Skip to main content
Top
Published in: Diagnostic Pathology 1/2020

Open Access 01-12-2020 | Acute Myeloid Leukemia | Review

Genetics of blood malignancies among Iranian population: an overview

Authors: Majid Ghayour-Mobarhan, Amir Sadra Zangouei, Seyed Mohammad Hosseinirad, Majid Mojarrad, Meysam Moghbeli

Published in: Diagnostic Pathology | Issue 1/2020

Login to get access

Abstract

Background

Blood malignancies are among the leading causes of cancer related deaths in the world. Different environmental and genetic risk factors are involved in progression of blood malignancies. It has been shown that the lifestyle changes have affected the epidemiological patterns of these malignancies. Hematologic cancers are the 5th common cancer among Iranian population. It has been observed that there is a rising trend of blood malignancies incidences during the recent decades. Therefore, it is required to design novel diagnostic methods for the early detection of such malignancies in this population.

Main body

In present review we have summarized all of the significant genes which have been reported among Iranian patients with blood malignancies. The reported genes were categorized based on their cell and molecular functions to clarify the molecular biology and genetics of blood malignancies among Iranian patients.

Conclusion

It was observed that the epigenetic and immune response factors were the most frequent molecular processes associated with progression of blood malignancies among Iranian population. This review paves the way of introducing a population based panel of genetic markers for the early detection of blood malignancies in this population.
Literature
1.
2.
go back to reference Rodriguez-Abreu D, Bordoni A, Zucca E. Epidemiology of hematological malignancies. Annals Oncol. 2007;18(suppl_1):i3–8.CrossRef Rodriguez-Abreu D, Bordoni A, Zucca E. Epidemiology of hematological malignancies. Annals Oncol. 2007;18(suppl_1):i3–8.CrossRef
3.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA: Cancer J Clin. 2019;69(1):7–34. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA: Cancer J Clin. 2019;69(1):7–34.
4.
go back to reference Koohi F, Salehiniya H, Shamlou R, Eslami S, Ghojogh ZM, Kor Y, et al. Rafiemanesh, leukemia in Iran: epidemiology and morphology trends. Asian Pac J Cancer Prev. 2015;16(17):7759–63.PubMedCrossRef Koohi F, Salehiniya H, Shamlou R, Eslami S, Ghojogh ZM, Kor Y, et al. Rafiemanesh, leukemia in Iran: epidemiology and morphology trends. Asian Pac J Cancer Prev. 2015;16(17):7759–63.PubMedCrossRef
5.
go back to reference Deschler B, Lübbert M. Lübbert, acute myeloid leukemia: epidemiology and etiology. Cancer. 2006;107(9):2099–107.PubMedCrossRef Deschler B, Lübbert M. Lübbert, acute myeloid leukemia: epidemiology and etiology. Cancer. 2006;107(9):2099–107.PubMedCrossRef
6.
go back to reference Redaelli A, et al. Epidemiology and clinical burden of acute myeloid leukemia. Expert Rev Anticancer Ther. 2003;3(5):695–710.PubMedCrossRef Redaelli A, et al. Epidemiology and clinical burden of acute myeloid leukemia. Expert Rev Anticancer Ther. 2003;3(5):695–710.PubMedCrossRef
7.
go back to reference Schrappe MJH. Acute lymphoblastic leukemia. New Engl J Med. 2018;2(S2):1. Schrappe MJH. Acute lymphoblastic leukemia. New Engl J Med. 2018;2(S2):1.
9.
go back to reference Rohrbacher M, Hasford J. Epidemiology of chronic myeloid leukaemia (CML). Best Pract Res Clin Haematol. 2009;22(3):295–302.PubMedCrossRef Rohrbacher M, Hasford J. Epidemiology of chronic myeloid leukaemia (CML). Best Pract Res Clin Haematol. 2009;22(3):295–302.PubMedCrossRef
10.
go back to reference Hallek M. Chronic lymphocytic leukemia: 2017 update on diagnosis, risk stratification, and treatment. Am J Hematol. 2017;92(9):946–65.PubMedCrossRef Hallek M. Chronic lymphocytic leukemia: 2017 update on diagnosis, risk stratification, and treatment. Am J Hematol. 2017;92(9):946–65.PubMedCrossRef
11.
go back to reference Matasar MJ, Zelenetz AD. Overview of lymphoma diagnosis and management. Radiol Clin N Am. 2008;46(2):175–98.PubMedCrossRef Matasar MJ, Zelenetz AD. Overview of lymphoma diagnosis and management. Radiol Clin N Am. 2008;46(2):175–98.PubMedCrossRef
12.
go back to reference Norris D, Stone J. WHO classification of tumours of haematopoietic and lymphoid tissues; 2008. Norris D, Stone J. WHO classification of tumours of haematopoietic and lymphoid tissues; 2008.
13.
go back to reference Eslick R, Talaulikar D. Multiple myeloma: from diagnosis to treatment. Aust Fam Physician. 2013;42:684–8.PubMed Eslick R, Talaulikar D. Multiple myeloma: from diagnosis to treatment. Aust Fam Physician. 2013;42:684–8.PubMed
15.
go back to reference Farhood B, Geraily G, Alizadeh A. Incidence and mortality of various cancers in Iran and compare to other countries: a review article. Iran J Public Health. 2018;47(3):309–16.PubMedPubMedCentral Farhood B, Geraily G, Alizadeh A. Incidence and mortality of various cancers in Iran and compare to other countries: a review article. Iran J Public Health. 2018;47(3):309–16.PubMedPubMedCentral
17.
go back to reference Daniels RD, Schubauer-Berigan MK. A meta-analysis of leukaemia risk from protracted exposure to low-dose gamma radiation. Occup Environ Med. 2011;68(6):457–64.PubMedCrossRef Daniels RD, Schubauer-Berigan MK. A meta-analysis of leukaemia risk from protracted exposure to low-dose gamma radiation. Occup Environ Med. 2011;68(6):457–64.PubMedCrossRef
19.
go back to reference Poole C, et al. Socioeconomic status and childhood leukaemia: a review. Int J Epidemiol. 2006;35(2):370–84.PubMedCrossRef Poole C, et al. Socioeconomic status and childhood leukaemia: a review. Int J Epidemiol. 2006;35(2):370–84.PubMedCrossRef
22.
go back to reference Koohi F, et al. Leukemia in Iran: epidemiology and morphology trends. Asian Pac J Cancer Prev. 2015;16(17):7759–63.PubMedCrossRef Koohi F, et al. Leukemia in Iran: epidemiology and morphology trends. Asian Pac J Cancer Prev. 2015;16(17):7759–63.PubMedCrossRef
23.
go back to reference Hadi N, Moezzi M, Etehadieh H. Risk factors for acute leukemia in children under 15 years in shiraz/Iran. Daneshvar Univ Shahed. 2006;14:57–65. Hadi N, Moezzi M, Etehadieh H. Risk factors for acute leukemia in children under 15 years in shiraz/Iran. Daneshvar Univ Shahed. 2006;14:57–65.
24.
25.
go back to reference Feizi AA, Arabi MA. Acute childhood leukemias and exposure to magnetic fields generated by high voltage overhead power lines-a risk factor in Iran. Asian Pac J Cancer Prev. 2007;8(1):69.PubMed Feizi AA, Arabi MA. Acute childhood leukemias and exposure to magnetic fields generated by high voltage overhead power lines-a risk factor in Iran. Asian Pac J Cancer Prev. 2007;8(1):69.PubMed
26.
go back to reference Alavi S, et al. Distribution of ABO blood groups in childhood acute leukemia. Pediatr Hematol Oncol. 2006;23(8):611–7.PubMedCrossRef Alavi S, et al. Distribution of ABO blood groups in childhood acute leukemia. Pediatr Hematol Oncol. 2006;23(8):611–7.PubMedCrossRef
27.
go back to reference Izadifard M, et al. Expression analysis of PVT1, CCDC26, and CCAT1 long noncoding RNAs in acute myeloid leukemia patients. Genet Test Mol Biomarkers. 2018;22(10):593–8.PubMedCrossRef Izadifard M, et al. Expression analysis of PVT1, CCDC26, and CCAT1 long noncoding RNAs in acute myeloid leukemia patients. Genet Test Mol Biomarkers. 2018;22(10):593–8.PubMedCrossRef
28.
go back to reference Pashaiefar H, et al. Low expression of long noncoding RNA IRAIN is associated with poor prognosis in non-M3 acute myeloid leukemia patients. Genet Test Mol Biomarkers. 2018;22(5):288–94.PubMedCrossRef Pashaiefar H, et al. Low expression of long noncoding RNA IRAIN is associated with poor prognosis in non-M3 acute myeloid leukemia patients. Genet Test Mol Biomarkers. 2018;22(5):288–94.PubMedCrossRef
29.
go back to reference Ahmadi A, et al. Altered expression of MALAT1 lncRNA in chronic lymphocytic leukemia patients, correlation with cytogenetic findings. Blood Res. 2018;53(4):320–4.PubMedPubMedCentralCrossRef Ahmadi A, et al. Altered expression of MALAT1 lncRNA in chronic lymphocytic leukemia patients, correlation with cytogenetic findings. Blood Res. 2018;53(4):320–4.PubMedPubMedCentralCrossRef
30.
go back to reference Bahari G, et al. Long non-coding RNA PAX8-AS1 polymorphisms increase the risk of childhood acute lymphoblastic leukemia. Biomed Rep. 2018;8(2):184–90.PubMed Bahari G, et al. Long non-coding RNA PAX8-AS1 polymorphisms increase the risk of childhood acute lymphoblastic leukemia. Biomed Rep. 2018;8(2):184–90.PubMed
31.
go back to reference Hashemi M, et al. Association of lnc-LAMC2-1:1 rs2147578 and CASC8 rs10505477 polymorphisms with risk of childhood acute lymphoblastic leukemia. Asian Pac J Cancer Prev. 2016;17(11):4985–9.PubMedPubMedCentral Hashemi M, et al. Association of lnc-LAMC2-1:1 rs2147578 and CASC8 rs10505477 polymorphisms with risk of childhood acute lymphoblastic leukemia. Asian Pac J Cancer Prev. 2016;17(11):4985–9.PubMedPubMedCentral
32.
go back to reference Koolivand M, et al. Alleviating the progression of acute myeloid leukemia (AML) by sulforaphane through controlling miR-155 levels. Mol Biol Rep. 2018;45(6):2491–9.PubMedCrossRef Koolivand M, et al. Alleviating the progression of acute myeloid leukemia (AML) by sulforaphane through controlling miR-155 levels. Mol Biol Rep. 2018;45(6):2491–9.PubMedCrossRef
33.
go back to reference Fathullahzadeh S, et al. Circulating microRNA-192 as a diagnostic biomarker in human chronic lymphocytic leukemia. Cancer Gene Ther. 2016;23(10):327–32.PubMedCrossRef Fathullahzadeh S, et al. Circulating microRNA-192 as a diagnostic biomarker in human chronic lymphocytic leukemia. Cancer Gene Ther. 2016;23(10):327–32.PubMedCrossRef
34.
go back to reference Hashemi M, et al. Pri-miR-34b/c rs4938723 polymorphism is associated with the risk of childhood acute lymphoblastic leukemia. Cancer Gene Ther. 2016;209(11):493–6.CrossRef Hashemi M, et al. Pri-miR-34b/c rs4938723 polymorphism is associated with the risk of childhood acute lymphoblastic leukemia. Cancer Gene Ther. 2016;209(11):493–6.CrossRef
35.
go back to reference Fallah P, et al. Expression pattern of key microRNAs in patients with newly diagnosed chronic myeloid leukemia in chronic phase. Int J Lab Hematol. 2015;37(4):560–8.PubMedCrossRef Fallah P, et al. Expression pattern of key microRNAs in patients with newly diagnosed chronic myeloid leukemia in chronic phase. Int J Lab Hematol. 2015;37(4):560–8.PubMedCrossRef
36.
go back to reference Seyyedi SS, et al. Deregulation of miR-1, miR486, and let-7a in cytogenetically normal acute myeloid leukemia: association with NPM1 and FLT3 mutation and clinical characteristics. Tumour Biol. 2016;37(4):4841–7.PubMedCrossRef Seyyedi SS, et al. Deregulation of miR-1, miR486, and let-7a in cytogenetically normal acute myeloid leukemia: association with NPM1 and FLT3 mutation and clinical characteristics. Tumour Biol. 2016;37(4):4841–7.PubMedCrossRef
37.
go back to reference Hasani SS, et al. A functional polymorphism in the miR-146a gene is associated with the risk of childhood acute lymphoblastic leukemia: a preliminary report. Tumour Biol. 2014;35(1):219–25.PubMedCrossRef Hasani SS, et al. A functional polymorphism in the miR-146a gene is associated with the risk of childhood acute lymphoblastic leukemia: a preliminary report. Tumour Biol. 2014;35(1):219–25.PubMedCrossRef
38.
go back to reference Hashemi M, Hasani SS, Naderi M. DROSHA rs642321 polymorphism influence susceptibility to childhood acute lymphoblastic leukemia: a preliminary report. Indian J Med Paediatr Oncol. 2017;38(4):416–9.PubMedPubMedCentralCrossRef Hashemi M, Hasani SS, Naderi M. DROSHA rs642321 polymorphism influence susceptibility to childhood acute lymphoblastic leukemia: a preliminary report. Indian J Med Paediatr Oncol. 2017;38(4):416–9.PubMedPubMedCentralCrossRef
39.
go back to reference Farzaneh MR, et al. Dicer gene expression as a prognostic factor in acute lymphoblastic leukemia and chronic lymphocytic leukemia in Fars Province. Iran J Med Sci. 2016;41(3):223–9.PubMed Farzaneh MR, et al. Dicer gene expression as a prognostic factor in acute lymphoblastic leukemia and chronic lymphocytic leukemia in Fars Province. Iran J Med Sci. 2016;41(3):223–9.PubMed
40.
go back to reference Rahmani T, et al. Patterns of DNMT1 promoter methylation in patients with acute lymphoblastic leukemia. Int J Hematol Oncol Stem Cell Res. 2017;11(3):172–7.PubMedPubMedCentral Rahmani T, et al. Patterns of DNMT1 promoter methylation in patients with acute lymphoblastic leukemia. Int J Hematol Oncol Stem Cell Res. 2017;11(3):172–7.PubMedPubMedCentral
41.
go back to reference Allahbakhshian Farsani M, et al. The expression of Interferon Gamma (IFN-gamma) and Interleukin 6 (IL6) in Patients with Acute Lymphoblastic Leukemia (ALL). Pathol Oncol Res. 2020;26(1):461–6. Allahbakhshian Farsani M, et al. The expression of Interferon Gamma (IFN-gamma) and Interleukin 6 (IL6) in Patients with Acute Lymphoblastic Leukemia (ALL). Pathol Oncol Res. 2020;26(1):461–6.
42.
go back to reference Ghavami A, Fathpour G, Amirghofran Z. Association of IL-27 rs153109 and rs17855750 polymorphisms with risk and response to therapy in acute lymphoblastic leukemia. Pathol Oncol Res. 2018;24(3):653–62.PubMedCrossRef Ghavami A, Fathpour G, Amirghofran Z. Association of IL-27 rs153109 and rs17855750 polymorphisms with risk and response to therapy in acute lymphoblastic leukemia. Pathol Oncol Res. 2018;24(3):653–62.PubMedCrossRef
43.
go back to reference Kouzegaran S, et al. Elevated IL-17A and IL-22 regulate expression of inducible CD38 and Zap-70 in chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2018;94(1):143–7.PubMedCrossRef Kouzegaran S, et al. Elevated IL-17A and IL-22 regulate expression of inducible CD38 and Zap-70 in chronic lymphocytic leukemia. Cytometry B Clin Cytom. 2018;94(1):143–7.PubMedCrossRef
44.
go back to reference Sepehrizadeh Z, et al. Assessment of cytokine expression profile in acute myeloid leukemia patients before and after chemotherapy. Turk J Haematol. 2014;31(2):149–54.PubMedPubMedCentralCrossRef Sepehrizadeh Z, et al. Assessment of cytokine expression profile in acute myeloid leukemia patients before and after chemotherapy. Turk J Haematol. 2014;31(2):149–54.PubMedPubMedCentralCrossRef
45.
go back to reference Amirzargar AA, et al. Cytokine gene polymorphism in Iranian patients with chronic myelogenous leukaemia. Int J Immunogenet. 2005;32(3):167–71.PubMedCrossRef Amirzargar AA, et al. Cytokine gene polymorphism in Iranian patients with chronic myelogenous leukaemia. Int J Immunogenet. 2005;32(3):167–71.PubMedCrossRef
46.
go back to reference Abdolmaleki M, et al. Scrutinizing the expression and blockade of inhibitory molecules expressed on T cells from acute myeloid leukemia patients. Iran J Allergy Asthma Immunol. 2018;17(3):265–73.PubMed Abdolmaleki M, et al. Scrutinizing the expression and blockade of inhibitory molecules expressed on T cells from acute myeloid leukemia patients. Iran J Allergy Asthma Immunol. 2018;17(3):265–73.PubMed
47.
go back to reference Taghiloo S, et al. Upregulation of Galectin-9 and PD-L1 immune checkpoints molecules in patients with chronic lymphocytic leukemia. Asian Pac J Cancer Prev. 2017;18(8):2269–74.PubMedPubMedCentral Taghiloo S, et al. Upregulation of Galectin-9 and PD-L1 immune checkpoints molecules in patients with chronic lymphocytic leukemia. Asian Pac J Cancer Prev. 2017;18(8):2269–74.PubMedPubMedCentral
48.
go back to reference Amirghofran Z, Zakerinia M, Shamseddin A. Significant association between expression of the CD11b surface molecule and favorable outcome for patients with acute myeloblastic leukemia. Int J Hematol. 2001;73(4):502–6.PubMedCrossRef Amirghofran Z, Zakerinia M, Shamseddin A. Significant association between expression of the CD11b surface molecule and favorable outcome for patients with acute myeloblastic leukemia. Int J Hematol. 2001;73(4):502–6.PubMedCrossRef
49.
go back to reference Ramzi M, et al. Genetic variation of costimulatory molecules, including cytotoxic T-lymphocyte antigen 4, inducible T-cell Costimulator, cluster differentiation 28, and programmed cell death 1 genes, in Iranian patients with leukemia. Exp Clin Transplant. 2018. Ramzi M, et al. Genetic variation of costimulatory molecules, including cytotoxic T-lymphocyte antigen 4, inducible T-cell Costimulator, cluster differentiation 28, and programmed cell death 1 genes, in Iranian patients with leukemia. Exp Clin Transplant. 2018.
50.
go back to reference Nasiri H, et al. Genetic variations of tumor necrosis factor -alpha-308 and Lymphtoxin-alpha+252 in non-Hodgkin lymphoma and acute lymphoblastic leukemia patients. Iran J Basic Med Sci. 2013;16(9):990–5.PubMedPubMedCentral Nasiri H, et al. Genetic variations of tumor necrosis factor -alpha-308 and Lymphtoxin-alpha+252 in non-Hodgkin lymphoma and acute lymphoblastic leukemia patients. Iran J Basic Med Sci. 2013;16(9):990–5.PubMedPubMedCentral
51.
go back to reference Orouji E, et al. Association between HLA-DQB1 gene and patients with acute lymphoblastic leukemia (ALL). Int J Hematol. 2012;95(5):551–5.PubMedCrossRef Orouji E, et al. Association between HLA-DQB1 gene and patients with acute lymphoblastic leukemia (ALL). Int J Hematol. 2012;95(5):551–5.PubMedCrossRef
52.
go back to reference Rezvany MR, et al. Analysis of HLA-G gene expression in B-lymphocytes from chronic lymphocytic leukemia patients. Iran Biomed J. 2007;11(2):125–9.PubMed Rezvany MR, et al. Analysis of HLA-G gene expression in B-lymphocytes from chronic lymphocytic leukemia patients. Iran Biomed J. 2007;11(2):125–9.PubMed
53.
go back to reference Amirzargar AA, et al. Association of HLA class II allele and haplotype frequencies with chronic myelogenous leukemia and age-at-onset of the disease. Pathol Oncol Res. 2007;13(1):47–51.PubMedCrossRef Amirzargar AA, et al. Association of HLA class II allele and haplotype frequencies with chronic myelogenous leukemia and age-at-onset of the disease. Pathol Oncol Res. 2007;13(1):47–51.PubMedCrossRef
54.
go back to reference Khosravi F, et al. HLA class II allele and haplotype frequencies in Iranian patients with leukemia. Iran J Allergy Asthma Immunol. 2007;6(3):137–42.PubMed Khosravi F, et al. HLA class II allele and haplotype frequencies in Iranian patients with leukemia. Iran J Allergy Asthma Immunol. 2007;6(3):137–42.PubMed
55.
go back to reference Sarafnejad A, et al. HLA class II allele and haplotype frequencies in iranian patients with acute myelogenous leukemia and control group. Iran J Allergy Asthma Immunol. 2006;5(3):115–9.PubMed Sarafnejad A, et al. HLA class II allele and haplotype frequencies in iranian patients with acute myelogenous leukemia and control group. Iran J Allergy Asthma Immunol. 2006;5(3):115–9.PubMed
56.
go back to reference Moazzeni SM, Amirzargar AA, Shokri F. HLA antigens in Iranian patients with B-cell chronic lymphocytic leukemia. Pathol Oncol Res. 1999;5(2):142–5.PubMedCrossRef Moazzeni SM, Amirzargar AA, Shokri F. HLA antigens in Iranian patients with B-cell chronic lymphocytic leukemia. Pathol Oncol Res. 1999;5(2):142–5.PubMedCrossRef
57.
go back to reference Shahsavar F, et al. KIR2DS3 is associated with protection against acute myeloid leukemia. Iran J Immunol. 2010;7(1):8–17.PubMed Shahsavar F, et al. KIR2DS3 is associated with protection against acute myeloid leukemia. Iran J Immunol. 2010;7(1):8–17.PubMed
58.
go back to reference Noori-Daloii MR, et al. Cytokine gene polymorphism and graft-versus-host disease: a survey in Iranian bone marrow transplanted patients. Mol Biol Rep. 2013;40(8):4861–7.PubMedCrossRef Noori-Daloii MR, et al. Cytokine gene polymorphism and graft-versus-host disease: a survey in Iranian bone marrow transplanted patients. Mol Biol Rep. 2013;40(8):4861–7.PubMedCrossRef
59.
go back to reference Kazemi T, et al. Low representation of fc receptor-like 1-5 molecules in leukemic cells from Iranian patients with acute lymphoblastic leukemia. Cancer Immunol Immunother. 2009;58(6):989–96.PubMedCrossRef Kazemi T, et al. Low representation of fc receptor-like 1-5 molecules in leukemic cells from Iranian patients with acute lymphoblastic leukemia. Cancer Immunol Immunother. 2009;58(6):989–96.PubMedCrossRef
60.
go back to reference Pouyanrad S, Rahgozar S, Ghodousi ES. Dysregulation of miR-335-3p, targeted by NEAT1 and MALAT1 long non-coding RNAs, is associated with poor prognosis in childhood acute lymphoblastic leukemia. Gene. 2019;692:35–43.PubMedCrossRef Pouyanrad S, Rahgozar S, Ghodousi ES. Dysregulation of miR-335-3p, targeted by NEAT1 and MALAT1 long non-coding RNAs, is associated with poor prognosis in childhood acute lymphoblastic leukemia. Gene. 2019;692:35–43.PubMedCrossRef
61.
go back to reference Rahgozar S, et al. mRNA expression profile of multidrug-resistant genes in acute lymphoblastic leukemia of children, a prognostic value for ABCA3 and ABCA2. Cancer Biol Ther. 2014;15(1):35–41.PubMedCrossRef Rahgozar S, et al. mRNA expression profile of multidrug-resistant genes in acute lymphoblastic leukemia of children, a prognostic value for ABCA3 and ABCA2. Cancer Biol Ther. 2014;15(1):35–41.PubMedCrossRef
62.
go back to reference Mahjoubi F, et al. Expression of MRP1 gene in acute leukemia. Sao Paulo Med J. 2008;126(3):172–9.PubMedCrossRef Mahjoubi F, et al. Expression of MRP1 gene in acute leukemia. Sao Paulo Med J. 2008;126(3):172–9.PubMedCrossRef
63.
go back to reference Mahjoubi F, Akbari S. Multidrug resistance-associated protein 1 predicts relapse in Iranian childhood acute lymphoblastic leukemia. Asian Pac J Cancer Prev. 2012;13(5):2285–9.PubMedCrossRef Mahjoubi F, Akbari S. Multidrug resistance-associated protein 1 predicts relapse in Iranian childhood acute lymphoblastic leukemia. Asian Pac J Cancer Prev. 2012;13(5):2285–9.PubMedCrossRef
64.
go back to reference Ghodousi ES, Rahgozar S. MicroRNA-326 and microRNA-200c: two novel biomarkers for diagnosis and prognosis of pediatric acute lymphoblastic leukemia. J Cell Biochem. 2018;119(7):6024–32.PubMedCrossRef Ghodousi ES, Rahgozar S. MicroRNA-326 and microRNA-200c: two novel biomarkers for diagnosis and prognosis of pediatric acute lymphoblastic leukemia. J Cell Biochem. 2018;119(7):6024–32.PubMedCrossRef
65.
go back to reference Tanha HM, Rahgozar S, Naeini MM. ABCC4 functional SNP in the 3’ splice acceptor site of exon 8 (G912T) is associated with unfavorable clinical outcome in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2017;80(1):109–17.CrossRef Tanha HM, Rahgozar S, Naeini MM. ABCC4 functional SNP in the 3’ splice acceptor site of exon 8 (G912T) is associated with unfavorable clinical outcome in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2017;80(1):109–17.CrossRef
66.
go back to reference Kazemi M, et al. Association between (GT) n repeats in Heme Oxygenase-1 gene promoter and 3-year survival of patients with acute leukemia: a controlled, cross-sectional study. Int J Hematol Oncol Stem Cell Res. 2018;12(1):49–56.PubMedPubMedCentral Kazemi M, et al. Association between (GT) n repeats in Heme Oxygenase-1 gene promoter and 3-year survival of patients with acute leukemia: a controlled, cross-sectional study. Int J Hematol Oncol Stem Cell Res. 2018;12(1):49–56.PubMedPubMedCentral
67.
go back to reference Saadat I, Saadat M. The glutathione S-transferase mu polymorphism and susceptibility to acute lymphocytic leukemia. Cancer Lett. 2000;158(1):43–5.PubMedCrossRef Saadat I, Saadat M. The glutathione S-transferase mu polymorphism and susceptibility to acute lymphocytic leukemia. Cancer Lett. 2000;158(1):43–5.PubMedCrossRef
68.
go back to reference Seghatoleslam A, et al. UBE2Q1, as a down regulated gene in pediatric acute lymphoblastic leukemia. Int J Mol Cell Med. 2014;3(2):95–101.PubMedPubMedCentral Seghatoleslam A, et al. UBE2Q1, as a down regulated gene in pediatric acute lymphoblastic leukemia. Int J Mol Cell Med. 2014;3(2):95–101.PubMedPubMedCentral
69.
go back to reference Seghatoleslam A, et al. Expression of UBE2Q2, a putative member of the ubiquitin-conjugating enzyme family in pediatric acute lymphoblastic leukemia. Arch Iran Med. 2012;15(6):352–5.PubMed Seghatoleslam A, et al. Expression of UBE2Q2, a putative member of the ubiquitin-conjugating enzyme family in pediatric acute lymphoblastic leukemia. Arch Iran Med. 2012;15(6):352–5.PubMed
70.
go back to reference Zareifar S, et al. Expression of antiapoptotic proteins livin and survivin in pediatric AML patients, as prognostic markers. Pediatr Hematol Oncol. 2018;35(4):250–6.PubMedCrossRef Zareifar S, et al. Expression of antiapoptotic proteins livin and survivin in pediatric AML patients, as prognostic markers. Pediatr Hematol Oncol. 2018;35(4):250–6.PubMedCrossRef
71.
go back to reference Rostami S, et al. Aberrant methylation of APAF-1 gene in acute myeloid leukemia patients. Int J Hematol Oncol Stem Cell Res. 2017;11(3):225–30.PubMedPubMedCentral Rostami S, et al. Aberrant methylation of APAF-1 gene in acute myeloid leukemia patients. Int J Hematol Oncol Stem Cell Res. 2017;11(3):225–30.PubMedPubMedCentral
72.
go back to reference Asgarian-Omran H, et al. Expression profile of galectin-1 and galectin-3 molecules in different subtypes of chronic lymphocytic leukemia. Cancer Investig. 2010;28(7):717–25.CrossRef Asgarian-Omran H, et al. Expression profile of galectin-1 and galectin-3 molecules in different subtypes of chronic lymphocytic leukemia. Cancer Investig. 2010;28(7):717–25.CrossRef
73.
go back to reference Daneshbod Y, Amirghofran Z, Tabei SZ. Bcl-2 expression in acute myelogenous leukemia: the relation to myeloid antigen expression and response to therapy in Iranian patients. Neoplasma. 2005;52(2):109–14.PubMed Daneshbod Y, Amirghofran Z, Tabei SZ. Bcl-2 expression in acute myelogenous leukemia: the relation to myeloid antigen expression and response to therapy in Iranian patients. Neoplasma. 2005;52(2):109–14.PubMed
74.
go back to reference Zare-Abdollahi D, et al. Expression analysis of BECN1 in acute myeloid leukemia: association with distinct cytogenetic and molecular abnormalities. Int J Lab Hematol. 2016;38(2):125–32.PubMedCrossRef Zare-Abdollahi D, et al. Expression analysis of BECN1 in acute myeloid leukemia: association with distinct cytogenetic and molecular abnormalities. Int J Lab Hematol. 2016;38(2):125–32.PubMedCrossRef
75.
go back to reference Amirghofran Z, Daneshbod Y, Gholijani N. Bcl-2 in combination to myeloid antigen expression in adult acute lymphoblastic leukemia and prognostic outcome. Oncol Res. 2009;17(10):447–54.PubMedCrossRef Amirghofran Z, Daneshbod Y, Gholijani N. Bcl-2 in combination to myeloid antigen expression in adult acute lymphoblastic leukemia and prognostic outcome. Oncol Res. 2009;17(10):447–54.PubMedCrossRef
76.
go back to reference Younesian S, et al. DNA hypermethylation of tumor suppressor genes RASSF6 and RASSF10 as independent prognostic factors in adult acute lymphoblastic leukemia. Leuk Res. 2017;61:33–8.PubMedCrossRef Younesian S, et al. DNA hypermethylation of tumor suppressor genes RASSF6 and RASSF10 as independent prognostic factors in adult acute lymphoblastic leukemia. Leuk Res. 2017;61:33–8.PubMedCrossRef
77.
go back to reference Pashaiefar H, et al. PARP-1 overexpression as an independent prognostic factor in adult non-M3 acute myeloid leukemia. Genet Test Mol Biomarkers. 2018;22(6):343–9.PubMedCrossRef Pashaiefar H, et al. PARP-1 overexpression as an independent prognostic factor in adult non-M3 acute myeloid leukemia. Genet Test Mol Biomarkers. 2018;22(6):343–9.PubMedCrossRef
78.
go back to reference Pashaiefar H, et al. The association between PARP1 and LIG3 expression levels and chromosomal translocations in acute myeloid leukemia patients. Cell J. 2018;20(2):204–10.PubMedPubMedCentral Pashaiefar H, et al. The association between PARP1 and LIG3 expression levels and chromosomal translocations in acute myeloid leukemia patients. Cell J. 2018;20(2):204–10.PubMedPubMedCentral
79.
go back to reference Bahari G, et al. Association between methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms and susceptibility to childhood acute lymphoblastic leukemia in an Iranian population. Int J Hematol Oncol Stem Cell Res. 2016;10(3):130–7.PubMedPubMedCentral Bahari G, et al. Association between methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms and susceptibility to childhood acute lymphoblastic leukemia in an Iranian population. Int J Hematol Oncol Stem Cell Res. 2016;10(3):130–7.PubMedPubMedCentral
80.
go back to reference Bahari G, et al. Association of SHMT1 gene polymorphisms with the risk of childhood acute lymphoblastic leukemia in a sample of Iranian population. Cell Mol Biol (Noisy-le-grand). 2016;62(2):45–51. Bahari G, et al. Association of SHMT1 gene polymorphisms with the risk of childhood acute lymphoblastic leukemia in a sample of Iranian population. Cell Mol Biol (Noisy-le-grand). 2016;62(2):45–51.
81.
82.
go back to reference Kamali Dolatabadi E, et al. CDKN2B methylation correlates with survival in AML patients. Iran J Pharm Res. 2017;16(4):1600–11.PubMedPubMedCentral Kamali Dolatabadi E, et al. CDKN2B methylation correlates with survival in AML patients. Iran J Pharm Res. 2017;16(4):1600–11.PubMedPubMedCentral
83.
go back to reference Memarian A, et al. Differential WNT gene expression in various subtypes of acute lymphoblastic leukemia. Iran J Immunol. 2012;9(1):61–71.PubMed Memarian A, et al. Differential WNT gene expression in various subtypes of acute lymphoblastic leukemia. Iran J Immunol. 2012;9(1):61–71.PubMed
84.
go back to reference Memarian A, et al. Variation in WNT genes expression in different subtypes of chronic lymphocytic leukemia. Leuk Lymphoma. 2009;50(12):2061–70.PubMedCrossRef Memarian A, et al. Variation in WNT genes expression in different subtypes of chronic lymphocytic leukemia. Leuk Lymphoma. 2009;50(12):2061–70.PubMedCrossRef
85.
go back to reference Memarian A, et al. Expression profile of Wnt molecules in leukemic cells from Iranian patients with acute myeloblastic leukemia. Iran J Immunol. 2007;4(3):145–54.PubMed Memarian A, et al. Expression profile of Wnt molecules in leukemic cells from Iranian patients with acute myeloblastic leukemia. Iran J Immunol. 2007;4(3):145–54.PubMed
86.
go back to reference Ghasemi A, et al. Study of SFRP1 and SFRP2 methylation status in patients with de novo acute Myeloblastic leukemia. Int J Hematol Oncol Stem Cell Res. 2015;9(1):15–21.PubMedPubMedCentral Ghasemi A, et al. Study of SFRP1 and SFRP2 methylation status in patients with de novo acute Myeloblastic leukemia. Int J Hematol Oncol Stem Cell Res. 2015;9(1):15–21.PubMedPubMedCentral
87.
go back to reference Gholami M, et al. The expression analysis of LATS2 gene in de novo AML patients. Med Oncol. 2014;31(5):961.PubMedCrossRef Gholami M, et al. The expression analysis of LATS2 gene in de novo AML patients. Med Oncol. 2014;31(5):961.PubMedCrossRef
88.
go back to reference Rafiee M, et al. Down-regulation of ribosomal S6 kinase RPS6KA6 in acute myeloid leukemia patients. Cell J. 2016;18(2):159–64.PubMedPubMedCentral Rafiee M, et al. Down-regulation of ribosomal S6 kinase RPS6KA6 in acute myeloid leukemia patients. Cell J. 2016;18(2):159–64.PubMedPubMedCentral
89.
go back to reference Salarpour F, et al. Evaluation of CCAAT/enhancer binding protein (C/EBP) alpha (CEBPA) and runt-related transcription factor 1 (RUNX1) expression in patients with De novo acute myeloid leukemia. Ann Hum Genet. 2017;81(6):276–83.PubMedCrossRef Salarpour F, et al. Evaluation of CCAAT/enhancer binding protein (C/EBP) alpha (CEBPA) and runt-related transcription factor 1 (RUNX1) expression in patients with De novo acute myeloid leukemia. Ann Hum Genet. 2017;81(6):276–83.PubMedCrossRef
90.
go back to reference Ayatollahi H, et al. Quantitative assessment of Wilms tumor 1 expression by real-time quantitative polymerase chain reaction in patients with acute myeloblastic leukemia. J Res Med Sci. 2017;22:54.PubMedPubMedCentralCrossRef Ayatollahi H, et al. Quantitative assessment of Wilms tumor 1 expression by real-time quantitative polymerase chain reaction in patients with acute myeloblastic leukemia. J Res Med Sci. 2017;22:54.PubMedPubMedCentralCrossRef
91.
go back to reference Rezai O, et al. Assessment of relationship between Wilms’ tumor gene (WT1) expression in peripheral blood of acute leukemia patients and serum IL-12 and C3 levels. Asian Pac J Cancer Prev. 2015;16(16):7303–7.PubMedCrossRef Rezai O, et al. Assessment of relationship between Wilms’ tumor gene (WT1) expression in peripheral blood of acute leukemia patients and serum IL-12 and C3 levels. Asian Pac J Cancer Prev. 2015;16(16):7303–7.PubMedCrossRef
92.
go back to reference Asgarian Omran H, et al. Cross-sectional monitoring of Wilms’ tumor gene 1 (WT1) expression in Iranian patients with acute lymphoblastic leukemia at diagnosis, relapse and remission. Leuk Lymphoma. 2008;49(2):281–90.PubMedCrossRef Asgarian Omran H, et al. Cross-sectional monitoring of Wilms’ tumor gene 1 (WT1) expression in Iranian patients with acute lymphoblastic leukemia at diagnosis, relapse and remission. Leuk Lymphoma. 2008;49(2):281–90.PubMedCrossRef
93.
go back to reference Bahari G, et al. IKZF1 gene polymorphisms increased the risk of childhood acute lymphoblastic leukemia in an Iranian population. Tumour Biol. 2016;37(7):9579–86.PubMedCrossRef Bahari G, et al. IKZF1 gene polymorphisms increased the risk of childhood acute lymphoblastic leukemia in an Iranian population. Tumour Biol. 2016;37(7):9579–86.PubMedCrossRef
94.
go back to reference Rezaei N, et al. FMS-like tyrosine kinase 3 (FLT3) and Nucleophosmin 1 (NPM1) in Iranian adult acute myeloid leukemia patients with Normal karyotypes: mutation status and clinical and laboratory characteristics. Turk J Haematol. 2017;34(4):300–6.PubMedPubMedCentral Rezaei N, et al. FMS-like tyrosine kinase 3 (FLT3) and Nucleophosmin 1 (NPM1) in Iranian adult acute myeloid leukemia patients with Normal karyotypes: mutation status and clinical and laboratory characteristics. Turk J Haematol. 2017;34(4):300–6.PubMedPubMedCentral
95.
go back to reference Nasiri N, et al. Detection and biological characteristic of FLT3 gene mutations in children with acute leukemia. Arch Iran Med. 2014;17(4):258–61.PubMed Nasiri N, et al. Detection and biological characteristic of FLT3 gene mutations in children with acute leukemia. Arch Iran Med. 2014;17(4):258–61.PubMed
96.
go back to reference Pazhakh V, et al. Detection of nucleophosmin and FMS-like tyrosine kinase-3 gene mutations in acute myeloid leukemia. Ann Saudi Med. 2011;31(1):45–50.PubMedPubMedCentralCrossRef Pazhakh V, et al. Detection of nucleophosmin and FMS-like tyrosine kinase-3 gene mutations in acute myeloid leukemia. Ann Saudi Med. 2011;31(1):45–50.PubMedPubMedCentralCrossRef
97.
go back to reference Zaker F, Mohammadzadeh M, Mohammadi M. Detection of KIT and FLT3 mutations in acute myeloid leukemia with different subtypes. Arch Iran Med. 2010;13(1):21–5.PubMed Zaker F, Mohammadzadeh M, Mohammadi M. Detection of KIT and FLT3 mutations in acute myeloid leukemia with different subtypes. Arch Iran Med. 2010;13(1):21–5.PubMed
98.
go back to reference Jafari Ghahfarokhi H, et al. ZAP70 expression within del6q21, del11q13 and del17p13 cytogenetic subgroups of Iranian patients with chronic lymphocytic leukemia. Iran Red Crescent Med J. 2014;16(11):e22528.PubMedPubMedCentralCrossRef Jafari Ghahfarokhi H, et al. ZAP70 expression within del6q21, del11q13 and del17p13 cytogenetic subgroups of Iranian patients with chronic lymphocytic leukemia. Iran Red Crescent Med J. 2014;16(11):e22528.PubMedPubMedCentralCrossRef
99.
go back to reference Shabani M, et al. Expression profile of orphan receptor tyrosine kinase (ROR1) and Wilms’ tumor gene 1 (WT1) in different subsets of B-cell acute lymphoblastic leukemia. Leuk Lymphoma. 2008;49(7):1360–7.PubMedCrossRef Shabani M, et al. Expression profile of orphan receptor tyrosine kinase (ROR1) and Wilms’ tumor gene 1 (WT1) in different subsets of B-cell acute lymphoblastic leukemia. Leuk Lymphoma. 2008;49(7):1360–7.PubMedCrossRef
100.
go back to reference Aliparasti MR, et al. Gene expression of VEGF-A and VEGF-C in peripheral blood mononuclear cells of Iranian patients with acute myeloid leukemia. Turk J Haematol. 2013;30(2):137–43.PubMedPubMedCentralCrossRef Aliparasti MR, et al. Gene expression of VEGF-A and VEGF-C in peripheral blood mononuclear cells of Iranian patients with acute myeloid leukemia. Turk J Haematol. 2013;30(2):137–43.PubMedPubMedCentralCrossRef
101.
go back to reference Amirpour M, et al. Evaluation of BAALC gene expression in normal cytogenetic acute myeloid leukemia patients in north-east of Iran. Med J Islam Repub Iran. 2016;30:418.PubMedPubMedCentral Amirpour M, et al. Evaluation of BAALC gene expression in normal cytogenetic acute myeloid leukemia patients in north-east of Iran. Med J Islam Repub Iran. 2016;30:418.PubMedPubMedCentral
102.
go back to reference Nadimi M, et al. Evaluation of rs62527607 [GT] single nucleotide polymorphism located in BAALC gene in children with acute leukemia using mismatch PCR-RFLP. Cancer Gene Ther. 2016;209(7–8):348–53.CrossRef Nadimi M, et al. Evaluation of rs62527607 [GT] single nucleotide polymorphism located in BAALC gene in children with acute leukemia using mismatch PCR-RFLP. Cancer Gene Ther. 2016;209(7–8):348–53.CrossRef
103.
go back to reference Mobasheri MB, et al. Expression of the testis-specific gene, TSGA10, in Iranian patients with acute lymphoblastic leukemia (ALL). Leuk Res. 2006;30(7):883–9.PubMedCrossRef Mobasheri MB, et al. Expression of the testis-specific gene, TSGA10, in Iranian patients with acute lymphoblastic leukemia (ALL). Leuk Res. 2006;30(7):883–9.PubMedCrossRef
104.
go back to reference Hoseinkhani Z, et al. Contribution and prognostic value of TSGA10 gene expression in patients with acute myeloid leukemia (AML). Pathol Res Pract. 2019;215(3):506–11.PubMedCrossRef Hoseinkhani Z, et al. Contribution and prognostic value of TSGA10 gene expression in patients with acute myeloid leukemia (AML). Pathol Res Pract. 2019;215(3):506–11.PubMedCrossRef
105.
106.
go back to reference Jain S, et al. Long non-coding RNA: functional agent for disease traits. RNA Biol. 2017;14(5):522–35.PubMedCrossRef Jain S, et al. Long non-coding RNA: functional agent for disease traits. RNA Biol. 2017;14(5):522–35.PubMedCrossRef
107.
go back to reference Zheng J, et al. lncRNA PVT1 promotes the angiogenesis of vascular endothelial cell by targeting miR26b to activate CTGF/ANGPT2. Int J Mol Med. 2018;42(1):489–96.PubMed Zheng J, et al. lncRNA PVT1 promotes the angiogenesis of vascular endothelial cell by targeting miR26b to activate CTGF/ANGPT2. Int J Mol Med. 2018;42(1):489–96.PubMed
108.
go back to reference Lian Y, et al. Long non-coding RNA IRAIN suppresses apoptosis and promotes proliferation by binding to LSD1 and EZH2 in pancreatic cancer. Tumour Biol. 2016;37(11):14929–37.PubMedCrossRef Lian Y, et al. Long non-coding RNA IRAIN suppresses apoptosis and promotes proliferation by binding to LSD1 and EZH2 in pancreatic cancer. Tumour Biol. 2016;37(11):14929–37.PubMedCrossRef
109.
go back to reference Jin Y, et al. LncRNA MALAT1 promotes proliferation and metastasis in epithelial ovarian cancer via the PI3K-AKT pathway. Eur Rev Med Pharmacol Sci. 2017;21(14):3176–84.PubMed Jin Y, et al. LncRNA MALAT1 promotes proliferation and metastasis in epithelial ovarian cancer via the PI3K-AKT pathway. Eur Rev Med Pharmacol Sci. 2017;21(14):3176–84.PubMed
110.
go back to reference Fernandez LP, Lopez-Marquez A, Santisteban P. Thyroid transcription factors in development, differentiation and disease. Nat Rev Endocrinol. 2015;11(1):29–42.PubMedCrossRef Fernandez LP, Lopez-Marquez A, Santisteban P. Thyroid transcription factors in development, differentiation and disease. Nat Rev Endocrinol. 2015;11(1):29–42.PubMedCrossRef
111.
go back to reference Han J, et al. Expression quantitative trait loci in long non-coding RNA PAX8-AS1 are associated with decreased risk of cervical cancer. Mol Gen Genomics. 2016;291(4):1743–8.CrossRef Han J, et al. Expression quantitative trait loci in long non-coding RNA PAX8-AS1 are associated with decreased risk of cervical cancer. Mol Gen Genomics. 2016;291(4):1743–8.CrossRef
112.
go back to reference Zhang W, Chen CJ, Guo GL. MiR-155 promotes the proliferation and migration of breast cancer cells via targeting SOCS1 and MMP16. Eur Rev Med Pharmacol Sci. 2018;22(21):7323–32.PubMed Zhang W, Chen CJ, Guo GL. MiR-155 promotes the proliferation and migration of breast cancer cells via targeting SOCS1 and MMP16. Eur Rev Med Pharmacol Sci. 2018;22(21):7323–32.PubMed
113.
go back to reference Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136–52.PubMedCrossRef Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136–52.PubMedCrossRef
115.
go back to reference Ji D, Jiang L, Li Y. MiR-192-5p suppresses the growth of bladder cancer cells via targeting yin Yang 1. Hum Cell. 2018;31(3):210–9.PubMedCrossRef Ji D, Jiang L, Li Y. MiR-192-5p suppresses the growth of bladder cancer cells via targeting yin Yang 1. Hum Cell. 2018;31(3):210–9.PubMedCrossRef
116.
go back to reference Chen J, et al. MiR-34-a acts as a suppressor in neuroblastoma progression by targeting CD44. J Pak Med Assoc. 2017;67(10):1524–31.PubMed Chen J, et al. MiR-34-a acts as a suppressor in neuroblastoma progression by targeting CD44. J Pak Med Assoc. 2017;67(10):1524–31.PubMed
117.
go back to reference Jia Y, et al. MicroRNA-34 suppresses proliferation of human ovarian cancer cells by triggering autophagy and apoptosis and inhibits cell invasion by targeting Notch 1. Biochimie. 2019;160:193–9.PubMedCrossRef Jia Y, et al. MicroRNA-34 suppresses proliferation of human ovarian cancer cells by triggering autophagy and apoptosis and inhibits cell invasion by targeting Notch 1. Biochimie. 2019;160:193–9.PubMedCrossRef
118.
go back to reference Zhu Z, et al. miR-106b promotes metastasis of early gastric cancer by targeting ALEX1 in vitro and in vivo. Cell Physiol Biochem. 2019;52(3):606–16.PubMedCrossRef Zhu Z, et al. miR-106b promotes metastasis of early gastric cancer by targeting ALEX1 in vitro and in vivo. Cell Physiol Biochem. 2019;52(3):606–16.PubMedCrossRef
119.
go back to reference Feng QQ, et al. miR-16-1-3p targets TWIST1 to inhibit cell proliferation and invasion in NSCLC. Bratisl Lek Listy. 2018;119(1):60–5.PubMed Feng QQ, et al. miR-16-1-3p targets TWIST1 to inhibit cell proliferation and invasion in NSCLC. Bratisl Lek Listy. 2018;119(1):60–5.PubMed
120.
go back to reference Wang ZM, et al. miR-15a-5p suppresses endometrial cancer cell growth via Wnt/beta-catenin signaling pathway by inhibiting WNT3A. Eur Rev Med Pharmacol Sci. 2017;21(21):4810–8.PubMed Wang ZM, et al. miR-15a-5p suppresses endometrial cancer cell growth via Wnt/beta-catenin signaling pathway by inhibiting WNT3A. Eur Rev Med Pharmacol Sci. 2017;21(21):4810–8.PubMed
121.
go back to reference Zhang S, et al. MiR-101 reduces cell proliferation and invasion and enhances apoptosis in endometrial cancer via regulating PI3K/Akt/mTOR. Cancer Biomark. 2017;21(1):179–86.PubMedCrossRef Zhang S, et al. MiR-101 reduces cell proliferation and invasion and enhances apoptosis in endometrial cancer via regulating PI3K/Akt/mTOR. Cancer Biomark. 2017;21(1):179–86.PubMedCrossRef
122.
go back to reference Liu H, et al. MiR-486-5p inhibits the proliferation of leukemia cells and induces apoptosis through targeting FOXO1. Mol Cell Probes. 2019;44:37–43.PubMedCrossRef Liu H, et al. MiR-486-5p inhibits the proliferation of leukemia cells and induces apoptosis through targeting FOXO1. Mol Cell Probes. 2019;44:37–43.PubMedCrossRef
125.
go back to reference Cui Y, et al. miR-146a inhibits proliferation and enhances Chemosensitivity in epithelial ovarian cancer via reduction of SOD2. Oncol Res. 2016;23(6):275–82.PubMedCrossRefPubMedCentral Cui Y, et al. miR-146a inhibits proliferation and enhances Chemosensitivity in epithelial ovarian cancer via reduction of SOD2. Oncol Res. 2016;23(6):275–82.PubMedCrossRefPubMedCentral
126.
go back to reference Fortin KR, Nicholson RH, Nicholson AW. Mouse ribonuclease III. cDNA structure, expression analysis, and chromosomal location. BMC Genomics. 2002;3(1):26.PubMedPubMedCentralCrossRef Fortin KR, Nicholson RH, Nicholson AW. Mouse ribonuclease III. cDNA structure, expression analysis, and chromosomal location. BMC Genomics. 2002;3(1):26.PubMedPubMedCentralCrossRef
127.
go back to reference Lee Y, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–9.PubMedCrossRef Lee Y, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–9.PubMedCrossRef
128.
go back to reference Xie S, et al. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene. 1999;236(1):87–95.PubMedCrossRef Xie S, et al. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene. 1999;236(1):87–95.PubMedCrossRef
129.
go back to reference Ardestani MT, et al. FLT3-ITD compared with DNMT3A R882 mutation is a more powerful independent inferior prognostic factor in adult acute myeloid leukemia patients after allogeneic hematopoietic stem cell transplantation: a retrospective cohort study. Turk J Haematol. 2018;35(3):158–67.PubMedPubMedCentral Ardestani MT, et al. FLT3-ITD compared with DNMT3A R882 mutation is a more powerful independent inferior prognostic factor in adult acute myeloid leukemia patients after allogeneic hematopoietic stem cell transplantation: a retrospective cohort study. Turk J Haematol. 2018;35(3):158–67.PubMedPubMedCentral
130.
go back to reference Candeias SM, Gaipl US. The immune system in cancer prevention, development and therapy. Anti Cancer Agents Med Chem. 2016;16(1):101–7.CrossRef Candeias SM, Gaipl US. The immune system in cancer prevention, development and therapy. Anti Cancer Agents Med Chem. 2016;16(1):101–7.CrossRef
131.
go back to reference Ferguson-Smith AC, et al. Regional localization of the interferon-beta 2/B-cell stimulatory factor 2/hepatocyte stimulating factor gene to human chromosome 7p15-p21. Genomics. 1988;2(3):203–8.PubMedCrossRef Ferguson-Smith AC, et al. Regional localization of the interferon-beta 2/B-cell stimulatory factor 2/hepatocyte stimulating factor gene to human chromosome 7p15-p21. Genomics. 1988;2(3):203–8.PubMedCrossRef
132.
go back to reference Blackburn SD, et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol. 2009;10(1):29–37.PubMedCrossRef Blackburn SD, et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol. 2009;10(1):29–37.PubMedCrossRef
133.
go back to reference Syn NL, et al. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017;18(12):e731–41.PubMedCrossRef Syn NL, et al. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 2017;18(12):e731–41.PubMedCrossRef
134.
go back to reference Hutloff A, et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature. 1999;397(6716):263–6.PubMedCrossRef Hutloff A, et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature. 1999;397(6716):263–6.PubMedCrossRef
135.
go back to reference Yari F, et al. Frequencies of HLA-DRB1 in Iranian normal population and in patients with acute lymphoblastic leukemia. Arch Med Res. 2008;39(2):205–8.PubMedCrossRef Yari F, et al. Frequencies of HLA-DRB1 in Iranian normal population and in patients with acute lymphoblastic leukemia. Arch Med Res. 2008;39(2):205–8.PubMedCrossRef
136.
go back to reference MacMillan ML, et al. Interleukin-1 genotype and outcome of unrelated donor bone marrow transplantation. Br J Haematol. 2003;121(4):597–604.PubMedCrossRef MacMillan ML, et al. Interleukin-1 genotype and outcome of unrelated donor bone marrow transplantation. Br J Haematol. 2003;121(4):597–604.PubMedCrossRef
137.
go back to reference Rueff J, Rodrigues AS. Cancer drug resistance: a brief overview from a genetic viewpoint. Methods Mol Biol. 2016;1395:1–18.PubMedCrossRef Rueff J, Rodrigues AS. Cancer drug resistance: a brief overview from a genetic viewpoint. Methods Mol Biol. 2016;1395:1–18.PubMedCrossRef
138.
go back to reference Martin EC, et al. MicroRNA-335-5p and -3p synergize to inhibit estrogen receptor alpha expression and promote tamoxifen resistance. FEBS Lett. 2017;591(2):382–92.PubMedPubMedCentralCrossRef Martin EC, et al. MicroRNA-335-5p and -3p synergize to inhibit estrogen receptor alpha expression and promote tamoxifen resistance. FEBS Lett. 2017;591(2):382–92.PubMedPubMedCentralCrossRef
139.
go back to reference Ma J, et al. Involvement of miR-133a and miR-326 in ADM resistance of HepG2 through modulating expression of ABCC1. J Drug Target. 2015;23(6):519–24.PubMedCrossRef Ma J, et al. Involvement of miR-133a and miR-326 in ADM resistance of HepG2 through modulating expression of ABCC1. J Drug Target. 2015;23(6):519–24.PubMedCrossRef
140.
go back to reference Zhou G, et al. miR-200c enhances sensitivity of drug-resistant non-small cell lung cancer to gefitinib by suppression of PI3K/Akt signaling pathway and inhibites cell migration via targeting ZEB1. Biomed Pharmacother. 2017;85:113–9.PubMedCrossRef Zhou G, et al. miR-200c enhances sensitivity of drug-resistant non-small cell lung cancer to gefitinib by suppression of PI3K/Akt signaling pathway and inhibites cell migration via targeting ZEB1. Biomed Pharmacother. 2017;85:113–9.PubMedCrossRef
141.
go back to reference Sassi Y, et al. Multidrug resistance-associated protein 4 regulates cAMP-dependent signaling pathways and controls human and rat SMC proliferation. J Clin Invest. 2008;118(8):2747–57.PubMedPubMedCentralCrossRef Sassi Y, et al. Multidrug resistance-associated protein 4 regulates cAMP-dependent signaling pathways and controls human and rat SMC proliferation. J Clin Invest. 2008;118(8):2747–57.PubMedPubMedCentralCrossRef
142.
go back to reference Shakeri R, Kheirollahi A, Davoodi J. Apaf-1: regulation and function in cell death. Biochimie. 2017;135:111–25.PubMedCrossRef Shakeri R, Kheirollahi A, Davoodi J. Apaf-1: regulation and function in cell death. Biochimie. 2017;135:111–25.PubMedCrossRef
143.
go back to reference Hernandez JD, Baum LG. Ah, sweet mystery of death! Galectins and control of cell fate. Glycobiology. 2002;12(10):127R–36R.PubMedCrossRef Hernandez JD, Baum LG. Ah, sweet mystery of death! Galectins and control of cell fate. Glycobiology. 2002;12(10):127R–36R.PubMedCrossRef
144.
go back to reference Schiewer MJ, et al. PARP-1 regulates DNA repair factor availability. EMBO Mol Med. 2018;10:12.CrossRef Schiewer MJ, et al. PARP-1 regulates DNA repair factor availability. EMBO Mol Med. 2018;10:12.CrossRef
146.
go back to reference Fox JT, et al. A UV-responsive internal ribosome entry site enhances serine hydroxymethyltransferase 1 expression for DNA damage repair. J Biol Chem. 2009;284(45):31097–108.PubMedPubMedCentralCrossRef Fox JT, et al. A UV-responsive internal ribosome entry site enhances serine hydroxymethyltransferase 1 expression for DNA damage repair. J Biol Chem. 2009;284(45):31097–108.PubMedPubMedCentralCrossRef
147.
go back to reference Ghaffari SH, et al. Telomerase activity and telomere length in patients with acute promyelocytic leukemia: indicative of proliferative activity, disease progression, and overall survival. Ann Oncol. 2008;19(11):1927–34.PubMedCrossRef Ghaffari SH, et al. Telomerase activity and telomere length in patients with acute promyelocytic leukemia: indicative of proliferative activity, disease progression, and overall survival. Ann Oncol. 2008;19(11):1927–34.PubMedCrossRef
148.
go back to reference Abbaszadegan MR, et al. WNT and NOTCH signaling pathways as activators for epidermal growth factor receptor in esophageal squamous cell carcinoma. Cell Mol Biol Lett. 2018;23:42.PubMedPubMedCentralCrossRef Abbaszadegan MR, et al. WNT and NOTCH signaling pathways as activators for epidermal growth factor receptor in esophageal squamous cell carcinoma. Cell Mol Biol Lett. 2018;23:42.PubMedPubMedCentralCrossRef
149.
150.
go back to reference Moghbeli M, et al. Role of Msi1 and MAML1 in regulation of Notch signaling pathway in patients with esophageal squamous cell carcinoma. J Gastrointest Cancer. 2015;46(4):365–9.PubMedCrossRef Moghbeli M, et al. Role of Msi1 and MAML1 in regulation of Notch signaling pathway in patients with esophageal squamous cell carcinoma. J Gastrointest Cancer. 2015;46(4):365–9.PubMedCrossRef
151.
go back to reference Moghbeli M, et al. Correlation between Meis1 and Msi1 in esophageal squamous cell carcinoma. J Gastrointest Cancer. 2016;47(3):273–7.PubMedCrossRef Moghbeli M, et al. Correlation between Meis1 and Msi1 in esophageal squamous cell carcinoma. J Gastrointest Cancer. 2016;47(3):273–7.PubMedCrossRef
152.
go back to reference Ohlsson E, et al. The multifaceted functions of C/EBPalpha in normal and malignant haematopoiesis. Leukemia. 2016;30(4):767–75.PubMedCrossRef Ohlsson E, et al. The multifaceted functions of C/EBPalpha in normal and malignant haematopoiesis. Leukemia. 2016;30(4):767–75.PubMedCrossRef
153.
154.
go back to reference Rahnemoon AR, et al. Prevalence of ETV6/RUNX1 fusion gene in pediatric patients with acute lymphoblastic leukemia in Iran. Iran J Pediatr. 2013;23(6):681–6.PubMedPubMedCentral Rahnemoon AR, et al. Prevalence of ETV6/RUNX1 fusion gene in pediatric patients with acute lymphoblastic leukemia in Iran. Iran J Pediatr. 2013;23(6):681–6.PubMedPubMedCentral
155.
go back to reference Teimori H, et al. Analysis of CD38 and ZAP70 mRNA expression among cytogenetic subgroups of Iranian chronic-lymphocytic-leukemia patients. Genet Mol Res. 2011;10(4):2415–23.PubMedCrossRef Teimori H, et al. Analysis of CD38 and ZAP70 mRNA expression among cytogenetic subgroups of Iranian chronic-lymphocytic-leukemia patients. Genet Mol Res. 2011;10(4):2415–23.PubMedCrossRef
156.
go back to reference Sanaat Z, et al. Does chemotherapy change expression of VEGF a&C and MVD in acute myeloid leukemia? Int J Hematol Oncol Stem Cell Res. 2014;8(3):24–9.PubMedPubMedCentral Sanaat Z, et al. Does chemotherapy change expression of VEGF a&C and MVD in acute myeloid leukemia? Int J Hematol Oncol Stem Cell Res. 2014;8(3):24–9.PubMedPubMedCentral
157.
go back to reference Wang X, et al. BAALC 1-6-8 protein is targeted to postsynaptic lipid rafts by its N-terminal myristoylation and palmitoylation, and interacts with alpha, but not beta, subunit of ca/calmodulin-dependent protein kinase II. J Neurochem. 2005;92(3):647–59.PubMedCrossRef Wang X, et al. BAALC 1-6-8 protein is targeted to postsynaptic lipid rafts by its N-terminal myristoylation and palmitoylation, and interacts with alpha, but not beta, subunit of ca/calmodulin-dependent protein kinase II. J Neurochem. 2005;92(3):647–59.PubMedCrossRef
158.
159.
go back to reference Miryounesi M, et al. Evaluation of in vitro spermatogenesis system effectiveness to study genes behavior: monitoring the expression of the testis specific 10 (Tsga10) gene as a model. Arch Iran Med. 2014;17(10):692–7.PubMed Miryounesi M, et al. Evaluation of in vitro spermatogenesis system effectiveness to study genes behavior: monitoring the expression of the testis specific 10 (Tsga10) gene as a model. Arch Iran Med. 2014;17(10):692–7.PubMed
160.
161.
Metadata
Title
Genetics of blood malignancies among Iranian population: an overview
Authors
Majid Ghayour-Mobarhan
Amir Sadra Zangouei
Seyed Mohammad Hosseinirad
Majid Mojarrad
Meysam Moghbeli
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2020
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/s13000-020-00968-2

Other articles of this Issue 1/2020

Diagnostic Pathology 1/2020 Go to the issue