Skip to main content
Top
Published in: Indian Journal of Pediatrics 2/2024

14-07-2023 | Acute Myeloid Leukemia | Review Article

Targeted Therapies in Pediatric Acute Myeloid Leukemia - Evolving Therapeutic Landscape

Authors: Eman T. Al-Antary, Avanti Gupte, Yaddanapudi Ravindranath

Published in: Indian Journal of Pediatrics | Issue 2/2024

Login to get access

Abstract

Acute myeloid leukemia (AML) accounts for 25% of all leukemia diagnosis and is characterized by distinct cytogenetic and molecular profile. Advances in the understanding of the causative driver mutations, risk-based therapy and better supportive care have led to an overall improvement in survival with frontline therapy. Despite these improvements, a significant number fail either because of primary refractory disease to the conventional 7+3 combination of anthracyclines and cytosine arabinoside (Cytarabine; Ara-C) or experience relapse post remission. Salvage therapy is complicated by the cardiotoxicity driven limitations on the reuse of anthracyclines and development of resistance to cytarabine. In this chapter authors will review the recent studies with targeted agents for refractory AML including targets for immunotherapeutic strategies.
Literature
1.
go back to reference Stanchina M, Soong D, Zheng-Lin B, Watts JM, Taylor J. Advances in acute myeloid leukemia: Recently approved therapies and drugs in development. Cancers (Basel). 2020;12:3225.PubMedCrossRef Stanchina M, Soong D, Zheng-Lin B, Watts JM, Taylor J. Advances in acute myeloid leukemia: Recently approved therapies and drugs in development. Cancers (Basel). 2020;12:3225.PubMedCrossRef
3.
go back to reference Zarnegar-Lumley S, Caldwell KJ, Rubnitz JE. Relapsed acute myeloid leukemia in children and adolescents: Current treatment options and future strategies. Leukemia. 2022;36:1951–60.PubMedCrossRef Zarnegar-Lumley S, Caldwell KJ, Rubnitz JE. Relapsed acute myeloid leukemia in children and adolescents: Current treatment options and future strategies. Leukemia. 2022;36:1951–60.PubMedCrossRef
4.
go back to reference Armenian S, Bhatia S. Predicting and Preventing Anthracycline-Related Cardiotoxicity. Am Soc Clin Oncol Educ Book. 2018;38:3–12.PubMedCrossRef Armenian S, Bhatia S. Predicting and Preventing Anthracycline-Related Cardiotoxicity. Am Soc Clin Oncol Educ Book. 2018;38:3–12.PubMedCrossRef
5.
go back to reference Garg A, Ganguly S, Vishnubhatla S, Chopra A, Bakhshi S. Outpatient ADE (cytarabine, daunorubicin, and etoposide) is feasible and effective for the first relapse of pediatric acute myeloid leukemia: A prospective, phase II study. Pediatr Blood Cancer. 2020;67:e28404.PubMedCrossRef Garg A, Ganguly S, Vishnubhatla S, Chopra A, Bakhshi S. Outpatient ADE (cytarabine, daunorubicin, and etoposide) is feasible and effective for the first relapse of pediatric acute myeloid leukemia: A prospective, phase II study. Pediatr Blood Cancer. 2020;67:e28404.PubMedCrossRef
7.
go back to reference DiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020;383:617–29. DiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020;383:617–29.
8.
go back to reference Karol SE, Alexander TB, Budhraja A, et al. Venetoclax in combination with cytarabine with or without idarubicin in children with relapsed or refractory acute myeloid leukaemia: A phase 1, dose-escalation study. Lancet Oncol. 2020;21:551–60.PubMedPubMedCentralCrossRef Karol SE, Alexander TB, Budhraja A, et al. Venetoclax in combination with cytarabine with or without idarubicin in children with relapsed or refractory acute myeloid leukaemia: A phase 1, dose-escalation study. Lancet Oncol. 2020;21:551–60.PubMedPubMedCentralCrossRef
9.
go back to reference Lapalombella R, Sun Q, Williams K, et al. Selective inhibitors of nuclear export show that CRM1/XPO1 is a target in chronic lymphocytic leukemia. Blood. 2012;120:4621–34.PubMedPubMedCentralCrossRef Lapalombella R, Sun Q, Williams K, et al. Selective inhibitors of nuclear export show that CRM1/XPO1 is a target in chronic lymphocytic leukemia. Blood. 2012;120:4621–34.PubMedPubMedCentralCrossRef
10.
go back to reference McCall D, Roth M, Mahadeo KM, et al. Gilteritinib combination therapies in pediatric patients with FLT3-mutated acute myeloid leukemia. Blood Adv. 2021;5:5215–9.PubMedPubMedCentralCrossRef McCall D, Roth M, Mahadeo KM, et al. Gilteritinib combination therapies in pediatric patients with FLT3-mutated acute myeloid leukemia. Blood Adv. 2021;5:5215–9.PubMedPubMedCentralCrossRef
11.
go back to reference Sharawat SK, Bakhshi R, Vishnubhatla S, Gupta R, Bakhshi S. FLT3-ITD mutation in relation to FLT3 expression in pediatric AML: A prospective study from India. Pediatr Hematol Oncol. 2014;31:131–7.PubMedCrossRef Sharawat SK, Bakhshi R, Vishnubhatla S, Gupta R, Bakhshi S. FLT3-ITD mutation in relation to FLT3 expression in pediatric AML: A prospective study from India. Pediatr Hematol Oncol. 2014;31:131–7.PubMedCrossRef
12.
go back to reference Inaba H, Rubnitz JE, Coustan-Smith E, et al. Phase I pharmacokinetic and pharmacodynamic study of the multikinase inhibitor sorafenib in combination with clofarabine and cytarabine in pediatric relapsed/refractory leukemia. J Clin Oncol. 2011;29:3293–300.PubMedPubMedCentralCrossRef Inaba H, Rubnitz JE, Coustan-Smith E, et al. Phase I pharmacokinetic and pharmacodynamic study of the multikinase inhibitor sorafenib in combination with clofarabine and cytarabine in pediatric relapsed/refractory leukemia. J Clin Oncol. 2011;29:3293–300.PubMedPubMedCentralCrossRef
13.
go back to reference Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377:454–64.PubMedPubMedCentralCrossRef Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377:454–64.PubMedPubMedCentralCrossRef
14.
go back to reference Zwaan CM, Söderhäll S, Brethon B, et al. A phase 1/2, open-label, dose-escalation study of midostaurin in children with relapsed or refractory acute leukaemia. Br J Haematol. 2019;185:623–7.PubMedCrossRef Zwaan CM, Söderhäll S, Brethon B, et al. A phase 1/2, open-label, dose-escalation study of midostaurin in children with relapsed or refractory acute leukaemia. Br J Haematol. 2019;185:623–7.PubMedCrossRef
15.
go back to reference Reinhardt D, Zwaan CM, Hoenekopp A, et al. Phase II study of midostaurin + chemotherapy in pediatric patients with untreated, newly diagnosed, FLT3-mutated acute myeloid leukemia (AML). Blood. 2019;134:3835.CrossRef Reinhardt D, Zwaan CM, Hoenekopp A, et al. Phase II study of midostaurin + chemotherapy in pediatric patients with untreated, newly diagnosed, FLT3-mutated acute myeloid leukemia (AML). Blood. 2019;134:3835.CrossRef
16.
go back to reference Sharawat SK, Gupta R, Raina V, et al. Increased coexpression of c-KIT and FLT3 receptors on myeloblasts: Independent predictor of poor outcome in pediatric acute myeloid leukemia. Cytometry B Clin Cytom. 2013;84:390–7.PubMedCrossRef Sharawat SK, Gupta R, Raina V, et al. Increased coexpression of c-KIT and FLT3 receptors on myeloblasts: Independent predictor of poor outcome in pediatric acute myeloid leukemia. Cytometry B Clin Cytom. 2013;84:390–7.PubMedCrossRef
17.
go back to reference Tarlock K, Alonzo TA, Wang YC, et al. Functional properties of KIT mutations are associated with differential clinical outcomes and response to targeted therapeutics in CBF acute myeloid leukemia. Clin Cancer Res. 2019;25:5038–48.PubMedPubMedCentralCrossRef Tarlock K, Alonzo TA, Wang YC, et al. Functional properties of KIT mutations are associated with differential clinical outcomes and response to targeted therapeutics in CBF acute myeloid leukemia. Clin Cancer Res. 2019;25:5038–48.PubMedPubMedCentralCrossRef
18.
go back to reference Krivtsov AV, Evans K, Gadrey JY, et al. A Menin-MLL inhibitor induces specific chromatin changes and eradicates disease in models of MLL-rearranged leukemia. Cancer Cell. 2019;36:660-73.e11.PubMedPubMedCentralCrossRef Krivtsov AV, Evans K, Gadrey JY, et al. A Menin-MLL inhibitor induces specific chromatin changes and eradicates disease in models of MLL-rearranged leukemia. Cancer Cell. 2019;36:660-73.e11.PubMedPubMedCentralCrossRef
19.
go back to reference Brivio E, Baruchel A, Beishuizen A, et al. Targeted inhibitors and antibody immunotherapies: Novel therapies for paediatric leukaemia and lymphoma. Eur J Cancer. 2022;164:1–17.PubMedCrossRef Brivio E, Baruchel A, Beishuizen A, et al. Targeted inhibitors and antibody immunotherapies: Novel therapies for paediatric leukaemia and lymphoma. Eur J Cancer. 2022;164:1–17.PubMedCrossRef
20.
go back to reference Shukla N, Wetmore C, O’Brien MM, et al. Final report of phase 1 study of the DOT1L inhibitor, pinometostat (EPZ-5676), in children with relapsed or refractory MLL-r acute leukemia. Blood. 2016;128:2780.CrossRef Shukla N, Wetmore C, O’Brien MM, et al. Final report of phase 1 study of the DOT1L inhibitor, pinometostat (EPZ-5676), in children with relapsed or refractory MLL-r acute leukemia. Blood. 2016;128:2780.CrossRef
21.
go back to reference Stein EM, Aldoss I, DiPersio JF, et al. Safety and efficacy of menin inhibition in patients (Pts) with MLL-rearranged and NPM1 mutant acute leukemia: A phase (Ph) 1, first-in-human study of SNDX-5613 (AUGMENT 101). Blood. 2021;138:699.CrossRef Stein EM, Aldoss I, DiPersio JF, et al. Safety and efficacy of menin inhibition in patients (Pts) with MLL-rearranged and NPM1 mutant acute leukemia: A phase (Ph) 1, first-in-human study of SNDX-5613 (AUGMENT 101). Blood. 2021;138:699.CrossRef
22.
go back to reference Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer. 2008;123:8–13.PubMedCrossRef Stresemann C, Lyko F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer. 2008;123:8–13.PubMedCrossRef
23.
go back to reference Newcombe AA, Gibson BES, Keeshan K. Harnessing the potential of epigenetic therapies for childhood acute myeloid leukemia. Exp Hematol. 2018;63:1–11.PubMedCrossRef Newcombe AA, Gibson BES, Keeshan K. Harnessing the potential of epigenetic therapies for childhood acute myeloid leukemia. Exp Hematol. 2018;63:1–11.PubMedCrossRef
24.
go back to reference Krali O, Palle J, Bäcklin CL, et al. DNA methylation signatures predict cytogenetic subtype and outcome in pediatric acute myeloid leukemia (AML). Genes (Basel). 2021;12:895.PubMedCrossRef Krali O, Palle J, Bäcklin CL, et al. DNA methylation signatures predict cytogenetic subtype and outcome in pediatric acute myeloid leukemia (AML). Genes (Basel). 2021;12:895.PubMedCrossRef
25.
26.
go back to reference DiNardo CD, Stein EM, de Botton S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378:2386–98.PubMedCrossRef DiNardo CD, Stein EM, de Botton S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018;378:2386–98.PubMedCrossRef
27.
go back to reference Sano H, Shimada A, Taki T, et al. RAS mutations are frequent in FAB type M4 and M5 of acute myeloid leukemia, and related to late relapse: A study of the Japanese Childhood AML Cooperative Study Group. Int J Hematol. 2012;95:509–15.PubMedCrossRef Sano H, Shimada A, Taki T, et al. RAS mutations are frequent in FAB type M4 and M5 of acute myeloid leukemia, and related to late relapse: A study of the Japanese Childhood AML Cooperative Study Group. Int J Hematol. 2012;95:509–15.PubMedCrossRef
28.
go back to reference Borthakur G, Popplewell L, Boyiadzis M, et al. Activity of the oral mitogen-activated protein kinase kinase inhibitor trametinib in RAS-mutant relapsed or refractory myeloid malignancies. Cancer. 2016;122:1871–9.PubMedCrossRef Borthakur G, Popplewell L, Boyiadzis M, et al. Activity of the oral mitogen-activated protein kinase kinase inhibitor trametinib in RAS-mutant relapsed or refractory myeloid malignancies. Cancer. 2016;122:1871–9.PubMedCrossRef
29.
go back to reference Le Q, Hadland B, Smith JL, et al. CBFA2T3-GLIS2 model of pediatric acute megakaryoblastic leukemia identifies FOLR1 as a CAR T cell target. J Clin Invest. 2022;132:e157101.PubMedPubMedCentralCrossRef Le Q, Hadland B, Smith JL, et al. CBFA2T3-GLIS2 model of pediatric acute megakaryoblastic leukemia identifies FOLR1 as a CAR T cell target. J Clin Invest. 2022;132:e157101.PubMedPubMedCentralCrossRef
30.
go back to reference Tang T, Le Q, Castro S, et al. Targeting FOLR1 in high-risk CBF2AT3-GLIS2 pediatric AML with STRO-002 FOLR1-antibody-drug conjugate. Blood Adv. 2022;6:5933–7.PubMedPubMedCentralCrossRef Tang T, Le Q, Castro S, et al. Targeting FOLR1 in high-risk CBF2AT3-GLIS2 pediatric AML with STRO-002 FOLR1-antibody-drug conjugate. Blood Adv. 2022;6:5933–7.PubMedPubMedCentralCrossRef
31.
go back to reference Lamba JK, Chauhan L, Shin M, et al. CD33 splicing polymorphism determines gemtuzumab ozogamicin response in de novo acute myeloid leukemia: Report from randomized phase III Children’s Oncology Group trial AAML0531. J Clin Oncol. 2017;35:2674–82.PubMedPubMedCentralCrossRef Lamba JK, Chauhan L, Shin M, et al. CD33 splicing polymorphism determines gemtuzumab ozogamicin response in de novo acute myeloid leukemia: Report from randomized phase III Children’s Oncology Group trial AAML0531. J Clin Oncol. 2017;35:2674–82.PubMedPubMedCentralCrossRef
32.
go back to reference Pollard JA, Loken M, Gerbing RB, et al. CD33 expression and its association with gemtuzumab ozogamicin response: Results from the randomized phase III Children’s Oncology Group trial AAML0531. J Clin Oncol. 2016;34:747–55.PubMedPubMedCentralCrossRef Pollard JA, Loken M, Gerbing RB, et al. CD33 expression and its association with gemtuzumab ozogamicin response: Results from the randomized phase III Children’s Oncology Group trial AAML0531. J Clin Oncol. 2016;34:747–55.PubMedPubMedCentralCrossRef
33.
go back to reference Wang QS, Wang Y, Lv HY, et al. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol Ther. 2015;23:184–91.PubMedCrossRef Wang QS, Wang Y, Lv HY, et al. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia. Mol Ther. 2015;23:184–91.PubMedCrossRef
34.
go back to reference Jin X, Zhang M, Sun R, et al. First-in-human phase I study of CLL-1 CAR-T cells in adults with relapsed/refractory acute myeloid leukemia. J Hematol Oncol. 2022;15:88.PubMedPubMedCentralCrossRef Jin X, Zhang M, Sun R, et al. First-in-human phase I study of CLL-1 CAR-T cells in adults with relapsed/refractory acute myeloid leukemia. J Hematol Oncol. 2022;15:88.PubMedPubMedCentralCrossRef
35.
go back to reference Kim MY, Yu KR, Kenderian SS, et al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell. 2018;173:1439–53.e19.PubMedPubMedCentralCrossRef Kim MY, Yu KR, Kenderian SS, et al. Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell. 2018;173:1439–53.e19.PubMedPubMedCentralCrossRef
37.
go back to reference Lamble AJ, Eidenschink Brodersen L, Alonzo TA, et al. CD123 expression is associated with high-risk disease characteristics in childhood acute myeloid leukemia: A report from the Children’s Oncology Group. J Clin Oncol. 2022;40:252–61.PubMedCrossRef Lamble AJ, Eidenschink Brodersen L, Alonzo TA, et al. CD123 expression is associated with high-risk disease characteristics in childhood acute myeloid leukemia: A report from the Children’s Oncology Group. J Clin Oncol. 2022;40:252–61.PubMedCrossRef
38.
go back to reference Johnson S, Burke S, Huang L, et al. Effector cell recruitment with novel Fv-based dual-affinity re-targeting protein leads to potent tumor cytolysis and in vivo B-cell depletion. J Mol Biol. 2010;399:436–49.PubMedCrossRef Johnson S, Burke S, Huang L, et al. Effector cell recruitment with novel Fv-based dual-affinity re-targeting protein leads to potent tumor cytolysis and in vivo B-cell depletion. J Mol Biol. 2010;399:436–49.PubMedCrossRef
39.
go back to reference Barwe SP, Kisielewski A, Bonvini E, et al. Efficacy of flotetuzumab in combination with cytarabine in patient-derived xenograft models of pediatric acute myeloid leukemia. J Clin Med. 2022;11:1333.PubMedPubMedCentralCrossRef Barwe SP, Kisielewski A, Bonvini E, et al. Efficacy of flotetuzumab in combination with cytarabine in patient-derived xenograft models of pediatric acute myeloid leukemia. J Clin Med. 2022;11:1333.PubMedPubMedCentralCrossRef
40.
go back to reference Angelova E, Audette C, Kovtun Y, et al. CD123 expression patterns and selective targeting with a CD123-targeted antibody-drug conjugate (IMGN632) in acute lymphoblastic leukemia. Haematologica. 2019;104:749–55.PubMedPubMedCentralCrossRef Angelova E, Audette C, Kovtun Y, et al. CD123 expression patterns and selective targeting with a CD123-targeted antibody-drug conjugate (IMGN632) in acute lymphoblastic leukemia. Haematologica. 2019;104:749–55.PubMedPubMedCentralCrossRef
41.
go back to reference Pemmaraju N, Lane AA, Sweet KL, et al. Tagraxofusp in blastic plasmacytoid dendritic-cell neoplasm. N Engl J Med. 2019;380:1628–37.PubMedCrossRef Pemmaraju N, Lane AA, Sweet KL, et al. Tagraxofusp in blastic plasmacytoid dendritic-cell neoplasm. N Engl J Med. 2019;380:1628–37.PubMedCrossRef
42.
go back to reference Jaiswal S, Jamieson CH, Pang WW, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009;138:271–85.PubMedPubMedCentralCrossRef Jaiswal S, Jamieson CH, Pang WW, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009;138:271–85.PubMedPubMedCentralCrossRef
43.
go back to reference Majeti R, Chao MP, Alizadeh AA, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009;138:286–99.PubMedPubMedCentralCrossRef Majeti R, Chao MP, Alizadeh AA, et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 2009;138:286–99.PubMedPubMedCentralCrossRef
44.
go back to reference Sikic BI, Lakhani N, Patnaik A, et al. First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J Clin Oncol. 2019;37:946–53.PubMedPubMedCentralCrossRef Sikic BI, Lakhani N, Patnaik A, et al. First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J Clin Oncol. 2019;37:946–53.PubMedPubMedCentralCrossRef
45.
go back to reference Haddad F, Daver N. Targeting CD47/SIRPα in acute myeloid leukemia and myelodysplastic syndrome: Preclinical and clinical developments of magrolimab. J Immunother Precis Oncol. 2021;4:67–71.PubMedPubMedCentralCrossRef Haddad F, Daver N. Targeting CD47/SIRPα in acute myeloid leukemia and myelodysplastic syndrome: Preclinical and clinical developments of magrolimab. J Immunother Precis Oncol. 2021;4:67–71.PubMedPubMedCentralCrossRef
46.
go back to reference DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133:7–17.PubMedPubMedCentralCrossRef DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133:7–17.PubMedPubMedCentralCrossRef
47.
go back to reference Riether C, Schürch CM, Bührer ED, et al. CD70/CD27 signaling promotes blast stemness and is a viable therapeutic target in acute myeloid leukemia. J Exp Med. 2017;214:359–80.PubMedPubMedCentralCrossRef Riether C, Schürch CM, Bührer ED, et al. CD70/CD27 signaling promotes blast stemness and is a viable therapeutic target in acute myeloid leukemia. J Exp Med. 2017;214:359–80.PubMedPubMedCentralCrossRef
48.
go back to reference Sauer T, Parikh K, Sharma S, et al. CD70-specific CAR T cells have potent activity against acute myeloid leukemia without HSC toxicity. Blood. 2021;138:318–30.PubMedPubMedCentralCrossRef Sauer T, Parikh K, Sharma S, et al. CD70-specific CAR T cells have potent activity against acute myeloid leukemia without HSC toxicity. Blood. 2021;138:318–30.PubMedPubMedCentralCrossRef
49.
go back to reference Ho PA, Zeng R, Alonzo TA, et al. Prevalence and prognostic implications of WT1 mutations in pediatric acute myeloid leukemia (AML): A report from the Children’s Oncology Group. Blood. 2010;116:702–10.PubMedPubMedCentralCrossRef Ho PA, Zeng R, Alonzo TA, et al. Prevalence and prognostic implications of WT1 mutations in pediatric acute myeloid leukemia (AML): A report from the Children’s Oncology Group. Blood. 2010;116:702–10.PubMedPubMedCentralCrossRef
50.
go back to reference Augsberger C, Hänel G, Xu W, et al. Targeting intracellular WT1 in AML with a novel RMF-peptide-MHC-specific T-cell bispecific antibody. Blood. 2021;138:2655–69.PubMedPubMedCentralCrossRef Augsberger C, Hänel G, Xu W, et al. Targeting intracellular WT1 in AML with a novel RMF-peptide-MHC-specific T-cell bispecific antibody. Blood. 2021;138:2655–69.PubMedPubMedCentralCrossRef
51.
go back to reference Rafiq S, Purdon TJ, Daniyan AF, et al. Optimized T-cell receptor-mimic chimeric antigen receptor T cells directed toward the intracellular Wilms tumor 1 antigen. Leukemia. 2017;31:1788–97.PubMedCrossRef Rafiq S, Purdon TJ, Daniyan AF, et al. Optimized T-cell receptor-mimic chimeric antigen receptor T cells directed toward the intracellular Wilms tumor 1 antigen. Leukemia. 2017;31:1788–97.PubMedCrossRef
52.
go back to reference Chapuis AG, Egan DN, Bar M, et al. T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant. Nat Med. 2019;25:1064–72.PubMedPubMedCentralCrossRef Chapuis AG, Egan DN, Bar M, et al. T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant. Nat Med. 2019;25:1064–72.PubMedPubMedCentralCrossRef
53.
go back to reference Zhang H, Bu C, Peng Z, et al. Characteristics of anti-CLL1 based CAR-T therapy for children with relapsed or refractory acute myeloid leukemia: The multi-center efficacy and safety interim analysis. Leukemia. 2022;36:2596–604.PubMedCrossRef Zhang H, Bu C, Peng Z, et al. Characteristics of anti-CLL1 based CAR-T therapy for children with relapsed or refractory acute myeloid leukemia: The multi-center efficacy and safety interim analysis. Leukemia. 2022;36:2596–604.PubMedCrossRef
54.
go back to reference Bolouri H, Farrar JE, Triche T Jr, et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med. 2018;24:103–12.PubMedCrossRef Bolouri H, Farrar JE, Triche T Jr, et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med. 2018;24:103–12.PubMedCrossRef
55.
57.
go back to reference Berger KN, Pu JJ. PD-1 pathway and its clinical application: A 20year journey after discovery of the complete human PD-1 gene. Gene. 2018;638:20–5.PubMedCrossRef Berger KN, Pu JJ. PD-1 pathway and its clinical application: A 20year journey after discovery of the complete human PD-1 gene. Gene. 2018;638:20–5.PubMedCrossRef
59.
go back to reference Qian CS, Ma X, Wang J, et al. PD1 inhibitor in combination with 5-azacytidine and low-dose DLI for the successful treatment of AML patients who relapsed after transplantation. Bone Marrow Transplant. 2021;56:1003–5.PubMedCrossRef Qian CS, Ma X, Wang J, et al. PD1 inhibitor in combination with 5-azacytidine and low-dose DLI for the successful treatment of AML patients who relapsed after transplantation. Bone Marrow Transplant. 2021;56:1003–5.PubMedCrossRef
60.
go back to reference Broglie L, Gershan J, Burke MJ. Checkpoint inhibition of PD-L1 and CTLA-4 in a child with refractory acute leukemia. Int J Hematol Oncol. 2019;8:IJH10. Broglie L, Gershan J, Burke MJ. Checkpoint inhibition of PD-L1 and CTLA-4 in a child with refractory acute leukemia. Int J Hematol Oncol. 2019;8:IJH10.
Metadata
Title
Targeted Therapies in Pediatric Acute Myeloid Leukemia - Evolving Therapeutic Landscape
Authors
Eman T. Al-Antary
Avanti Gupte
Yaddanapudi Ravindranath
Publication date
14-07-2023
Publisher
Springer India
Published in
Indian Journal of Pediatrics / Issue 2/2024
Print ISSN: 0019-5456
Electronic ISSN: 0973-7693
DOI
https://doi.org/10.1007/s12098-023-04741-3

Other articles of this Issue 2/2024

Indian Journal of Pediatrics 2/2024 Go to the issue