Q, Xie Y, Wu X, Ma H, Zhang Y, et al. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol. 2022;15:24.PubMedPubMedCentralCrossRef Wu M, Huang Q, Xie Y, Wu X, Ma H, Zhang Y, et al. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol. 2022;15:24.PubMedPubMedCentralCrossRef
Metadata
Title
cAMP-PKA/EPAC signaling and cancer: the interplay in tumor microenvironment
Authors
Hongying Zhang
Yongliang Liu
Jieya Liu
Jinzhu Chen
Jiao Wang
Hui Hua
Yangfu Jiang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2024
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-024-01524-x

Other articles of this Issue 1/2024

Journal of Hematology & Oncology 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine