Skip to main content
Top
Published in: Endocrine 3/2015

01-04-2015 | Original Article

Acute effects of acylated ghrelin on salbutamol-induced metabolic actions in humans

Authors: A. Benso, E. Gramaglia, I. Olivetti, M. Tomelini, S. Belcastro, E. Calvi, A. Dotta, D. St-Pierre, E. Ghigo, F. Broglio

Published in: Endocrine | Issue 3/2015

Login to get access

Abstract

The aim of this study is to describe a potential modulatory effect of acute acylated ghrelin (AG) administration on the glucose, insulin, and free fatty acids (FFA) responses to salbutamol (SALBU). Six healthy young male volunteers underwent the following four testing sessions in random order at least 7 days apart: (a) acute AG administration (1.0 μg/kg i.v. as bolus at 0′); (b) SALBU infusion (0.06 μg/kg/min i.v. from −15′ to +45′); (c) SALBU infusion + AG; and (d) isotonic saline infusion. Blood samples for glucose, insulin, and FFA levels were collected every 15 min. As expected, with respect to saline, SALBU infusion induced a remarkable increase in glucose (10.8 ± 5.6 mmol/l × min; P < 0.05), insulin (2436.8 ± 556.9 pmol/l × min; P < 0.05), and FFA (18.9 ± 4.5 mmol/l × min; P < 0.01) levels. A significant increase in glucose (7.4 ± 3.9 mmol/l × min; P < 0.05) and FFA levels (10.0 ± 2.8 mmol/l × min; P < 0.01) without significant variations in insulin levels were recorded after AG administration. Interestingly, the hyperglycemic effect of AG appeared to be significantly potentiated during SALBU infusion (26.7 ± 4.8 mmol/l × min; P < 0.05). On the other hand, the stimulatory effect of SALBU on insulin and FFA was not significantly modified by AG administration. The results of this study show that acute AG administration has a synergic effect with β2-adrenergic receptor activation by SALBU on blood glucose increase, suggesting that their pharmacological hyperglycemic action takes place via different mechanisms. On the other hand, AG has a negligible influence on the other pharmacological metabolic effects of SALBU infusion.
Literature
1.
go back to reference M. Kojima, H. Hosoda, H. Matsuo, K. Kangawa, Ghrelin: discovery of the natural endogenous ligand for the growth hormone secretagogue receptor. Trends Endocrinol. Metab. 12, 118–122 (2001)CrossRefPubMed M. Kojima, H. Hosoda, H. Matsuo, K. Kangawa, Ghrelin: discovery of the natural endogenous ligand for the growth hormone secretagogue receptor. Trends Endocrinol. Metab. 12, 118–122 (2001)CrossRefPubMed
2.
go back to reference S. Gnanapavan, B. Kola, S.A. Bustin, D.G. Morris, P. McGee, P. Fairclough, S. Bhattacharya, R. Carpenter, A.B. Grossman, M. Korbonits, The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J. Clin. Endocrinol. Metab. 87, 2988 (2002)CrossRefPubMed S. Gnanapavan, B. Kola, S.A. Bustin, D.G. Morris, P. McGee, P. Fairclough, S. Bhattacharya, R. Carpenter, A.B. Grossman, M. Korbonits, The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J. Clin. Endocrinol. Metab. 87, 2988 (2002)CrossRefPubMed
3.
go back to reference C. De Vriese, C. Delporte, Influence of ghrelin on food intake and energy homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 10, 615–619 (2007)CrossRefPubMed C. De Vriese, C. Delporte, Influence of ghrelin on food intake and energy homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 10, 615–619 (2007)CrossRefPubMed
4.
go back to reference H. Kirchner, K.M. Heppner, M.H. Tschöp, The role of ghrelin in the control of energy balance. Handb. Exp. Pharmacol. 161–184 (2012) H. Kirchner, K.M. Heppner, M.H. Tschöp, The role of ghrelin in the control of energy balance. Handb. Exp. Pharmacol. 161–184 (2012)
5.
go back to reference M.A. van Baak, The peripheral sympathetic nervous system in human obesity. Obes. Rev. 2, 3–14 (2001)CrossRefPubMed M.A. van Baak, The peripheral sympathetic nervous system in human obesity. Obes. Rev. 2, 3–14 (2001)CrossRefPubMed
6.
go back to reference J. Robidoux, T.L. Martin, S. Collins, Beta-adrenergic receptors and regulation of energy expenditure: a family affair. Annu. Rev. Pharmacol. Toxicol. 44, 297–323 (2004)CrossRefPubMed J. Robidoux, T.L. Martin, S. Collins, Beta-adrenergic receptors and regulation of energy expenditure: a family affair. Annu. Rev. Pharmacol. Toxicol. 44, 297–323 (2004)CrossRefPubMed
7.
go back to reference H. Imura, Y. Kato, M. Ikeda, M. Morimoto, M. Yawata, Effect of adrenergic-blocking or -stimulating agents on plasma growth hormone, immunoreactive insulin, and blood free fatty acid levels in man. J. Clin. Invest. 50, 1069–1079 (1971)CrossRefPubMedCentralPubMed H. Imura, Y. Kato, M. Ikeda, M. Morimoto, M. Yawata, Effect of adrenergic-blocking or -stimulating agents on plasma growth hormone, immunoreactive insulin, and blood free fatty acid levels in man. J. Clin. Invest. 50, 1069–1079 (1971)CrossRefPubMedCentralPubMed
8.
go back to reference P.D. Gluckman, The development of beta-adrenergic mediated inhibition of growth hormone secretion in the ovine fetus. J. Dev. Physiol. 4, 207–214 (1982)PubMed P.D. Gluckman, The development of beta-adrenergic mediated inhibition of growth hormone secretion in the ovine fetus. J. Dev. Physiol. 4, 207–214 (1982)PubMed
9.
go back to reference G. Muccioli, N. Pons, C. Ghè, F. Catapano, R. Granata, E. Ghigo, Ghrelin and des-acyl ghrelin both inhibit isoproterenol-induced lipolysis in rat adipocytes via a non-type 1a growth hormone secretagogue receptor. Eur. J. Pharmacol. 498, 27–35 (2004)CrossRefPubMed G. Muccioli, N. Pons, C. Ghè, F. Catapano, R. Granata, E. Ghigo, Ghrelin and des-acyl ghrelin both inhibit isoproterenol-induced lipolysis in rat adipocytes via a non-type 1a growth hormone secretagogue receptor. Eur. J. Pharmacol. 498, 27–35 (2004)CrossRefPubMed
10.
go back to reference M.T. Bluet-Pajot, D. Durand, F. Mounier, C. Schaub, C. Kordon, Interaction of beta-adrenergic agonists and antagonists with the stimulation of growth hormone release induced by clonidine or by morphine in the rat. J. Endocrinol. 94, 327–331 (1982)CrossRefPubMed M.T. Bluet-Pajot, D. Durand, F. Mounier, C. Schaub, C. Kordon, Interaction of beta-adrenergic agonists and antagonists with the stimulation of growth hormone release induced by clonidine or by morphine in the rat. J. Endocrinol. 94, 327–331 (1982)CrossRefPubMed
11.
go back to reference H.S. Park, E.S. Shin, J.E. Lee, Genotypes and haplotypes of beta2-adrenergic receptor and parameters of the metabolic syndrome in Korean adolescents. Metabolism 57, 1064–1070 (2008)CrossRefPubMed H.S. Park, E.S. Shin, J.E. Lee, Genotypes and haplotypes of beta2-adrenergic receptor and parameters of the metabolic syndrome in Korean adolescents. Metabolism 57, 1064–1070 (2008)CrossRefPubMed
12.
go back to reference J.P. Palmer, J. Halter, P.L. Werner, Differential effect of isoproterenol on acute glucagon and insulin release in man. Metabolism 28, 237–240 (1979)CrossRefPubMed J.P. Palmer, J. Halter, P.L. Werner, Differential effect of isoproterenol on acute glucagon and insulin release in man. Metabolism 28, 237–240 (1979)CrossRefPubMed
13.
go back to reference P. Kuusela, S. Rehnmark, A. Jacobsson, B. Cannon, J. Nedergaard, Adrenergic stimulation of lipoprotein lipase gene expression in rat brown adipocytes differentiated in culture: mediation via beta3- and alpha1-adrenergic receptors. Biochem. J. 321(Pt 3), 759–767 (1997)PubMedCentralPubMed P. Kuusela, S. Rehnmark, A. Jacobsson, B. Cannon, J. Nedergaard, Adrenergic stimulation of lipoprotein lipase gene expression in rat brown adipocytes differentiated in culture: mediation via beta3- and alpha1-adrenergic receptors. Biochem. J. 321(Pt 3), 759–767 (1997)PubMedCentralPubMed
14.
go back to reference E. Ghigo, E. Arvat, L. Gianotti, J. Ramunni, M. Maccario, F. Camanni, Interaction of salbutamol with pyridostigmine and arginine on both basal and GHRH-stimulated GH secretion in humans. Clin. Endocrinol. (Oxf.) 40, 799–802 (1994)CrossRef E. Ghigo, E. Arvat, L. Gianotti, J. Ramunni, M. Maccario, F. Camanni, Interaction of salbutamol with pyridostigmine and arginine on both basal and GHRH-stimulated GH secretion in humans. Clin. Endocrinol. (Oxf.) 40, 799–802 (1994)CrossRef
15.
go back to reference E. Arvat, L. Gianotti, J. Ramunni, L. DiVito, R. Deghenghi, F. Camanni, E. Ghigo, Influence of beta-adrenergic agonists and antagonists on the GH-releasing effect of hexarelin in man. J. Endocrinol. Invest. 19, 25–29 (1996)CrossRefPubMed E. Arvat, L. Gianotti, J. Ramunni, L. DiVito, R. Deghenghi, F. Camanni, E. Ghigo, Influence of beta-adrenergic agonists and antagonists on the GH-releasing effect of hexarelin in man. J. Endocrinol. Invest. 19, 25–29 (1996)CrossRefPubMed
16.
go back to reference T.-J. Zhao, I. Sakata, R.L. Li, G. Liang, J.A. Richardson, M.S. Brown, J.L. Goldstein, J.M. Zigman, Ghrelin secretion stimulated by 1-adrenergic receptors in cultured ghrelinoma cells and in fasted mice. Proc. Natl. Acad. Sci. 107, 15868–15873 (2010)CrossRefPubMedCentralPubMed T.-J. Zhao, I. Sakata, R.L. Li, G. Liang, J.A. Richardson, M.S. Brown, J.L. Goldstein, J.M. Zigman, Ghrelin secretion stimulated by 1-adrenergic receptors in cultured ghrelinoma cells and in fasted mice. Proc. Natl. Acad. Sci. 107, 15868–15873 (2010)CrossRefPubMedCentralPubMed
17.
go back to reference J. Gagnon, Y. Anini, Insulin and norepinephrine regulate ghrelin secretion from a rat primary stomach cell culture. Endocrinology 153, 3646–3656 (2012)CrossRefPubMed J. Gagnon, Y. Anini, Insulin and norepinephrine regulate ghrelin secretion from a rat primary stomach cell culture. Endocrinology 153, 3646–3656 (2012)CrossRefPubMed
18.
go back to reference A. Baragli, C. Ghè, E. Arnoletti, R. Granata, E. Ghigo, G. Muccioli, Acylated and unacylated ghrelin attenuate isoproterenol-induced lipolysis in isolated rat visceral adipocytes through activation of phosphoinositide 3-kinase γ and phosphodiesterase 3B. Biochim. Biophys. Acta 1811, 386–396 (2011)CrossRefPubMed A. Baragli, C. Ghè, E. Arnoletti, R. Granata, E. Ghigo, G. Muccioli, Acylated and unacylated ghrelin attenuate isoproterenol-induced lipolysis in isolated rat visceral adipocytes through activation of phosphoinositide 3-kinase γ and phosphodiesterase 3B. Biochim. Biophys. Acta 1811, 386–396 (2011)CrossRefPubMed
19.
go back to reference E. Adeghate, A.S. Ponery, Ghrelin stimulates insulin secretion from the pancreas of normal and diabetic rats. J. Neuroendocrinol. 14, 555–560 (2002)CrossRefPubMed E. Adeghate, A.S. Ponery, Ghrelin stimulates insulin secretion from the pancreas of normal and diabetic rats. J. Neuroendocrinol. 14, 555–560 (2002)CrossRefPubMed
20.
go back to reference D.H. St-Pierre, A. Benso, E. Gramaglia, F. Prodam, B. Lucatello, V. Ramella-Gigliardi, I. Olivetti, M. Tomelini, F. Broglio, The metabolic response to the activation of the beta-adrenergic receptor by salbutamol is amplified by acylated ghrelin. J. Endocrinol. Invest. 33, 363–367 (2010)CrossRefPubMed D.H. St-Pierre, A. Benso, E. Gramaglia, F. Prodam, B. Lucatello, V. Ramella-Gigliardi, I. Olivetti, M. Tomelini, F. Broglio, The metabolic response to the activation of the beta-adrenergic receptor by salbutamol is amplified by acylated ghrelin. J. Endocrinol. Invest. 33, 363–367 (2010)CrossRefPubMed
21.
go back to reference A.C. Heijboer, A.M. van den Hoek, E.T. Parlevliet, L.M. Havekes, J.A. Romijn, H. Pijl, E.P.M. Corssmit, Ghrelin differentially affects hepatic and peripheral insulin sensitivity in mice. Diabetologia 49, 732–738 (2006)CrossRefPubMed A.C. Heijboer, A.M. van den Hoek, E.T. Parlevliet, L.M. Havekes, J.A. Romijn, H. Pijl, E.P.M. Corssmit, Ghrelin differentially affects hepatic and peripheral insulin sensitivity in mice. Diabetologia 49, 732–738 (2006)CrossRefPubMed
22.
go back to reference T.R. Castañeda, J. Tong, R. Datta, M. Culler, M.H. Tschöp, Ghrelin in the regulation of body weight and metabolism. Front. Neuroendocrinol. 31, 44–60 (2010)CrossRefPubMed T.R. Castañeda, J. Tong, R. Datta, M. Culler, M.H. Tschöp, Ghrelin in the regulation of body weight and metabolism. Front. Neuroendocrinol. 31, 44–60 (2010)CrossRefPubMed
23.
go back to reference M. Murata, Y. Okimura, K. Iida, M. Matsumoto, H. Sowa, H. Kaji, M. Kojima, K. Kangawa, K. Chihara, Ghrelin modulates the downstream molecules of insulin signaling in hepatoma cells. J. Biol. Chem. 277, 5667–5674 (2002)CrossRefPubMed M. Murata, Y. Okimura, K. Iida, M. Matsumoto, H. Sowa, H. Kaji, M. Kojima, K. Kangawa, K. Chihara, Ghrelin modulates the downstream molecules of insulin signaling in hepatoma cells. J. Biol. Chem. 277, 5667–5674 (2002)CrossRefPubMed
24.
go back to reference C. Gauna, P.J.D. Delhanty, L.J. Hofland, J.A. Janssen, F. Broglio, R.J.M. Ross, E. Ghigo, A.J. van der Lely, Ghrelin stimulates, whereas des-octanoyl ghrelin inhibits, glucose output by primary hepatocytes. J. Clin. Endocrinol. Metab. 90, 1055–1060 (2005)CrossRefPubMed C. Gauna, P.J.D. Delhanty, L.J. Hofland, J.A. Janssen, F. Broglio, R.J.M. Ross, E. Ghigo, A.J. van der Lely, Ghrelin stimulates, whereas des-octanoyl ghrelin inhibits, glucose output by primary hepatocytes. J. Clin. Endocrinol. Metab. 90, 1055–1060 (2005)CrossRefPubMed
25.
26.
go back to reference R.J. Lacey, N.S. Berrow, N.J.M. London, S.P. Lake, R.F. James, J.H.B. Scarpello, N.G. Morgan, Differential effects of β-adrenergic agonists on insulin secretion from pancreatic islets isolated from rat and man. J. Mol. Endocrinol. 5, 49–54 (1990)CrossRefPubMed R.J. Lacey, N.S. Berrow, N.J.M. London, S.P. Lake, R.F. James, J.H.B. Scarpello, N.G. Morgan, Differential effects of β-adrenergic agonists on insulin secretion from pancreatic islets isolated from rat and man. J. Mol. Endocrinol. 5, 49–54 (1990)CrossRefPubMed
27.
go back to reference A. Loubatières, M.M. Mariani, G. Sorel, L. Savi, The action of β-adrenergic blocking and stimulating agents on insulin secretion. Characterization of the type of β receptor. Diabetologia 7(3), 127–132 (1971)CrossRefPubMed A. Loubatières, M.M. Mariani, G. Sorel, L. Savi, The action of β-adrenergic blocking and stimulating agents on insulin secretion. Characterization of the type of β receptor. Diabetologia 7(3), 127–132 (1971)CrossRefPubMed
28.
go back to reference E. Cipolletta, A. Campanile, G. Santulli, E. Sanzari, D. Leosco, P. Campiglia, B. Trimarco, G. Iaccarino, The G protein coupled receptor kinase 2 plays an essential role in beta-adrenergic receptor-induced insulin resistance. Cardiovasc. Res. 84, 407–415 (2009)CrossRefPubMed E. Cipolletta, A. Campanile, G. Santulli, E. Sanzari, D. Leosco, P. Campiglia, B. Trimarco, G. Iaccarino, The G protein coupled receptor kinase 2 plays an essential role in beta-adrenergic receptor-induced insulin resistance. Cardiovasc. Res. 84, 407–415 (2009)CrossRefPubMed
29.
go back to reference M. Lafontan, M. Berlan, Fat cell adrenergic receptors and the control of white and brown fat cell function. J. Lipid Res. 34, 1057–1091 (1993)PubMed M. Lafontan, M. Berlan, Fat cell adrenergic receptors and the control of white and brown fat cell function. J. Lipid Res. 34, 1057–1091 (1993)PubMed
30.
go back to reference F. Broglio, E. Arvat, A. Benso, C. Gottero, G. Muccioli, M. Papotti, A.J. van der Lely, R. Deghenghi, E. Ghigo, Ghrelin, a natural GH secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans. J. Clin. Endocrinol. Metab. 86, 5083–5086 (2001)CrossRefPubMed F. Broglio, E. Arvat, A. Benso, C. Gottero, G. Muccioli, M. Papotti, A.J. van der Lely, R. Deghenghi, E. Ghigo, Ghrelin, a natural GH secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans. J. Clin. Endocrinol. Metab. 86, 5083–5086 (2001)CrossRefPubMed
31.
go back to reference T. Yada, K. Dezaki, H. Sone, M. Koizumi, B. Damdindorj, M. Nakata, M. Kakei, Ghrelin regulates insulin release and glycemia: physiological role and therapeutic potential. Curr. Diabetes Rev. 4, 18–23 (2008)CrossRefPubMed T. Yada, K. Dezaki, H. Sone, M. Koizumi, B. Damdindorj, M. Nakata, M. Kakei, Ghrelin regulates insulin release and glycemia: physiological role and therapeutic potential. Curr. Diabetes Rev. 4, 18–23 (2008)CrossRefPubMed
32.
go back to reference W. An, Y. Li, G. Xu, J. Zhao, X. Xiang, L. Ding, J. Li, Y. Guan, X. Wang, C. Tang, X. Li, M. Mulholland, W. Zhang, Modulation of ghrelin O-acyltransferase expression in pancreatic islets. Cell Physiol. Biochem 26, 707–716 (2010)CrossRefPubMedCentralPubMed W. An, Y. Li, G. Xu, J. Zhao, X. Xiang, L. Ding, J. Li, Y. Guan, X. Wang, C. Tang, X. Li, M. Mulholland, W. Zhang, Modulation of ghrelin O-acyltransferase expression in pancreatic islets. Cell Physiol. Biochem 26, 707–716 (2010)CrossRefPubMedCentralPubMed
33.
go back to reference K. Dezaki, Ghrelin function in insulin release and glucose metabolism. Endocr. Dev. 25, 135–143 (2013)CrossRefPubMed K. Dezaki, Ghrelin function in insulin release and glucose metabolism. Endocr. Dev. 25, 135–143 (2013)CrossRefPubMed
34.
go back to reference P.-J. Verhulst, I. Depoortere, Ghrelin’s second life: from appetite stimulator to glucose regulator. World J. Gastroenterol. 18, 3183–3195 (2012)PubMedCentralPubMed P.-J. Verhulst, I. Depoortere, Ghrelin’s second life: from appetite stimulator to glucose regulator. World J. Gastroenterol. 18, 3183–3195 (2012)PubMedCentralPubMed
35.
go back to reference P. Lucidi, G. Murdolo, C. Di Loreto, N. Parlanti, A. De Cicco, C. Fatone, C. Taglioni, C. Fanelli, F. Broglio, E. Ghigo, G.B. Bolli, F. Santeusanio, P. De Feo, Metabolic and endocrine effects of physiological increments in plasma ghrelin concentrations. Nutr. Metab. Cardiovasc. Dis. 15, 410–417 (2005)CrossRefPubMed P. Lucidi, G. Murdolo, C. Di Loreto, N. Parlanti, A. De Cicco, C. Fatone, C. Taglioni, C. Fanelli, F. Broglio, E. Ghigo, G.B. Bolli, F. Santeusanio, P. De Feo, Metabolic and endocrine effects of physiological increments in plasma ghrelin concentrations. Nutr. Metab. Cardiovasc. Dis. 15, 410–417 (2005)CrossRefPubMed
36.
go back to reference J. Tong, R.L. Prigeon, H.W. Davis, M. Bidlingmaier, M.H. Tschöp, D. D’Alessio, Physiologic concentrations of exogenously infused ghrelin reduces insulin secretion without affecting insulin sensitivity in healthy humans. J. Clin. Endocrinol. Metab. 98, 2536–2543 (2013)CrossRefPubMedCentralPubMed J. Tong, R.L. Prigeon, H.W. Davis, M. Bidlingmaier, M.H. Tschöp, D. D’Alessio, Physiologic concentrations of exogenously infused ghrelin reduces insulin secretion without affecting insulin sensitivity in healthy humans. J. Clin. Endocrinol. Metab. 98, 2536–2543 (2013)CrossRefPubMedCentralPubMed
Metadata
Title
Acute effects of acylated ghrelin on salbutamol-induced metabolic actions in humans
Authors
A. Benso
E. Gramaglia
I. Olivetti
M. Tomelini
S. Belcastro
E. Calvi
A. Dotta
D. St-Pierre
E. Ghigo
F. Broglio
Publication date
01-04-2015
Publisher
Springer US
Published in
Endocrine / Issue 3/2015
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-014-0343-6

Other articles of this Issue 3/2015

Endocrine 3/2015 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.