Skip to main content
Top
Published in: BMC Infectious Diseases 1/2008

Open Access 01-12-2008 | Research article

Activity of the Bacillus anthracis20 kDa protective antigen component

Authors: Rasha Hammamieh, Wilson J Ribot, Terry G Abshire, Marti Jett, John Ezzell

Published in: BMC Infectious Diseases | Issue 1/2008

Login to get access

Abstract

Background

Anthrax is caused by Bacillus anthracis that produce two exotoxins, lethal toxin and edema toxin. The lethal toxin is composed of the lethal factor (LF) complexed with the cell binding protective antigen (PA83, 83 kDa). Likewise, the edema factor (EF) binds to the PA83 to form the edema toxin. Once PA83 is bound to the host cell surface, a furin-like protease cleaves the full-length, inactive protein into 63 kDa and 20 kDa antigens (PA63 and PA20). PA63 forms a heptamer and is internalized via receptor mediated endocytosis forming a protease-stable pore, which allows EF and LF to enter the cell and exert their toxic effects.
Both proteolytically cleaved protective antigens (PA63 and PA20 fragments) are found in the blood of infected animals. The 63 kDa protective antigen PA63 fragment has been thoroughly studied while little is known about the PA20.

Methods

In this study we examined the role of PA20 using high throughput gene expression analysis of human peripheral blood mononuclear cells (PBMC) exposed to the PA20. We constructed a PA mutant in which a Factor Xa proteolytic recognition site was genetically engineered into the protective antigen PA83 to obtain PA20 using limited digestion of this recombinant PA83 with trypsin.

Results

Global gene expression response studies indicated modulation of various immune functions and showed gene patterns indicative of apoptosis via the Fas pathway in a subset of the lymphoid cells. This finding was extended to include observations of increased Caspase-3 enzymatic activity and the identification of increases in the population of apoptotic, but not necrotic cells, based on differential staining methods. We identified a list of ~40 inflammatory mediators and heat-shock proteins that were altered similarly upon exposure of PBMC to either rPA20 or B. anthracis spores/vegetative cells.

Conclusion

This study shows that the PA20 has an effect on human peripheral blood leukocytes and can induce apoptosis in the absence of other PA components.
Appendix
Available only for authorised users
Literature
2.
go back to reference Vitale G, et al: Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor. Biochem J. 2000, 352 (Pt 3): 739-45. 10.1042/0264-6021:3520739.CrossRefPubMedPubMedCentral Vitale G, et al: Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor. Biochem J. 2000, 352 (Pt 3): 739-45. 10.1042/0264-6021:3520739.CrossRefPubMedPubMedCentral
3.
go back to reference Bragg TS, Robertson DL: Nucleotide sequence and analysis of the lethal factor gene (lef) from Bacillus anthracis. Gene. 1989, 81 (1): 45-54. 10.1016/0378-1119(89)90335-1.CrossRefPubMed Bragg TS, Robertson DL: Nucleotide sequence and analysis of the lethal factor gene (lef) from Bacillus anthracis. Gene. 1989, 81 (1): 45-54. 10.1016/0378-1119(89)90335-1.CrossRefPubMed
4.
go back to reference Pellizzari R, et al: Lethal factor of Bacillus anthracis cleaves the N-terminus of MAPKKs: analysis of the intracellular consequences in macrophages. Int J Med Microbiol. 2000, 290 (4–5): 421-7.CrossRefPubMed Pellizzari R, et al: Lethal factor of Bacillus anthracis cleaves the N-terminus of MAPKKs: analysis of the intracellular consequences in macrophages. Int J Med Microbiol. 2000, 290 (4–5): 421-7.CrossRefPubMed
5.
go back to reference Vitale G, et al: Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor. Biochem J. 2000, 352 (Pt 3): 739-45. 10.1042/0264-6021:3520739.CrossRefPubMedPubMedCentral Vitale G, et al: Susceptibility of mitogen-activated protein kinase kinase family members to proteolysis by anthrax lethal factor. Biochem J. 2000, 352 (Pt 3): 739-45. 10.1042/0264-6021:3520739.CrossRefPubMedPubMedCentral
6.
go back to reference Duesbery NS, et al: Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science. 1998, 280 (5364): 734-7. 10.1126/science.280.5364.734.CrossRefPubMed Duesbery NS, et al: Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science. 1998, 280 (5364): 734-7. 10.1126/science.280.5364.734.CrossRefPubMed
7.
go back to reference Pellizzari R, et al: Anthrax lethal factor cleaves MKK3 in macrophages and inhibits the LPS/IFNgamma-induced release of NO and TNFalpha. FEBS Lett. 1999, 462 (1–2): 199-204. 10.1016/S0014-5793(99)01502-1.CrossRefPubMed Pellizzari R, et al: Anthrax lethal factor cleaves MKK3 in macrophages and inhibits the LPS/IFNgamma-induced release of NO and TNFalpha. FEBS Lett. 1999, 462 (1–2): 199-204. 10.1016/S0014-5793(99)01502-1.CrossRefPubMed
8.
go back to reference Leppla SH: Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc Natl Acad Sci USA. 1982, 79 (10): 3162-6. 10.1073/pnas.79.10.3162.CrossRefPubMedPubMedCentral Leppla SH: Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc Natl Acad Sci USA. 1982, 79 (10): 3162-6. 10.1073/pnas.79.10.3162.CrossRefPubMedPubMedCentral
9.
go back to reference Welkos SL, et al: Sequence and analysis of the DNA encoding protective antigen of Bacillus anthracis. Gene. 1988, 69 (2): 287-300. 10.1016/0378-1119(88)90439-8.CrossRefPubMed Welkos SL, et al: Sequence and analysis of the DNA encoding protective antigen of Bacillus anthracis. Gene. 1988, 69 (2): 287-300. 10.1016/0378-1119(88)90439-8.CrossRefPubMed
10.
go back to reference Mikesell P, et al: Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infect Immun. 1983, 39 (1): 371-6.PubMedPubMedCentral Mikesell P, et al: Evidence for plasmid-mediated toxin production in Bacillus anthracis. Infect Immun. 1983, 39 (1): 371-6.PubMedPubMedCentral
11.
go back to reference Escuyer V, Collier RJ: Anthrax protective antigen interacts with a specific receptor on the surface of CHO-K1 cells. Infect Immun. 1991, 59 (10): 3381-6.PubMedPubMedCentral Escuyer V, Collier RJ: Anthrax protective antigen interacts with a specific receptor on the surface of CHO-K1 cells. Infect Immun. 1991, 59 (10): 3381-6.PubMedPubMedCentral
12.
go back to reference Klimpel KR, et al: Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin. Proc Natl Acad Sci USA. 1992, 89 (21): 10277-81. 10.1073/pnas.89.21.10277.CrossRefPubMedPubMedCentral Klimpel KR, et al: Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin. Proc Natl Acad Sci USA. 1992, 89 (21): 10277-81. 10.1073/pnas.89.21.10277.CrossRefPubMedPubMedCentral
13.
go back to reference Molloy SS, et al: Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J Biol Chem. 1992, 267 (23): 16396-402.PubMed Molloy SS, et al: Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J Biol Chem. 1992, 267 (23): 16396-402.PubMed
14.
15.
go back to reference Leppla SH: Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc Natl Acad Sci USA. 1982, 79 (10): 3162-6. 10.1073/pnas.79.10.3162.CrossRefPubMedPubMedCentral Leppla SH: Anthrax toxin edema factor: a bacterial adenylate cyclase that increases cyclic AMP concentrations of eukaryotic cells. Proc Natl Acad Sci USA. 1982, 79 (10): 3162-6. 10.1073/pnas.79.10.3162.CrossRefPubMedPubMedCentral
16.
go back to reference Ezzell JW, Abshire TG: Serum protease cleavage of Bacillus anthracis protective antigen. J Gen Microbiol. 1992, 138 (3): 543-9.CrossRefPubMed Ezzell JW, Abshire TG: Serum protease cleavage of Bacillus anthracis protective antigen. J Gen Microbiol. 1992, 138 (3): 543-9.CrossRefPubMed
17.
go back to reference Ezzell JW, Abshire TG, Brown C: Analyses of Bacillus anthracis vegetative cell surface antigens and serum protease cleavage of protective antigen. Proceedings of the International Workshop on Anthrax. Edited by: Turnbull. 1990, Wiltshire: Salisbury Printing Co, 68: 2- Ezzell JW, Abshire TG, Brown C: Analyses of Bacillus anthracis vegetative cell surface antigens and serum protease cleavage of protective antigen. Proceedings of the International Workshop on Anthrax. Edited by: Turnbull. 1990, Wiltshire: Salisbury Printing Co, 68: 2-
18.
go back to reference Little SF, Leppla SH, Friedlander AM: Production and characterization of monoclonal antibodies against the lethal factor component of Bacillus anthracis lethal toxin. Infect Immun. 1990, 58 (6): 1606-13.PubMedPubMedCentral Little SF, Leppla SH, Friedlander AM: Production and characterization of monoclonal antibodies against the lethal factor component of Bacillus anthracis lethal toxin. Infect Immun. 1990, 58 (6): 1606-13.PubMedPubMedCentral
19.
go back to reference Milne JC, et al: Anthrax protective antigen forms oligomers during intoxication of mammalian cells. J Biol Chem. 1994, 269 (32): 20607-12.PubMed Milne JC, et al: Anthrax protective antigen forms oligomers during intoxication of mammalian cells. J Biol Chem. 1994, 269 (32): 20607-12.PubMed
20.
go back to reference Milne JC, Collier RJ: pH-dependent permeabilization of the plasma membrane of mammalian cells by anthrax protective antigen. Mol Microbiol. 1993, 10 (3): 647-53. 10.1111/j.1365-2958.1993.tb00936.x.CrossRefPubMed Milne JC, Collier RJ: pH-dependent permeabilization of the plasma membrane of mammalian cells by anthrax protective antigen. Mol Microbiol. 1993, 10 (3): 647-53. 10.1111/j.1365-2958.1993.tb00936.x.CrossRefPubMed
21.
go back to reference Christensen KA, et al: Interaction of the 20 kDa and 63 kDa fragments of anthrax protective antigen: kinetics and thermodynamics. Biochemistry. 2005, 44 (3): 1047-53. 10.1021/bi047791s.CrossRefPubMed Christensen KA, et al: Interaction of the 20 kDa and 63 kDa fragments of anthrax protective antigen: kinetics and thermodynamics. Biochemistry. 2005, 44 (3): 1047-53. 10.1021/bi047791s.CrossRefPubMed
22.
go back to reference Singh Y, Chaudhary VK, Leppla SH: A deleted variant of Bacillus anthracis protective antigen is non-toxic and blocks anthrax toxin action in vivo. J Biol Chem. 1989, 264 (32): 19103-7.PubMed Singh Y, Chaudhary VK, Leppla SH: A deleted variant of Bacillus anthracis protective antigen is non-toxic and blocks anthrax toxin action in vivo. J Biol Chem. 1989, 264 (32): 19103-7.PubMed
23.
go back to reference Baillie L, Moir A, Manchee R: The expression of the protective antigen of Bacillus anthracis in Bacillus subtilis. J Appl Microbiol. 1998, 84 (5): 741-6. 10.1046/j.1365-2672.1998.00405.x.CrossRefPubMed Baillie L, Moir A, Manchee R: The expression of the protective antigen of Bacillus anthracis in Bacillus subtilis. J Appl Microbiol. 1998, 84 (5): 741-6. 10.1046/j.1365-2672.1998.00405.x.CrossRefPubMed
24.
go back to reference Farchaus JW, et al: Fermentation, purification, and characterization of protective antigen from a recombinant, avirulent strain of Bacillus anthracis. Appl Environ Microbiol. 1998, 64 (3): 982-91.PubMedPubMedCentral Farchaus JW, et al: Fermentation, purification, and characterization of protective antigen from a recombinant, avirulent strain of Bacillus anthracis. Appl Environ Microbiol. 1998, 64 (3): 982-91.PubMedPubMedCentral
25.
go back to reference Hammamieh R, et al: GeneCite: a stand-alone open source tool for high-throughput literature and pathway mining. Omics. 2007, 11 (2): 143-51. 10.1089/omi.2007.4322.CrossRefPubMed Hammamieh R, et al: GeneCite: a stand-alone open source tool for high-throughput literature and pathway mining. Omics. 2007, 11 (2): 143-51. 10.1089/omi.2007.4322.CrossRefPubMed
26.
go back to reference Pickering AK, et al: Cytokine response to infection with Bacillus anthracis spores. Infect Immun. 2004, 72 (11): 6382-9. 10.1128/IAI.72.11.6382-6389.2004.CrossRefPubMedPubMedCentral Pickering AK, et al: Cytokine response to infection with Bacillus anthracis spores. Infect Immun. 2004, 72 (11): 6382-9. 10.1128/IAI.72.11.6382-6389.2004.CrossRefPubMedPubMedCentral
27.
go back to reference Rigden DJ, Mello LV, Galperin MY: The PA14 domain, a conserved all-beta domain in bacterial toxins, enzymes, adhesins and signaling molecules. Trends Biochem Sci. 2004, 29 (7): 335-9. 10.1016/j.tibs.2004.05.002.CrossRefPubMed Rigden DJ, Mello LV, Galperin MY: The PA14 domain, a conserved all-beta domain in bacterial toxins, enzymes, adhesins and signaling molecules. Trends Biochem Sci. 2004, 29 (7): 335-9. 10.1016/j.tibs.2004.05.002.CrossRefPubMed
28.
go back to reference Deaglio S, et al: Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member. J Immunol. 1998, 160 (1): 395-402.PubMed Deaglio S, et al: Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member. J Immunol. 1998, 160 (1): 395-402.PubMed
29.
go back to reference Sconocchia G, et al: CD38 triggers cytotoxic responses in activated human natural killer cells. Blood. 1999, 94 (11): 3864-71.PubMed Sconocchia G, et al: CD38 triggers cytotoxic responses in activated human natural killer cells. Blood. 1999, 94 (11): 3864-71.PubMed
30.
go back to reference Chvyrkova I, Zhang XC, Terzyan S: Lethal factor of anthrax toxin binds monomeric form of protective antigen. Biochem Biophys Res Commun. 2007, 360 (3): 690-5. 10.1016/j.bbrc.2007.06.124.CrossRefPubMedPubMedCentral Chvyrkova I, Zhang XC, Terzyan S: Lethal factor of anthrax toxin binds monomeric form of protective antigen. Biochem Biophys Res Commun. 2007, 360 (3): 690-5. 10.1016/j.bbrc.2007.06.124.CrossRefPubMedPubMedCentral
Metadata
Title
Activity of the Bacillus anthracis20 kDa protective antigen component
Authors
Rasha Hammamieh
Wilson J Ribot
Terry G Abshire
Marti Jett
John Ezzell
Publication date
01-12-2008
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2008
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/1471-2334-8-124

Other articles of this Issue 1/2008

BMC Infectious Diseases 1/2008 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.