Skip to main content
Top
Published in: Clinical & Experimental Metastasis 2/2009

01-02-2009 | Research Paper

Activation of MCP-1/CCR2 axis promotes prostate cancer growth in bone

Authors: Yi Lu, Qiuyan Chen, Eva Corey, Wen Xie, Jie Fan, Atsushi Mizokami, Jian Zhang

Published in: Clinical & Experimental Metastasis | Issue 2/2009

Login to get access

Abstract

Prostate cancer (PCa) frequently metastasizes to bone resulting in a mixture of osteolytic and osteoblastic lesions. We have previously reported that monocyte chemotactic protein-1 (MCP-1) is chemotactic for PCa cells, and its receptor, CCR2 expression, correlates with pathological stages. However, the role of MCP-1/CCR2 axis on PCa progression in bone remains unclear. We first evaluated the serum levels of MCP-1 in patients with bone metastases or localized PCa by enzyme-linked immunosorbent assay. We found that MCP-1 levels were elevated in patients with bone metastases compared to localized PCa. We further determined the effects of knockdown CCR2 or MCP-1 on PCa cell invasion and the tumor cell-induced osteoclast activity in vitro, respectively. PCa C4-2B and PC3 cells were transfected stably with either CCR2 short hairpin RNA (shRNA) or a scrambled RNA. CCR2 knockdown significantly diminished the MCP-1-induced PCa cell invasion. In addition, the MCP-1 production was knocked down by MCP-1 shRNA in C4-2B and PC3 cells. Conditioned media (CM) was collected and determined for the CM-induced osteoclast formation in vitro. MCP-1 knockdown significantly decreased the PCa CM-induced osteoclast formation. Finally, MCP-1 knockdown PC3 cells were implanted into the tibia of SCID mice for 4 weeks. Tumor volume was determined by histopathology and bone histomorphometry. MCP-1 knockdown diminished PC3 tumor growth in bone. We concluded that activation of MCP-1/CCR2 axis promotes PCa growth in bone. This study suggests that MCP-1 may be a target for PCa progression.
Literature
7.
go back to reference Taichman RS, Cooper C, Keller ET et al (2002) Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 62(6):1832–1837PubMed Taichman RS, Cooper C, Keller ET et al (2002) Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 62(6):1832–1837PubMed
9.
go back to reference Soejima K, Rollins BJ (2001) A functional IFN-gamma-inducible protein-10/CXCL10-specific receptor expressed by epithelial and endothelial cells that is neither CXCR3 nor glycosaminoglycan. J Immunol (Baltimore:1950) 167(11):6576–6582 Soejima K, Rollins BJ (2001) A functional IFN-gamma-inducible protein-10/CXCL10-specific receptor expressed by epithelial and endothelial cells that is neither CXCR3 nor glycosaminoglycan. J Immunol (Baltimore:1950) 167(11):6576–6582
11.
13.
go back to reference Inoue K, Slaton JW, Kim SJ et al (2000) Interleukin 8 expression regulates tumorigenicity and metastasis in human bladder cancer. Cancer Res 60(8):2290–2299PubMed Inoue K, Slaton JW, Kim SJ et al (2000) Interleukin 8 expression regulates tumorigenicity and metastasis in human bladder cancer. Cancer Res 60(8):2290–2299PubMed
14.
go back to reference Reiland J, Furcht LT, McCarthy JB (1999) CXC-chemokines stimulate invasion and chemotaxis in prostate carcinoma cells through the CXCR2 receptor. The Prostate 41(2):78–88. doi:10.1002/(SICI)1097-0045(19991001)41:2<78::AID-PROS2>3.0.CO;2-PPubMedCrossRef Reiland J, Furcht LT, McCarthy JB (1999) CXC-chemokines stimulate invasion and chemotaxis in prostate carcinoma cells through the CXCR2 receptor. The Prostate 41(2):78–88. doi:10.1002/(SICI)1097-0045(19991001)41:2<78::AID-PROS2>3.0.CO;2-PPubMedCrossRef
15.
go back to reference Lu Y, Cai Z, Galson DL et al (2006) Monocyte chemotactic protein-1 (MCP-1) acts as a paracrine and autocrine factor for prostate cancer growth and invasion. The Prostate 66(12):1311–1318. doi:10.1002/pros.20464 PubMedCrossRef Lu Y, Cai Z, Galson DL et al (2006) Monocyte chemotactic protein-1 (MCP-1) acts as a paracrine and autocrine factor for prostate cancer growth and invasion. The Prostate 66(12):1311–1318. doi:10.​1002/​pros.​20464 PubMedCrossRef
19.
go back to reference Salcedo R, Ponce ML, Young HA et al (2000) Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood 96(1):34–40PubMed Salcedo R, Ponce ML, Young HA et al (2000) Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood 96(1):34–40PubMed
20.
go back to reference Vande Broek I, Asosingh K, Vanderkerken K et al (2003) Chemokine receptor CCR2 is expressed by human multiple myeloma cells and mediates migration to bone marrow stromal cell-produced monocyte chemotactic proteins MCP-1, -2 and -3. Br J Cancer 88(6):855–862. doi:10.1038/sj.bjc.6600833 CrossRef Vande Broek I, Asosingh K, Vanderkerken K et al (2003) Chemokine receptor CCR2 is expressed by human multiple myeloma cells and mediates migration to bone marrow stromal cell-produced monocyte chemotactic proteins MCP-1, -2 and -3. Br J Cancer 88(6):855–862. doi:10.​1038/​sj.​bjc.​6600833 CrossRef
21.
22.
go back to reference Lebrecht A, Hefler L, Tempfer C et al (2001) Serum cytokine concentrations in patients with cervical cancer: interleukin-4, interferon-gamma, and monocyte chemoattractant protein-1. Gynecol Oncol 83(1):170–171. doi:10.1006/gyno.2001.6361 PubMedCrossRef Lebrecht A, Hefler L, Tempfer C et al (2001) Serum cytokine concentrations in patients with cervical cancer: interleukin-4, interferon-gamma, and monocyte chemoattractant protein-1. Gynecol Oncol 83(1):170–171. doi:10.​1006/​gyno.​2001.​6361 PubMedCrossRef
26.
go back to reference Lu Y, Xiao G, Galson DL et al (2007) PTHrP-induced MCP-1 production by human bone marrow endothelial cells and osteoblasts promotes osteoclast differentiation and prostate cancer cell proliferation and invasion in vitro. Int J Cancer 121(4):724–733. doi:10.1002/ijc.22704 PubMedCrossRef Lu Y, Xiao G, Galson DL et al (2007) PTHrP-induced MCP-1 production by human bone marrow endothelial cells and osteoblasts promotes osteoclast differentiation and prostate cancer cell proliferation and invasion in vitro. Int J Cancer 121(4):724–733. doi:10.​1002/​ijc.​22704 PubMedCrossRef
27.
go back to reference Zhang J, Dai J, Qi Y et al (2001) Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest 107(10):1235–1244. doi:10.1172/JCI11685 PubMedCrossRef Zhang J, Dai J, Qi Y et al (2001) Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest 107(10):1235–1244. doi:10.​1172/​JCI11685 PubMedCrossRef
28.
go back to reference Zhang J, Dai J, Yao Z et al (2003) Soluble receptor activator of nuclear factor kappaB Fc diminishes prostate cancer progression in bone. Cancer Res 63(22):7883–7890PubMed Zhang J, Dai J, Yao Z et al (2003) Soluble receptor activator of nuclear factor kappaB Fc diminishes prostate cancer progression in bone. Cancer Res 63(22):7883–7890PubMed
30.
go back to reference Loberg RD, Day LL, Harwood J et al (2006) CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia (New York) 8(7):578–586. doi:10.1593/neo.06280 Loberg RD, Day LL, Harwood J et al (2006) CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia (New York) 8(7):578–586. doi:10.​1593/​neo.​06280
32.
go back to reference Youngs SJ, Ali SA, Taub DD et al (1997) Chemokines induce migrational responses in human breast carcinoma cell lines. Int J Cancer 71(2):257–266. doi:10.1002/(SICI)1097-0215(19970410)71:2<257::AID-IJC22>3.0.CO;2-DPubMedCrossRef Youngs SJ, Ali SA, Taub DD et al (1997) Chemokines induce migrational responses in human breast carcinoma cell lines. Int J Cancer 71(2):257–266. doi:10.1002/(SICI)1097-0215(19970410)71:2<257::AID-IJC22>3.0.CO;2-DPubMedCrossRef
33.
go back to reference Bottazzi B, Colotta F, Sica A et al (1990) A chemoattractant expressed in human sarcoma cells (tumor-derived chemotactic factor, TDCF) is identical to monocyte chemoattractant protein-1/monocyte chemotactic and activating factor (MCP-1/MCAF). Int J Cancer 45(4):795–797. doi:10.1002/ijc.2910450436 PubMedCrossRef Bottazzi B, Colotta F, Sica A et al (1990) A chemoattractant expressed in human sarcoma cells (tumor-derived chemotactic factor, TDCF) is identical to monocyte chemoattractant protein-1/monocyte chemotactic and activating factor (MCP-1/MCAF). Int J Cancer 45(4):795–797. doi:10.​1002/​ijc.​2910450436 PubMedCrossRef
34.
go back to reference Mantovani A, Sozzani S, Bottazzi B et al (1993) Monocyte chemotactic protein-1 (MCP-1): signal transduction and involvement in the regulation of macrophage traffic in normal and neoplastic tissues. Adv Exp Med Biol 351:47–54PubMed Mantovani A, Sozzani S, Bottazzi B et al (1993) Monocyte chemotactic protein-1 (MCP-1): signal transduction and involvement in the regulation of macrophage traffic in normal and neoplastic tissues. Adv Exp Med Biol 351:47–54PubMed
Metadata
Title
Activation of MCP-1/CCR2 axis promotes prostate cancer growth in bone
Authors
Yi Lu
Qiuyan Chen
Eva Corey
Wen Xie
Jie Fan
Atsushi Mizokami
Jian Zhang
Publication date
01-02-2009
Publisher
Springer Netherlands
Published in
Clinical & Experimental Metastasis / Issue 2/2009
Print ISSN: 0262-0898
Electronic ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-008-9226-7

Other articles of this Issue 2/2009

Clinical & Experimental Metastasis 2/2009 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine