Skip to main content
Top
Published in: Cancer Cell International 1/2019

Open Access 01-12-2019 | Acute Myeloid Leukemia | Primary research

KDM3B suppresses APL progression by restricting chromatin accessibility and facilitating the ATRA-mediated degradation of PML/RARα

Authors: Xinrui Wang, Huiyong Fan, Congling Xu, Guojuan Jiang, Haiwei Wang, Ji Zhang

Published in: Cancer Cell International | Issue 1/2019

Login to get access

Abstract

Background

A hallmark of acute promyelocytic leukemia (APL) is the expression of PML/RARα fusion protein. Treatment with all-trans retinoic acid (ATRA) results in the terminal differentiation of neutrophil granulocytes. However, the underlying mechanisms remain largely unknown. Here, we identify and elucidate a novel differentiation-suppressive model of APL involving the histone demethylase KDM3B, which has been identified as a suppressor of the tumor genes involved in hematopoietic malignancies.

Methods

First, we established a KDM3B knockdown NB4 cell model to determine the functional characteristics of KDM3B by cell proliferation assay and flow cytometry. Then, we performed ChIP-seq and ATAC-seq to search for potential relationships among KDM3B, histone modification (H3K9me1/me2) and the chromatin state. Finally, molecular biological techniques and a multi-omics analysis were used to explore the role of KDM3B in differentiation of the leukemia cells after ATRA treatment.

Results

We found that knocking down KDM3B contributed to the growth of NB4 APL cells via the promotion of cell-cycle progression and blocked granulocytic differentiation. Through global and molecular approaches, we provided futher evidence that knocking down KDM3B altered the global distribution of H3K9me1/me2 and increased the chromatin accessibility. Moreover, knocking down KDM3B inhibited the ATRA-induced degradation of the PML/RARα oncoprotein.

Conclusion

Our study suggested that KDM3B was able to inhibit APL progression by maintaining chromatin in a compact state and facilitating the ATRA-mediated degradation of PML/RARα. Taken together, the results show that KDM3B may be an alternative target for the treatment regimens and the targeted therapy for APL by sustaining the function of PML/RARα fusion protein.
Appendix
Available only for authorised users
Literature
1.
go back to reference Maury E, Hashizume R. Epigenetic modification in chromatin machinery and its deregulation in pediatric brain tumors: insight into epigenetic therapies. Epigenetics. 2017;12(5):1–17.CrossRef Maury E, Hashizume R. Epigenetic modification in chromatin machinery and its deregulation in pediatric brain tumors: insight into epigenetic therapies. Epigenetics. 2017;12(5):1–17.CrossRef
3.
go back to reference Atlasi Y, Stunnenberg HG. The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet. 2017;18(11):643–58.PubMedCrossRef Atlasi Y, Stunnenberg HG. The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet. 2017;18(11):643–58.PubMedCrossRef
4.
go back to reference Barski A, Cuddapah S, Cui K, Roh T, Schones D, Wang Z, Wei G, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4):823–37.PubMedCrossRef Barski A, Cuddapah S, Cui K, Roh T, Schones D, Wang Z, Wei G, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4):823–37.PubMedCrossRef
6.
go back to reference Declerck K, Vel Szic KS, Palagani A, Heyninck K, Haegeman G, Morand C, et al. Epigenetic control of cardiovascular health by nutritional polyphenols involves multiple chromatin-modifying writer-reader-eraser proteins. Curr Top Med Chem. 2016;16(7):788–806.PubMedCrossRef Declerck K, Vel Szic KS, Palagani A, Heyninck K, Haegeman G, Morand C, et al. Epigenetic control of cardiovascular health by nutritional polyphenols involves multiple chromatin-modifying writer-reader-eraser proteins. Curr Top Med Chem. 2016;16(7):788–806.PubMedCrossRef
8.
go back to reference Faundes V, Newman WG, Bernardini L, Canham N, Claytonsmith J, Dallapiccola B, et al. Histone lysine methylases and demethylases in the landscape of human developmental disorders. Am J Hum Genet. 2018;102(1):175–87.PubMedCrossRef Faundes V, Newman WG, Bernardini L, Canham N, Claytonsmith J, Dallapiccola B, et al. Histone lysine methylases and demethylases in the landscape of human developmental disorders. Am J Hum Genet. 2018;102(1):175–87.PubMedCrossRef
9.
go back to reference Bo W, Hao W, Yoichi S, Irizarry RA, Feinberg AP. Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat Genet. 2009;41(2):246.CrossRef Bo W, Hao W, Yoichi S, Irizarry RA, Feinberg AP. Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat Genet. 2009;41(2):246.CrossRef
10.
go back to reference Chen J, Liu H, Liu J, Qi J, Wei B, Yang J, et al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat Genet. 2013;45(1):34–U62.PubMedCrossRef Chen J, Liu H, Liu J, Qi J, Wei B, Yang J, et al. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat Genet. 2013;45(1):34–U62.PubMedCrossRef
11.
go back to reference De S, Kassis JA. Passing epigenetic silence to the next generation. Science. 2017;356(6333):28–9.PubMedCrossRef De S, Kassis JA. Passing epigenetic silence to the next generation. Science. 2017;356(6333):28–9.PubMedCrossRef
12.
go back to reference Yoshimi A, Kurokawa M. Key roles of histone methyltransferase and demethylase in leukemogenesis. J Cell Biochem. 2011;112(2):415–24.PubMedCrossRef Yoshimi A, Kurokawa M. Key roles of histone methyltransferase and demethylase in leukemogenesis. J Cell Biochem. 2011;112(2):415–24.PubMedCrossRef
13.
go back to reference Morera L, Lübbert M, Jung M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenet. 2016;8(1):57.CrossRef Morera L, Lübbert M, Jung M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenet. 2016;8(1):57.CrossRef
14.
go back to reference Majello B, Gorini F, Saccà CD, Amente S. Expanding the role of the histone lysine-specific demethylase LSD1 in cancer. Cancers. 2019;11(3):324.PubMedCentralCrossRef Majello B, Gorini F, Saccà CD, Amente S. Expanding the role of the histone lysine-specific demethylase LSD1 in cancer. Cancers. 2019;11(3):324.PubMedCentralCrossRef
15.
go back to reference Tsukada Y, Fang J, Erdjumentbromage H, Warren ME, Borchers CH, Tempst P, et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature. 2006;439(7078):811–6.PubMedCrossRef Tsukada Y, Fang J, Erdjumentbromage H, Warren ME, Borchers CH, Tempst P, et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature. 2006;439(7078):811–6.PubMedCrossRef
16.
go back to reference Michael B, Yao Z, Rishi A, Sachin T, Ieuan C, Bruno I, et al. Protein complex interactor analysis and differential activity of KDM3 subfamily members towards H3K9 methylation. PLoS ONE. 2013;8(4):e60549.CrossRef Michael B, Yao Z, Rishi A, Sachin T, Ieuan C, Bruno I, et al. Protein complex interactor analysis and differential activity of KDM3 subfamily members towards H3K9 methylation. PLoS ONE. 2013;8(4):e60549.CrossRef
17.
go back to reference Ohguchi H, Hideshima T, Bhasin MK, Gorgun GT, Santo L, Cea M, et al. The KDM3A–KLF2–IRF4 axis maintains myeloma cell survival. Nat Commun. 2016;7:10258.PubMedPubMedCentralCrossRef Ohguchi H, Hideshima T, Bhasin MK, Gorgun GT, Santo L, Cea M, et al. The KDM3A–KLF2–IRF4 axis maintains myeloma cell survival. Nat Commun. 2016;7:10258.PubMedPubMedCentralCrossRef
18.
go back to reference Chen M, Zhu N, Liu X, Laurent B, Tang Z, Eng R, et al. JMJD1C is required for the survival of acute myeloid leukemia by functioning as a coactivator for key transcription factors. Genes Dev. 2015;29(20):2123.PubMedPubMedCentralCrossRef Chen M, Zhu N, Liu X, Laurent B, Tang Z, Eng R, et al. JMJD1C is required for the survival of acute myeloid leukemia by functioning as a coactivator for key transcription factors. Genes Dev. 2015;29(20):2123.PubMedPubMedCentralCrossRef
19.
go back to reference Hu Z, Gomes I, Horrigan SK, Kravarusic J, Mar B, Arbieva Z, et al. A novel nuclear protein, 5qNCA (LOC51780) is a candidate for the myeloid leukemia tumor suppressor gene on chromosome 5 band q31. Oncogene. 2001;20(47):6946.PubMedCrossRef Hu Z, Gomes I, Horrigan SK, Kravarusic J, Mar B, Arbieva Z, et al. A novel nuclear protein, 5qNCA (LOC51780) is a candidate for the myeloid leukemia tumor suppressor gene on chromosome 5 band q31. Oncogene. 2001;20(47):6946.PubMedCrossRef
20.
go back to reference Mackinnon RN, Kannourakis G. A cryptic deletion in 5q31.2 provides further evidence for a minimally deleted region in myelodysplastic syndromes. Cancer Genet. 2011;204(4):187–94.PubMedCrossRef Mackinnon RN, Kannourakis G. A cryptic deletion in 5q31.2 provides further evidence for a minimally deleted region in myelodysplastic syndromes. Cancer Genet. 2011;204(4):187–94.PubMedCrossRef
21.
go back to reference Vajen B, Thomay K, Schlegelberger B. Induction of chromosomal instability via telomere dysfunction and epigenetic alterations in myeloid neoplasia. Cancers. 2013;5(3):857–74.PubMedPubMedCentralCrossRef Vajen B, Thomay K, Schlegelberger B. Induction of chromosomal instability via telomere dysfunction and epigenetic alterations in myeloid neoplasia. Cancers. 2013;5(3):857–74.PubMedPubMedCentralCrossRef
22.
go back to reference Kim JY, Kim KB, Eom GH, Choe N, Kee HJ, Son HJ, et al. KDM3B is the H3K9 demethylase involved in transcriptional activation of lmo2 in leukemia. Mol Cell Biol. 2012;32(14):2917.PubMedPubMedCentralCrossRef Kim JY, Kim KB, Eom GH, Choe N, Kee HJ, Son HJ, et al. KDM3B is the H3K9 demethylase involved in transcriptional activation of lmo2 in leukemia. Mol Cell Biol. 2012;32(14):2917.PubMedPubMedCentralCrossRef
23.
go back to reference Kasioulis I. Dissecting the biological roles of Kdm3b and Kdm3a lysine demethylases. Edinburgh: The University of Edinburgh; 2015. Kasioulis I. Dissecting the biological roles of Kdm3b and Kdm3a lysine demethylases. Edinburgh: The University of Edinburgh; 2015.
24.
go back to reference Xu X, Nagel S, Quentmeier H, Wang Z, Pommerenke C, Dirks WG, et al. KDM3B shows tumor-suppressive activity and transcriptionally regulates HOXA1 through retinoic acid response elements in acute myeloid leukemia. Leuk Lymphoma. 2018;59(1):1.CrossRef Xu X, Nagel S, Quentmeier H, Wang Z, Pommerenke C, Dirks WG, et al. KDM3B shows tumor-suppressive activity and transcriptionally regulates HOXA1 through retinoic acid response elements in acute myeloid leukemia. Leuk Lymphoma. 2018;59(1):1.CrossRef
25.
go back to reference Kankan W, Ping W, Jiantao S, Xuehua Z, Miaomiao H, Xiaohong J, et al. PML/RARalpha targets promoter regions containing PU.1 consensus and RARE half sites in acute promyelocytic leukemia. Cancer Cell. 2010;17(2):186.CrossRef Kankan W, Ping W, Jiantao S, Xuehua Z, Miaomiao H, Xiaohong J, et al. PML/RARalpha targets promoter regions containing PU.1 consensus and RARE half sites in acute promyelocytic leukemia. Cancer Cell. 2010;17(2):186.CrossRef
26.
go back to reference Qian M, Jin W, Zhu X, Jia X, Yang X, Du Y, et al. Structurally differentiated cis-elements that interact with PU1 are functionally distinguishable in acute promyelocytic leukemia. J Hematol Oncol. 2013;6(1):25.PubMedPubMedCentralCrossRef Qian M, Jin W, Zhu X, Jia X, Yang X, Du Y, et al. Structurally differentiated cis-elements that interact with PU1 are functionally distinguishable in acute promyelocytic leukemia. J Hematol Oncol. 2013;6(1):25.PubMedPubMedCentralCrossRef
27.
28.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.PubMedCrossRef Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.PubMedCrossRef
29.
go back to reference Wu J, Huang B, Chen H, Yin Q, Liu Y, Xiang Y, et al. The landscape of accessible chromatin in mammalian preimplantation embryos. Nature. 2016;534(7609):652.PubMedCrossRef Wu J, Huang B, Chen H, Yin Q, Liu Y, Xiang Y, et al. The landscape of accessible chromatin in mammalian preimplantation embryos. Nature. 2016;534(7609):652.PubMedCrossRef
30.
go back to reference Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol. 2015;109:21–9.PubMedPubMedCentral Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol. 2015;109:21–9.PubMedPubMedCentral
31.
go back to reference Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics J Integr Biol. 2012;16(5):284–7.CrossRef Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics J Integr Biol. 2012;16(5):284–7.CrossRef
32.
go back to reference Li S, Ali S, Duan X, Liu S, Du J, Liu C, et al. JMJD1B demethylates H4R3me2 s and H3K9me2 to facilitate gene expression for development of hematopoietic stem and progenitor cells. Cell Rep. 2018;23(2):389.PubMedPubMedCentralCrossRef Li S, Ali S, Duan X, Liu S, Du J, Liu C, et al. JMJD1B demethylates H4R3me2 s and H3K9me2 to facilitate gene expression for development of hematopoietic stem and progenitor cells. Cell Rep. 2018;23(2):389.PubMedPubMedCentralCrossRef
33.
go back to reference Akihiro T, Hitoshi K, Tomoki N. Mechanisms of action and resistance to all-trans retinoic acid (ATRA) and arsenic trioxide (As2O 3) in acute promyelocytic leukemia. Int J Hematol. 2013;97(6):717–25.CrossRef Akihiro T, Hitoshi K, Tomoki N. Mechanisms of action and resistance to all-trans retinoic acid (ATRA) and arsenic trioxide (As2O 3) in acute promyelocytic leukemia. Int J Hematol. 2013;97(6):717–25.CrossRef
34.
go back to reference Doucas V, Brockes JP, Yaniv M, Thé H, Dejean A. The PML-retinoic acid receptor alpha translocation converts the receptor from an inhibitor to a retinoic acid-dependent activator of transcription factor AP-1. Proc Natl Acad Sci USA. 1993;90(20):9345–9.PubMedCrossRefPubMedCentral Doucas V, Brockes JP, Yaniv M, Thé H, Dejean A. The PML-retinoic acid receptor alpha translocation converts the receptor from an inhibitor to a retinoic acid-dependent activator of transcription factor AP-1. Proc Natl Acad Sci USA. 1993;90(20):9345–9.PubMedCrossRefPubMedCentral
35.
go back to reference Sadia S, Colin L, Kees-Jan F, Gianmaria F, Mauro R, Nielsen FG, et al. Chromatin accessibility, p300, and histone acetylation define PML-RARα and AML1-ETO binding sites in acute myeloid leukemia. Blood. 2012;120(15):3058–68.CrossRef Sadia S, Colin L, Kees-Jan F, Gianmaria F, Mauro R, Nielsen FG, et al. Chromatin accessibility, p300, and histone acetylation define PML-RARα and AML1-ETO binding sites in acute myeloid leukemia. Blood. 2012;120(15):3058–68.CrossRef
36.
go back to reference Martens JHA, Brinkman AB, Femke S, Kees-Jan F, Angela N, Felicetto F, et al. PML-RARalpha/RXR alters the epigenetic landscape in acute promyelocytic leukemia. Cancer Cell. 2010;17(2):173–85.PubMedCrossRef Martens JHA, Brinkman AB, Femke S, Kees-Jan F, Angela N, Felicetto F, et al. PML-RARalpha/RXR alters the epigenetic landscape in acute promyelocytic leukemia. Cancer Cell. 2010;17(2):173–85.PubMedCrossRef
37.
go back to reference Le Beau MM, Espinosa R, Neuman WL, Stock W, Roulston D, Larson RA, et al. Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases. Proc Natl Acad Sci USA. 1993;90(12):5484–8.PubMedCrossRefPubMedCentral Le Beau MM, Espinosa R, Neuman WL, Stock W, Roulston D, Larson RA, et al. Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases. Proc Natl Acad Sci USA. 1993;90(12):5484–8.PubMedCrossRefPubMedCentral
38.
go back to reference Kang X, Feng Y, Gan Z, Zeng S, Guo X, Chen X, et al. NASP antagonize chromatin accessibility through maintaining histone H3K9me1 in hepatocellular carcinoma. Biochim Biophys Acta. 2018;1864(10):3438–48.CrossRef Kang X, Feng Y, Gan Z, Zeng S, Guo X, Chen X, et al. NASP antagonize chromatin accessibility through maintaining histone H3K9me1 in hepatocellular carcinoma. Biochim Biophys Acta. 2018;1864(10):3438–48.CrossRef
39.
go back to reference Srimongkolpithak N, Sundriyal S, Li F, Vedadi M, Fuchter MJ. Identification of 2,4-diamino-6,7-dimethoxyquinoline derivatives as G9a inhibitors. Medchemcomm. 2014;5(12):1821–8.PubMedCrossRef Srimongkolpithak N, Sundriyal S, Li F, Vedadi M, Fuchter MJ. Identification of 2,4-diamino-6,7-dimethoxyquinoline derivatives as G9a inhibitors. Medchemcomm. 2014;5(12):1821–8.PubMedCrossRef
40.
go back to reference Kooistra SM, Helin K. Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol. 2012;13(5):297.PubMedCrossRef Kooistra SM, Helin K. Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol. 2012;13(5):297.PubMedCrossRef
41.
go back to reference Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green R, et al. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell. 2007;128(6):1231–45.PubMedPubMedCentralCrossRef Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green R, et al. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell. 2007;128(6):1231–45.PubMedPubMedCentralCrossRef
42.
go back to reference Igor C, Shaharum S, Sung Yun K, Rosita BM, Yoo-Wook K, Wenqiang Y, et al. CTCF interacts with and recruits the largest subunit of RNA polymerase II to CTCF target sites genome-wide. Mol Cell Biol. 2007;27(5):1631.CrossRef Igor C, Shaharum S, Sung Yun K, Rosita BM, Yoo-Wook K, Wenqiang Y, et al. CTCF interacts with and recruits the largest subunit of RNA polymerase II to CTCF target sites genome-wide. Mol Cell Biol. 2007;27(5):1631.CrossRef
43.
go back to reference Ohlsson R, Bartkuhn MR. CTCF shapes chromatin by multiple mechanisms: the impact of 20 years of CTCF research on understanding the workings of chromatin. Chromosoma. 2010;119(4):351–60.PubMedPubMedCentralCrossRef Ohlsson R, Bartkuhn MR. CTCF shapes chromatin by multiple mechanisms: the impact of 20 years of CTCF research on understanding the workings of chromatin. Chromosoma. 2010;119(4):351–60.PubMedPubMedCentralCrossRef
44.
go back to reference Sanjeev S, Ersen K, Melissa G, Masahiko I, Bojan S, Mikhail K, et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011;479(7371):74–9.CrossRef Sanjeev S, Ersen K, Melissa G, Masahiko I, Bojan S, Mikhail K, et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011;479(7371):74–9.CrossRef
45.
go back to reference Merkenschlager M, Nora EP. CTCF and cohesin in genome folding and transcriptional gene regulation. Annu Rev Genomics Hum Genet. 2016;17(1):17.PubMedCrossRef Merkenschlager M, Nora EP. CTCF and cohesin in genome folding and transcriptional gene regulation. Annu Rev Genomics Hum Genet. 2016;17(1):17.PubMedCrossRef
46.
go back to reference Luo H, Wang F, Zha J, Li H, Yan B, Du Q, et al. CTCF boundary remodels chromatin domain and drives aberrant HOX gene transcription in acute myeloid leukemia. Blood. 2018;132(8):837–48.PubMedPubMedCentralCrossRef Luo H, Wang F, Zha J, Li H, Yan B, Du Q, et al. CTCF boundary remodels chromatin domain and drives aberrant HOX gene transcription in acute myeloid leukemia. Blood. 2018;132(8):837–48.PubMedPubMedCentralCrossRef
47.
go back to reference Shen Q, Uray I, Li Y, Krisko T, Strecker T, Kim H, Brown P. The AP-1 transcription factor regulates breast cancer cell growth via cyclins and E2F factors. Oncogene. 2008;27(3):366.PubMedCrossRef Shen Q, Uray I, Li Y, Krisko T, Strecker T, Kim H, Brown P. The AP-1 transcription factor regulates breast cancer cell growth via cyclins and E2F factors. Oncogene. 2008;27(3):366.PubMedCrossRef
48.
go back to reference Fan F, Bashari MH, Morelli E, Tonon G, Malvestiti S, Vallet S, et al. The AP-1 transcription factor JunB is essential for multiple myeloma cell proliferation and drug resistance in the bone marrow microenvironment. Leukemia. 2017;31(7):1570–81.PubMedCrossRef Fan F, Bashari MH, Morelli E, Tonon G, Malvestiti S, Vallet S, et al. The AP-1 transcription factor JunB is essential for multiple myeloma cell proliferation and drug resistance in the bone marrow microenvironment. Leukemia. 2017;31(7):1570–81.PubMedCrossRef
49.
go back to reference Wahlestedt M, Säwén P, Ladopoulos V, Norddahl G, Gottgens B, Bryder D, et al. Critical modulation of hematopoietic lineage fate by the PAR/bZIP transcription factor hepatic leukemia factor. Exp Hematol. 2014;42(8):S64.CrossRef Wahlestedt M, Säwén P, Ladopoulos V, Norddahl G, Gottgens B, Bryder D, et al. Critical modulation of hematopoietic lineage fate by the PAR/bZIP transcription factor hepatic leukemia factor. Exp Hematol. 2014;42(8):S64.CrossRef
50.
go back to reference De TH, Pandolfi PP, Chen Z. Acute promyelocytic leukemia: a paradigm for oncoprotein-targeted cure. Cancer Cell. 2017;32(5):552–60.CrossRef De TH, Pandolfi PP, Chen Z. Acute promyelocytic leukemia: a paradigm for oncoprotein-targeted cure. Cancer Cell. 2017;32(5):552–60.CrossRef
51.
go back to reference Lilljebjorn H, Heidenblad M, Nilsson B, Lassen C, Horvat A, Heldrup J, et al. Combined high-resolution array-based comparative genomic hybridization and expression profiling of ETV6/RUNX1-positive acute lymphoblastic leukemias reveal a high incidence of cryptic Xq duplications and identify several putative target genes within the commonly gained region. Leukemia. 2007;21(10):2137–44.PubMedCrossRef Lilljebjorn H, Heidenblad M, Nilsson B, Lassen C, Horvat A, Heldrup J, et al. Combined high-resolution array-based comparative genomic hybridization and expression profiling of ETV6/RUNX1-positive acute lymphoblastic leukemias reveal a high incidence of cryptic Xq duplications and identify several putative target genes within the commonly gained region. Leukemia. 2007;21(10):2137–44.PubMedCrossRef
52.
go back to reference Stirewalt DL, Meshinchi S, Kopecky KJ, Fan W, Pogosova-Agadjanyan EL, Engel JH, et al. Identification of genes with abnormal expression changes in acute myeloid leukemia. Genes Chromosom Cancer. 2008;47(1):8–20.PubMedCrossRef Stirewalt DL, Meshinchi S, Kopecky KJ, Fan W, Pogosova-Agadjanyan EL, Engel JH, et al. Identification of genes with abnormal expression changes in acute myeloid leukemia. Genes Chromosom Cancer. 2008;47(1):8–20.PubMedCrossRef
Metadata
Title
KDM3B suppresses APL progression by restricting chromatin accessibility and facilitating the ATRA-mediated degradation of PML/RARα
Authors
Xinrui Wang
Huiyong Fan
Congling Xu
Guojuan Jiang
Haiwei Wang
Ji Zhang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2019
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-019-0979-7

Other articles of this Issue 1/2019

Cancer Cell International 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine