Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2021

Open Access 01-12-2021 | Acute Lymphoblastic Leukemia | Research

Reduction of RUNX1 transcription factor activity by a CBFA2T3-mimicking peptide: application to B cell precursor acute lymphoblastic leukemia

Authors: Hélène Jakobczyk, Lydie Debaize, Benoit Soubise, Stéphane Avner, Jérémie Rouger-Gaudichon, Séverine Commet, Yan Jiang, Aurélien A. Sérandour, Anne-Gaëlle Rio, Jason S. Carroll, Christian Wichmann, Michael Lie-a-Ling, Georges Lacaud, Laurent Corcos, Gilles Salbert, Marie-Dominique Galibert, Virginie Gandemer, Marie-Bérengère Troadec

Published in: Journal of Hematology & Oncology | Issue 1/2021

Login to get access

Abstract

Background

B Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) is the most common pediatric cancer. Identifying key players involved in proliferation of BCP-ALL cells is crucial to propose new therapeutic targets. Runt Related Transcription Factor 1 (RUNX1) and Core-Binding Factor Runt Domain Alpha Subunit 2 Translocated To 3 (CBFA2T3, ETO2, MTG16) are master regulators of hematopoiesis and are implicated in leukemia.

Methods

We worked with BCP-ALL mononuclear bone marrow patients’ cells and BCP-ALL cell lines, and performed Chromatin Immunoprecipitations followed by Sequencing (ChIP-Seq), co-immunoprecipitations (co-IP), proximity ligation assays (PLA), luciferase reporter assays and mouse xenograft models.

Results

We demonstrated that CBFA2T3 transcript levels correlate with RUNX1 expression in the pediatric t(12;21) ETV6-RUNX1 BCP-ALL. By ChIP-Seq in BCP-ALL patients’ cells and cell lines, we found that RUNX1 is recruited on its promoter and on an enhancer of CBFA2T3 located − 2 kb upstream CBFA2T3 promoter and that, subsequently, the transcription factor RUNX1 drives both RUNX1 and CBFA2T3 expression. We demonstrated that, mechanistically, RUNX1 and CBFA2T3 can be part of the same complex allowing CBFA2T3 to strongly potentiate the activity of the transcription factor RUNX1. Finally, we characterized a CBFA2T3-mimicking peptide that inhibits the interaction between RUNX1 and CBFA2T3, abrogating the activity of this transcription complex and reducing BCP-ALL lymphoblast proliferation.

Conclusions

Altogether, our findings reveal a novel and important activation loop between the transcription regulator CBFA2T3 and the transcription factor RUNX1 that promotes BCP-ALL proliferation, supporting the development of an innovative therapeutic approach based on the NHR2 subdomain of CBFA2T3 protein.
Appendix
Available only for authorised users
Literature
1.
go back to reference Levanon D, Groner Y. Structure and regulated expression of mammalian RUNX genes. Oncogene. 2004;23:4211–9.PubMedCrossRef Levanon D, Groner Y. Structure and regulated expression of mammalian RUNX genes. Oncogene. 2004;23:4211–9.PubMedCrossRef
2.
go back to reference Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell. 1996;84:321–30.PubMedCrossRef Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell. 1996;84:321–30.PubMedCrossRef
3.
go back to reference Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA. 1996;93:3444–9.PubMedCrossRefPubMedCentral Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH, Speck NA. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA. 1996;93:3444–9.PubMedCrossRefPubMedCentral
4.
go back to reference Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, Yamagata T, et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med. 2004;10:299–304.PubMedCrossRef Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, Yamagata T, et al. AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med. 2004;10:299–304.PubMedCrossRef
5.
go back to reference Lie-A-Ling M, Mevel R, Patel R, Blyth K, Baena E, Kouskoff V, et al. RUNX1 Dosage in Development and Cancer. Mol Cells. 2020;43(2):126–38.PubMedPubMedCentral Lie-A-Ling M, Mevel R, Patel R, Blyth K, Baena E, Kouskoff V, et al. RUNX1 Dosage in Development and Cancer. Mol Cells. 2020;43(2):126–38.PubMedPubMedCentral
7.
go back to reference De Braekeleer E, Douet-Guilbert N, Morel F, Le Bris M-J, Férec C, De Braekeleer M. RUNX1 translocations and fusion genes in malignant hemopathies. Future Oncol Lond Engl. 2011;7(1):77–91.CrossRef De Braekeleer E, Douet-Guilbert N, Morel F, Le Bris M-J, Férec C, De Braekeleer M. RUNX1 translocations and fusion genes in malignant hemopathies. Future Oncol Lond Engl. 2011;7(1):77–91.CrossRef
8.
go back to reference Sun C-C, Li S-J, Chen Z-L, Li G, Zhang Q, Li D-J. Expression and prognosis analyses of runt-related transcription factor family in human Leukemia. Mol Ther Oncolytics. 2019;12:103–11.PubMedCrossRef Sun C-C, Li S-J, Chen Z-L, Li G, Zhang Q, Li D-J. Expression and prognosis analyses of runt-related transcription factor family in human Leukemia. Mol Ther Oncolytics. 2019;12:103–11.PubMedCrossRef
9.
go back to reference Yokota A, Huo L, Lan F, Wu J, Huang G. The clinical, molecular, and mechanistic basis of RUNX1 mutations identified in hematological malignancies. Mol Cells. 2020;43(2):145–52.PubMedPubMedCentral Yokota A, Huo L, Lan F, Wu J, Huang G. The clinical, molecular, and mechanistic basis of RUNX1 mutations identified in hematological malignancies. Mol Cells. 2020;43(2):145–52.PubMedPubMedCentral
10.
go back to reference Bartfeld D, Shimon L, Couture GC, Rabinovich D, Frolow F, Levanon D, et al. DNA recognition by the RUNX1 transcription factor is mediated by an allosteric transition in the RUNT domain and by DNA bending. Struct Lond Engl. 2002;10(10):1395–407. Bartfeld D, Shimon L, Couture GC, Rabinovich D, Frolow F, Levanon D, et al. DNA recognition by the RUNX1 transcription factor is mediated by an allosteric transition in the RUNT domain and by DNA bending. Struct Lond Engl. 2002;10(10):1395–407.
11.
go back to reference Blumenthal E, Greenblatt S, Huang G, Ando K, Xu Y, Nimer SD. Covalent modifications of RUNX proteins: structure affects function. Adv Exp Med Biol. 2017;962:33–44.PubMedCrossRef Blumenthal E, Greenblatt S, Huang G, Ando K, Xu Y, Nimer SD. Covalent modifications of RUNX proteins: structure affects function. Adv Exp Med Biol. 2017;962:33–44.PubMedCrossRef
13.
go back to reference Lutterbach B, Sun D, Schuetz J, Hiebert SW. The MYND motif is required for repression of basal transcription from the multidrug resistance 1 promoter by the t(8;21) fusion protein. Mol Cell Biol. 1998;18(6):3604–11.PubMedPubMedCentralCrossRef Lutterbach B, Sun D, Schuetz J, Hiebert SW. The MYND motif is required for repression of basal transcription from the multidrug resistance 1 promoter by the t(8;21) fusion protein. Mol Cell Biol. 1998;18(6):3604–11.PubMedPubMedCentralCrossRef
14.
go back to reference Lenny N, Meyers S, Hiebert SW. Functional domains of the t(8;21) fusion protein, AML-1/ETO. Oncogene. 1995;11(9):1761–9.PubMed Lenny N, Meyers S, Hiebert SW. Functional domains of the t(8;21) fusion protein, AML-1/ETO. Oncogene. 1995;11(9):1761–9.PubMed
16.
go back to reference Goardon N, Lambert JA, Rodriguez P, Nissaire P, Herblot S, Thibault P, et al. ETO2 coordinates cellular proliferation and differentiation during erythropoiesis. EMBO J. 2006;25(2):357–66.PubMedPubMedCentralCrossRef Goardon N, Lambert JA, Rodriguez P, Nissaire P, Herblot S, Thibault P, et al. ETO2 coordinates cellular proliferation and differentiation during erythropoiesis. EMBO J. 2006;25(2):357–66.PubMedPubMedCentralCrossRef
17.
18.
go back to reference Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM. ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci USA. 1998;95(18):10860–5.PubMedCrossRefPubMedCentral Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM. ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci USA. 1998;95(18):10860–5.PubMedCrossRefPubMedCentral
19.
go back to reference Gandemer V, Rio A-G, de Tayrac M, Sibut V, Mottier S, Ly Sunnaram B, et al. Five distinct biological processes and 14 differentially expressed genes characterize TEL/AML1-positive leukemia. BMC Genomics. 2007;8:385.PubMedPubMedCentralCrossRef Gandemer V, Rio A-G, de Tayrac M, Sibut V, Mottier S, Ly Sunnaram B, et al. Five distinct biological processes and 14 differentially expressed genes characterize TEL/AML1-positive leukemia. BMC Genomics. 2007;8:385.PubMedPubMedCentralCrossRef
20.
go back to reference Yeoh E-J, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell. 2002;1(2):133–43.PubMedCrossRef Yeoh E-J, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell. 2002;1(2):133–43.PubMedCrossRef
21.
go back to reference Ross ME, Zhou X, Song G, Shurtleff SA, Girtman K, Williams WK, et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood. 2003;102(8):2951–9.PubMedCrossRef Ross ME, Zhou X, Song G, Shurtleff SA, Girtman K, Williams WK, et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood. 2003;102(8):2951–9.PubMedCrossRef
22.
23.
go back to reference Meier N, Krpic S, Rodriguez P, Strouboulis J, Monti M, Krijgsveld J, et al. Novel binding partners of Ldb1 are required for haematopoietic. Development. 2006;133(24):4913–23.PubMedCrossRef Meier N, Krpic S, Rodriguez P, Strouboulis J, Monti M, Krijgsveld J, et al. Novel binding partners of Ldb1 are required for haematopoietic. Development. 2006;133(24):4913–23.PubMedCrossRef
24.
go back to reference Stadhouders R, Cico A, Stephen T, Thongjuea S, Kolovos P, Baymaz HI, et al. Control of developmentally primed erythroid genes by combinatorial co-repressor actions. Nat Commun. 2015;6:8893.PubMedCrossRef Stadhouders R, Cico A, Stephen T, Thongjuea S, Kolovos P, Baymaz HI, et al. Control of developmentally primed erythroid genes by combinatorial co-repressor actions. Nat Commun. 2015;6:8893.PubMedCrossRef
25.
go back to reference Debaize L, Jakobczyk H, Rio A-G, Gandemer V, Troadec M-B. Optimization of proximity ligation assay (PLA) for detection of protein interactions and fusion proteins in non-adherent cells: application to pre-B lymphocytes. Mol Cytogenet. 2017;10:27.PubMedPubMedCentralCrossRef Debaize L, Jakobczyk H, Rio A-G, Gandemer V, Troadec M-B. Optimization of proximity ligation assay (PLA) for detection of protein interactions and fusion proteins in non-adherent cells: application to pre-B lymphocytes. Mol Cytogenet. 2017;10:27.PubMedPubMedCentralCrossRef
26.
go back to reference Debaize L, Jakobczyk H, Avner S, Gaudichon J, Rio A-G, Sérandour AA, et al. Interplay between transcription regulators RUNX1 and FUBP1 activates an enhancer of the oncogene c-KIT and amplifies cell proliferation. Nucleic Acids Res. 2018;46(21):11214–28.PubMedPubMedCentralCrossRef Debaize L, Jakobczyk H, Avner S, Gaudichon J, Rio A-G, Sérandour AA, et al. Interplay between transcription regulators RUNX1 and FUBP1 activates an enhancer of the oncogene c-KIT and amplifies cell proliferation. Nucleic Acids Res. 2018;46(21):11214–28.PubMedPubMedCentralCrossRef
27.
go back to reference Kumar R, Cheney KM, McKirdy R, Neilsen PM, Schulz RB, Lee J, et al. CBFA2T3-ZNF652 corepressor complex regulates transcription of the E-box gene HEB. J Biol Chem. 2008;283(27):19026–38.PubMedCrossRef Kumar R, Cheney KM, McKirdy R, Neilsen PM, Schulz RB, Lee J, et al. CBFA2T3-ZNF652 corepressor complex regulates transcription of the E-box gene HEB. J Biol Chem. 2008;283(27):19026–38.PubMedCrossRef
28.
go back to reference Fears S, Gavin M, Zhang DE, Hetherington C, Ben-David Y, Rowley JD, et al. Functional characterization of ETV6 and ETV6/CBFA2 in the regulation of the MCSFR proximal promoter. Proc Natl Acad Sci USA. 1997;94:1949–54.PubMedCrossRefPubMedCentral Fears S, Gavin M, Zhang DE, Hetherington C, Ben-David Y, Rowley JD, et al. Functional characterization of ETV6 and ETV6/CBFA2 in the regulation of the MCSFR proximal promoter. Proc Natl Acad Sci USA. 1997;94:1949–54.PubMedCrossRefPubMedCentral
29.
go back to reference Nordengrahn A, Gustafsdottir SM, Ebert K, Reid SM, King DP, Ferris NP, et al. Evaluation of a novel proximity ligation assay for the sensitive and rapid detection of foot-and-mouth disease virus. Vet Microbiol. 2008;127(3–4):227–36.PubMedCrossRef Nordengrahn A, Gustafsdottir SM, Ebert K, Reid SM, King DP, Ferris NP, et al. Evaluation of a novel proximity ligation assay for the sensitive and rapid detection of foot-and-mouth disease virus. Vet Microbiol. 2008;127(3–4):227–36.PubMedCrossRef
30.
go back to reference Arnaud M-P, Vallée A, Robert G, Bonneau J, Leroy C, Varin-Blank N, et al. CD9, a key actor in the dissemination of lymphoblastic leukemia, modulating CXCR4-mediated migration via RAC1 signaling. Blood. 2015;126(15):1802–12.PubMedCrossRef Arnaud M-P, Vallée A, Robert G, Bonneau J, Leroy C, Varin-Blank N, et al. CD9, a key actor in the dissemination of lymphoblastic leukemia, modulating CXCR4-mediated migration via RAC1 signaling. Blood. 2015;126(15):1802–12.PubMedCrossRef
31.
go back to reference Zhou X, Edmonson MN, Wilkinson MR, Patel A, Wu G, Liu Y, et al. Exploring genomic alteration in pediatric cancer using ProteinPaint. Nat Genet. 2016;48(1):4–6.PubMedPubMedCentralCrossRef Zhou X, Edmonson MN, Wilkinson MR, Patel A, Wu G, Liu Y, et al. Exploring genomic alteration in pediatric cancer using ProteinPaint. Nat Genet. 2016;48(1):4–6.PubMedPubMedCentralCrossRef
32.
go back to reference McLeay RC, Bailey TL. Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data. BMC Bioinform. 2010;11:165.CrossRef McLeay RC, Bailey TL. Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data. BMC Bioinform. 2010;11:165.CrossRef
33.
go back to reference Gamou T, Kitamura E, Hosoda F, Shimizu K, Shinohara K, Hayashi Y, et al. The partner gene of AML1 in t(16;21) myeloid malignancies is a novel member of the MTG8(ETO) family. Blood. 1998;91(11):4028–37.PubMedCrossRef Gamou T, Kitamura E, Hosoda F, Shimizu K, Shinohara K, Hayashi Y, et al. The partner gene of AML1 in t(16;21) myeloid malignancies is a novel member of the MTG8(ETO) family. Blood. 1998;91(11):4028–37.PubMedCrossRef
34.
go back to reference Chen-Wichmann L, Shvartsman M, Preiss C, Hockings C, Windisch R, Redondo Monte E, et al. Compatibility of RUNX1/ETO fusion protein modules driving CD34+ human progenitor cell expansion. Oncogene. 2019;38(2):261–72.PubMedCrossRef Chen-Wichmann L, Shvartsman M, Preiss C, Hockings C, Windisch R, Redondo Monte E, et al. Compatibility of RUNX1/ETO fusion protein modules driving CD34+ human progenitor cell expansion. Oncogene. 2019;38(2):261–72.PubMedCrossRef
35.
go back to reference Wichmann C, Chen L, Heinrich M, Baus D, Pfitzner E, Zornig M, et al. Targeting the Oligomerization Domain of ETO Interferes with RUNX1/ETO Oncogenic Activity in t(8;21)-Positive Leukemic Cells. Cancer Res. 2007;67(5):2280–9.PubMedCrossRef Wichmann C, Chen L, Heinrich M, Baus D, Pfitzner E, Zornig M, et al. Targeting the Oligomerization Domain of ETO Interferes with RUNX1/ETO Oncogenic Activity in t(8;21)-Positive Leukemic Cells. Cancer Res. 2007;67(5):2280–9.PubMedCrossRef
36.
go back to reference Chagraoui H, Kristiansen MS, Ruiz JP, Serra-Barros A, Richter J, Hall-Ponselé E, et al. SCL/TAL1 cooperates with Polycomb RYBP-PRC1 to suppress alternative lineages in blood-fated cells. Nat Commun. 2018;9(1):5375.PubMedPubMedCentralCrossRef Chagraoui H, Kristiansen MS, Ruiz JP, Serra-Barros A, Richter J, Hall-Ponselé E, et al. SCL/TAL1 cooperates with Polycomb RYBP-PRC1 to suppress alternative lineages in blood-fated cells. Nat Commun. 2018;9(1):5375.PubMedPubMedCentralCrossRef
37.
go back to reference Fujiwara T, Lee H-Y, Sanalkumar R, Bresnick EH. Building multifunctionality into a complex containing master regulators of hematopoiesis. Proc Natl Acad Sci USA. 2010;107(47):20429–34.PubMedCrossRefPubMedCentral Fujiwara T, Lee H-Y, Sanalkumar R, Bresnick EH. Building multifunctionality into a complex containing master regulators of hematopoiesis. Proc Natl Acad Sci USA. 2010;107(47):20429–34.PubMedCrossRefPubMedCentral
38.
go back to reference Kiefer CM, Lee J, Hou C, Dale RK, Lee YT, Meier ER, et al. Distinct Ldb1/NLI complexes orchestrate γ-globin repression and reactivation through ETO2 in human adult erythroid cells. Blood. 2011;118(23):6200–8.PubMedPubMedCentralCrossRef Kiefer CM, Lee J, Hou C, Dale RK, Lee YT, Meier ER, et al. Distinct Ldb1/NLI complexes orchestrate γ-globin repression and reactivation through ETO2 in human adult erythroid cells. Blood. 2011;118(23):6200–8.PubMedPubMedCentralCrossRef
39.
go back to reference Tracey LJ, Brooke-Bisschop T, Jansen PWTC, Campos EI, Vermeulen M, Justice MJ. The Pluripotency Regulator PRDM14 Requires Hematopoietic Regulator CBFA2T3 to Initiate Leukemia in Mice. Mol Cancer Res MCR. 2019;17(7):1468–79.PubMedCrossRef Tracey LJ, Brooke-Bisschop T, Jansen PWTC, Campos EI, Vermeulen M, Justice MJ. The Pluripotency Regulator PRDM14 Requires Hematopoietic Regulator CBFA2T3 to Initiate Leukemia in Mice. Mol Cancer Res MCR. 2019;17(7):1468–79.PubMedCrossRef
40.
go back to reference Cubedo E, Gentles AJ, Huang C, Natkunam Y, Bhatt S, Lu X, et al. Identification of LMO2 transcriptome and interactome in diffuse large B-cell lymphoma. Blood. 2012;119(23):5478–91.PubMedPubMedCentralCrossRef Cubedo E, Gentles AJ, Huang C, Natkunam Y, Bhatt S, Lu X, et al. Identification of LMO2 transcriptome and interactome in diffuse large B-cell lymphoma. Blood. 2012;119(23):5478–91.PubMedPubMedCentralCrossRef
41.
go back to reference Fujiwara T, Alqadi YW, Okitsu Y, Fukuhara N, Onishi Y, Ishizawa K, et al. Role of transcriptional corepressor ETO2 in erythroid cells. Exp Hematol. 2013;41(3):303-315.e1.PubMedCrossRef Fujiwara T, Alqadi YW, Okitsu Y, Fukuhara N, Onishi Y, Ishizawa K, et al. Role of transcriptional corepressor ETO2 in erythroid cells. Exp Hematol. 2013;41(3):303-315.e1.PubMedCrossRef
42.
go back to reference Ptasinska A, Assi SA, Mannari D, James SR, Williamson D, Dunne J, et al. Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding. Leukemia. 2012;26(8):1829–41.PubMedPubMedCentralCrossRef Ptasinska A, Assi SA, Mannari D, James SR, Williamson D, Dunne J, et al. Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding. Leukemia. 2012;26(8):1829–41.PubMedPubMedCentralCrossRef
43.
go back to reference Granja JM, Klemm S, McGinnis LM, Kathiria AS, Mezger A, Corces MR, et al. Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia. Nat Biotechnol. 2019;37(12):1458–65.PubMedPubMedCentralCrossRef Granja JM, Klemm S, McGinnis LM, Kathiria AS, Mezger A, Corces MR, et al. Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia. Nat Biotechnol. 2019;37(12):1458–65.PubMedPubMedCentralCrossRef
44.
go back to reference Soler E, Andrieu-Soler C, de Boer E, Bryne JC, Thongjuea S, Stadhouders R, et al. The genome-wide dynamics of the binding of Ldb1 complexes during erythroid differentiation. Genes Dev. 2010;24(3):277–89.PubMedPubMedCentralCrossRef Soler E, Andrieu-Soler C, de Boer E, Bryne JC, Thongjuea S, Stadhouders R, et al. The genome-wide dynamics of the binding of Ldb1 complexes during erythroid differentiation. Genes Dev. 2010;24(3):277–89.PubMedPubMedCentralCrossRef
45.
go back to reference Sanda T, Lawton LN, Barrasa MI, Fan ZP, Kohlhammer H, Gutierrez A, et al. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell. 2012;22(2):209–21.PubMedPubMedCentralCrossRef Sanda T, Lawton LN, Barrasa MI, Fan ZP, Kohlhammer H, Gutierrez A, et al. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell. 2012;22(2):209–21.PubMedPubMedCentralCrossRef
46.
go back to reference Huret J-L, Ahmad M, Arsaban M, Bernheim A, Cigna J, Desangles F, et al. Atlas of genetics and cytogenetics in oncology and haematology in 2013. Nucleic Acids Res. 2013;41(D1):D920–4.PubMedCrossRef Huret J-L, Ahmad M, Arsaban M, Bernheim A, Cigna J, Desangles F, et al. Atlas of genetics and cytogenetics in oncology and haematology in 2013. Nucleic Acids Res. 2013;41(D1):D920–4.PubMedCrossRef
47.
go back to reference Hayashi K, Abe N, Watanabe T, Obinata M, Ito M, Sato T, et al. Overexpression of AML1 transcription factor drives thymocytes into the CD8 single-positive lineage. J Immunol. 2001;1(167):4957–65.CrossRef Hayashi K, Abe N, Watanabe T, Obinata M, Ito M, Sato T, et al. Overexpression of AML1 transcription factor drives thymocytes into the CD8 single-positive lineage. J Immunol. 2001;1(167):4957–65.CrossRef
48.
go back to reference Blyth K, Slater N, Hanlon L, Bell M, Mackay N, Stewart M, et al. Runx1 promotes B-cell survival and lymphoma development. Blood Cells Mol Dis. 2009;43:12–9.PubMedCrossRef Blyth K, Slater N, Hanlon L, Bell M, Mackay N, Stewart M, et al. Runx1 promotes B-cell survival and lymphoma development. Blood Cells Mol Dis. 2009;43:12–9.PubMedCrossRef
49.
go back to reference Ben-Ami O, Friedman D, Leshkowitz D, Goldenberg D, Orlovsky K, Pencovich N, et al. Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1. Cell Rep. 2013;4(6):1131–43.PubMedCrossRef Ben-Ami O, Friedman D, Leshkowitz D, Goldenberg D, Orlovsky K, Pencovich N, et al. Addiction of t(8;21) and inv(16) acute myeloid leukemia to native RUNX1. Cell Rep. 2013;4(6):1131–43.PubMedCrossRef
50.
go back to reference Steinauer N, Guo C, Huang C, Wong M, Tu Y, Freter CE, et al. Myeloid translocation gene CBFA2T3 directs a relapse gene program and determines patient-specific outcomes in AML. Blood Adv. 2019;3(9):1379–93.PubMedPubMedCentralCrossRef Steinauer N, Guo C, Huang C, Wong M, Tu Y, Freter CE, et al. Myeloid translocation gene CBFA2T3 directs a relapse gene program and determines patient-specific outcomes in AML. Blood Adv. 2019;3(9):1379–93.PubMedPubMedCentralCrossRef
51.
go back to reference Wichmann C, Chen L, Heinrich M, Baus D, Pfitzner E, Zörnig M, et al. Targeting the oligomerization domain of ETO interferes with RUNX1/ETO oncogenic activity in t(8;21)-positive leukemic cells. Cancer Res. 2007;67(5):2280–9.PubMedCrossRef Wichmann C, Chen L, Heinrich M, Baus D, Pfitzner E, Zörnig M, et al. Targeting the oligomerization domain of ETO interferes with RUNX1/ETO oncogenic activity in t(8;21)-positive leukemic cells. Cancer Res. 2007;67(5):2280–9.PubMedCrossRef
52.
go back to reference Wichmann C, Becker Y, Chen-Wichmann L, Vogel V, Vojtkova A, Herglotz J, et al. Dimer-tetramer transition controls RUNX1/ETO leukemogenic activity. Blood. 2010;116(4):603–13.PubMedCrossRef Wichmann C, Becker Y, Chen-Wichmann L, Vogel V, Vojtkova A, Herglotz J, et al. Dimer-tetramer transition controls RUNX1/ETO leukemogenic activity. Blood. 2010;116(4):603–13.PubMedCrossRef
53.
go back to reference Bartel Y, Grez M, Wichmann C. Interference with RUNX1/ETO leukemogenic function by cell-penetrating peptides targeting the NHR2 oligomerization domain. BioMed Res Int. 2013;2013:297692.PubMedPubMedCentralCrossRef Bartel Y, Grez M, Wichmann C. Interference with RUNX1/ETO leukemogenic function by cell-penetrating peptides targeting the NHR2 oligomerization domain. BioMed Res Int. 2013;2013:297692.PubMedPubMedCentralCrossRef
54.
go back to reference Schanda J, Lee C-W, Wohlan K, Müller-Kuller U, Kunkel H, Coco IQ-L, et al. Suppression of RUNX1/ETO oncogenic activity by a small molecule inhibitor of tetramerization. Haematologica. 2017;102(5):e170–4.PubMedPubMedCentralCrossRef Schanda J, Lee C-W, Wohlan K, Müller-Kuller U, Kunkel H, Coco IQ-L, et al. Suppression of RUNX1/ETO oncogenic activity by a small molecule inhibitor of tetramerization. Haematologica. 2017;102(5):e170–4.PubMedPubMedCentralCrossRef
55.
go back to reference Thirant C, Lopez C, Malinge S, Mercher T. Molecular pathways driven by ETO2-GLIS2 in aggressive pediatric leukemia. Mol Cell Oncol. 2017;4(6):e1345351.PubMedPubMedCentralCrossRef Thirant C, Lopez C, Malinge S, Mercher T. Molecular pathways driven by ETO2-GLIS2 in aggressive pediatric leukemia. Mol Cell Oncol. 2017;4(6):e1345351.PubMedPubMedCentralCrossRef
56.
go back to reference Chyla BJ, Moreno-Miralles I, Steapleton MA, Thompson MA, Bhaskara S, Engel M, et al. Deletion of Mtg16, a target of t(16;21), alters hematopoietic progenitor cell proliferation and lineage allocation. Mol Cell Biol. 2008;28(20):6234–47.PubMedPubMedCentralCrossRef Chyla BJ, Moreno-Miralles I, Steapleton MA, Thompson MA, Bhaskara S, Engel M, et al. Deletion of Mtg16, a target of t(16;21), alters hematopoietic progenitor cell proliferation and lineage allocation. Mol Cell Biol. 2008;28(20):6234–47.PubMedPubMedCentralCrossRef
57.
go back to reference Zhang J, Kalkum M, Yamamura S, Chait BT, Roeder RG. E protein silencing by the leukemogenic AML1-ETO fusion protein. Science. 2004;305(5688):1286–9.PubMedCrossRef Zhang J, Kalkum M, Yamamura S, Chait BT, Roeder RG. E protein silencing by the leukemogenic AML1-ETO fusion protein. Science. 2004;305(5688):1286–9.PubMedCrossRef
58.
go back to reference Gow C-H, Guo C, Wang D, Hu Q, Zhang J. Differential involvement of E2A-corepressor interactions in distinct leukemogenic pathways. Nucleic Acids Res. 2014;42(1):137–52.PubMedCrossRef Gow C-H, Guo C, Wang D, Hu Q, Zhang J. Differential involvement of E2A-corepressor interactions in distinct leukemogenic pathways. Nucleic Acids Res. 2014;42(1):137–52.PubMedCrossRef
59.
go back to reference Hamlett I, Draper J, Strouboulis J, Iborra F, Porcher C, Vyas P. Characterization of megakaryocyte GATA1-interacting proteins: the corepressor ETO2 and GATA1 interact to regulate terminal megakaryocyte maturation. Blood. 2008;112(7):2738–49.PubMedPubMedCentralCrossRef Hamlett I, Draper J, Strouboulis J, Iborra F, Porcher C, Vyas P. Characterization of megakaryocyte GATA1-interacting proteins: the corepressor ETO2 and GATA1 interact to regulate terminal megakaryocyte maturation. Blood. 2008;112(7):2738–49.PubMedPubMedCentralCrossRef
Metadata
Title
Reduction of RUNX1 transcription factor activity by a CBFA2T3-mimicking peptide: application to B cell precursor acute lymphoblastic leukemia
Authors
Hélène Jakobczyk
Lydie Debaize
Benoit Soubise
Stéphane Avner
Jérémie Rouger-Gaudichon
Séverine Commet
Yan Jiang
Aurélien A. Sérandour
Anne-Gaëlle Rio
Jason S. Carroll
Christian Wichmann
Michael Lie-a-Ling
Georges Lacaud
Laurent Corcos
Gilles Salbert
Marie-Dominique Galibert
Virginie Gandemer
Marie-Bérengère Troadec
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2021
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-021-01051-z

Other articles of this Issue 1/2021

Journal of Hematology & Oncology 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine