Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2021

Open Access 01-12-2021 | Acute Lymphoblastic Leukemia | Letter to the Editor

Dasatinib enhances anti-leukemia efficacy of chimeric antigen receptor T cells by inhibiting cell differentiation and exhaustion

Authors: Hao Zhang, Yongxian Hu, Mi Shao, Xinyi Teng, Penglei Jiang, Xiujian Wang, Hui Wang, Jiazhen Cui, Jian Yu, Zuyu Liang, Lijuan Ding, Yingli Han, Jieping Wei, Yulin Xu, Xiaoqing Li, Wei Shan, Jimin Shi, Yi Luo, Pengxu Qian, He Huang

Published in: Journal of Hematology & Oncology | Issue 1/2021

Login to get access

Abstract

Relapses of CD19-expressing leukemia in patients who achieved initial remission after CART cell treatment have been reported to correlate with poor CART cells persistence. Sustained tonic signaling or strong activation drives CART cell differentiation and exhaustion, which limit the therapeutic efficacy and persistence of CART cells. Here, we identified dasatinib as the optimal candidate to prevent or reverse both CD28/CART and 4-1BB/CART cell differentiation and exhaustion during ex vivo expansion, which profoundly enhanced the therapeutic efficacy and in vivo persistence. Moreover, strong activation-induced CART cells differentiation, exhaustion and apoptosis driven by CD3/CD28 stimulation or antigen exposure were dramatically prevented or reversed by dasatinib treatment. Mechanistically, dasatinib markedly reduced the phosphorylation of Src and Lck, and downregulated the expression of genes involved in CAR signaling pathways, which resulted in the optimization of cell differentiation, exhaustion and apoptosis-related gene expression. Our study proposes a promising pharmacological approach for optimizing CART cells manufacture, and provides an experimental basis for reinvigorating CART cells in clinical application.
Appendix
Available only for authorised users
Literature
1.
go back to reference Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18.CrossRef Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18.CrossRef
2.
go back to reference Gu R, Liu F, Zou D, Xu Y, Lu Y, Liu B, et al. Efficacy and safety of CD19 CAR T constructed with a new anti-CD19 chimeric antigen receptor in relapsed or refractory acute lymphoblastic leukemia. J Hematol Oncol. 2020;13(1):122.CrossRef Gu R, Liu F, Zou D, Xu Y, Lu Y, Liu B, et al. Efficacy and safety of CD19 CAR T constructed with a new anti-CD19 chimeric antigen receptor in relapsed or refractory acute lymphoblastic leukemia. J Hematol Oncol. 2020;13(1):122.CrossRef
3.
go back to reference Hu Y, Wu Z, Luo Y, Shi J, Yu J, Pu C, et al. Potent anti-leukemia activities of chimeric antigen receptor–modified T cells against CD19 in Chinese patients with relapsed/refractory acute lymphocytic leukemia. Clin Cancer Res. 2017;23(13):3297–306.CrossRef Hu Y, Wu Z, Luo Y, Shi J, Yu J, Pu C, et al. Potent anti-leukemia activities of chimeric antigen receptor–modified T cells against CD19 in Chinese patients with relapsed/refractory acute lymphocytic leukemia. Clin Cancer Res. 2017;23(13):3297–306.CrossRef
4.
go back to reference Shah NN, Fry TJ. Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol. 2019. Shah NN, Fry TJ. Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol. 2019.
5.
go back to reference Zheng W, O’Hear CE, Alli R, Basham JH, Abdelsamed HA, Palmer LE, et al. PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells. Leukemia. 2018;32(5):1157–67.CrossRef Zheng W, O’Hear CE, Alli R, Basham JH, Abdelsamed HA, Palmer LE, et al. PI3K orchestration of the in vivo persistence of chimeric antigen receptor-modified T cells. Leukemia. 2018;32(5):1157–67.CrossRef
6.
go back to reference Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4–1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):581–90.CrossRef Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4–1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):581–90.CrossRef
7.
go back to reference Feucht J, Sun J, Eyquem J, Ho YJ, Zhao Z, Leibold J, et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat Med. 2019;25(1):82–8.CrossRef Feucht J, Sun J, Eyquem J, Ho YJ, Zhao Z, Leibold J, et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat Med. 2019;25(1):82–8.CrossRef
8.
go back to reference Schade AE, Schieven GL, Townsend R, Jankowska AM, Susulic V, Zhang R, et al. Dasatinib, a small-molecule protein tyrosine kinase inhibitor, inhibits T-cell activation and proliferation. Blood. 2008;111(3):1366–77.CrossRef Schade AE, Schieven GL, Townsend R, Jankowska AM, Susulic V, Zhang R, et al. Dasatinib, a small-molecule protein tyrosine kinase inhibitor, inhibits T-cell activation and proliferation. Blood. 2008;111(3):1366–77.CrossRef
9.
go back to reference Lee KC, Ouwehand I, Giannini AL, Thomas NS, Dibb NJ, Bijlmakers MJ. Lck is a key target of imatinib and dasatinib in T-cell activation. Leukemia. 2010;24(4):896–900.CrossRef Lee KC, Ouwehand I, Giannini AL, Thomas NS, Dibb NJ, Bijlmakers MJ. Lck is a key target of imatinib and dasatinib in T-cell activation. Leukemia. 2010;24(4):896–900.CrossRef
10.
go back to reference Weber EW, Parker KR, Sotillo E, Lynn RC, Anbunathan H, Lattin J, et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science. 2021;372(6537). Weber EW, Parker KR, Sotillo E, Lynn RC, Anbunathan H, Lattin J, et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science. 2021;372(6537).
11.
go back to reference Mestermann K, Giavridis T, Weber J, Rydzek J, Frenz S, Nerreter T, et al. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Science Transl Med. 2019;11(499). Mestermann K, Giavridis T, Weber J, Rydzek J, Frenz S, Nerreter T, et al. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Science Transl Med. 2019;11(499).
12.
go back to reference Wu KN, Wang YJ, He Y, Hu YX, Fu HR, Sheng LX, et al. Dasatinib promotes the potential of proliferation and antitumor responses of human gammadeltaT cells in a long-term induction ex vivo environment. Leukemia. 2014;28(1):206–10.CrossRef Wu KN, Wang YJ, He Y, Hu YX, Fu HR, Sheng LX, et al. Dasatinib promotes the potential of proliferation and antitumor responses of human gammadeltaT cells in a long-term induction ex vivo environment. Leukemia. 2014;28(1):206–10.CrossRef
Metadata
Title
Dasatinib enhances anti-leukemia efficacy of chimeric antigen receptor T cells by inhibiting cell differentiation and exhaustion
Authors
Hao Zhang
Yongxian Hu
Mi Shao
Xinyi Teng
Penglei Jiang
Xiujian Wang
Hui Wang
Jiazhen Cui
Jian Yu
Zuyu Liang
Lijuan Ding
Yingli Han
Jieping Wei
Yulin Xu
Xiaoqing Li
Wei Shan
Jimin Shi
Yi Luo
Pengxu Qian
He Huang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2021
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-021-01117-y

Other articles of this Issue 1/2021

Journal of Hematology & Oncology 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine