Skip to main content
Top
Published in: American Journal of Clinical Dermatology 1/2020

01-02-2020 | Acne | Short Communication

Characterization and Analysis of the Skin Microbiota in Rosacea: A Case–Control Study

Authors: Barbara M. Rainer, Katherine G. Thompson, Corina Antonescu, Liliana Florea, Emmanuel F. Mongodin, Jonathan Bui, Alexander H. Fischer, Helena B. Pasieka, Luis A. Garza, Sewon Kang, Anna L. Chien

Published in: American Journal of Clinical Dermatology | Issue 1/2020

Login to get access

Abstract

Background

The efficacy of antibiotics in rosacea treatment suggests a role for microorganisms in its pathophysiology. Growing concern over the adverse effects of antibiotic use presents a need for targeted antimicrobial treatment in rosacea.

Objective

We performed a case–control study to investigate the skin microbiota in patients with rosacea compared to controls matched by age, sex, and race.

Methods

Nineteen participants with rosacea, erythematotelangiectatic, papulopustular, or both, were matched to 19 rosacea-free controls. DNA was extracted from skin swabs of the nose and bilateral cheeks of participants. Sequencing of the V3V4 region of the bacterial 16S ribosomal RNA gene was performed using Illumina MiSeq and analyzed using QIIME/MetaStats 2.0 software.

Results

Compared with controls, skin microbiota in erythematotelangiectatic rosacea was depleted in Roseomonas mucosa (p = 0.004). Papulopustular rosacea was enriched in Campylobacter ureolyticus (p = 0.001), Corynebacterium kroppenstedtii (p = 0.008), and the oral flora Prevotella intermedia (p = 0.001). The highest relative abundance of C. kroppenstedtii was observed in patients with both erythematotelangiectatic and papulopustular rosacea (19.2%), followed by papulopustular (5.06%) and erythematotelangiectatic (1.21%) rosacea. C. kroppenstedtii was also associated with more extensive disease, with the highest relative abundance in rosacea affecting both the cheeks and nose (2.82%), followed by rosacea sparing the nose (1.93%), and controls (0.19%).

Conclusions

The skin microbiota in individuals with rosacea displays changes from that of healthy skin, suggesting that further studies examining a potential role for the skin microbiota in the pathophysiology of rosacea may be warranted.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wilkin JK. Rosacea: pathophysiology and treatment. Arch Dermatol. 1994;130:359–62.PubMed Wilkin JK. Rosacea: pathophysiology and treatment. Arch Dermatol. 1994;130:359–62.PubMed
2.
go back to reference Powell FC. Clinical practice: rosacea. N Engl J Med. 2005;352(8):793–800.PubMed Powell FC. Clinical practice: rosacea. N Engl J Med. 2005;352(8):793–800.PubMed
3.
go back to reference Wilkin J, Dahl M, Detmar M, et al. Standard classification of rosacea: report of the National Rosacea Society Expert Committee on the classification and staging of rosacea. J Am Acad Dermatol. 2002;46(4):584–7.PubMed Wilkin J, Dahl M, Detmar M, et al. Standard classification of rosacea: report of the National Rosacea Society Expert Committee on the classification and staging of rosacea. J Am Acad Dermatol. 2002;46(4):584–7.PubMed
4.
go back to reference Wilkin J, Dahl M, Detmar M, et al. Standard grading system for rosacea: report of the National Rosacea Society Expert Committee on the classification and staging of rosacea. J Am Acad Dermatol. 2004;50(6):907–12.PubMed Wilkin J, Dahl M, Detmar M, et al. Standard grading system for rosacea: report of the National Rosacea Society Expert Committee on the classification and staging of rosacea. J Am Acad Dermatol. 2004;50(6):907–12.PubMed
5.
go back to reference Powell FC. What’s going on in rosacea? J Eur Acad Dermatol Venereol. 2000;14:351–2.PubMed Powell FC. What’s going on in rosacea? J Eur Acad Dermatol Venereol. 2000;14:351–2.PubMed
6.
go back to reference Whitfeld M, Gunasingam N, Leow LJ, et al. Staphylococcus epidermidis: a possible role in the pustules of rosacea. J Am Acad Dermatol. 2011;64(1):49–52.PubMed Whitfeld M, Gunasingam N, Leow LJ, et al. Staphylococcus epidermidis: a possible role in the pustules of rosacea. J Am Acad Dermatol. 2011;64(1):49–52.PubMed
7.
go back to reference Bonnar E, Eustace P, Powell FC. The Demodex mite population in rosacea. J Am Acad Dermatol. 1993;28(3):443–8.PubMed Bonnar E, Eustace P, Powell FC. The Demodex mite population in rosacea. J Am Acad Dermatol. 1993;28(3):443–8.PubMed
8.
go back to reference Lacey N, Delaney S, Kavanagh K, Powell FC. Mite-related bacterial antigens stimulate inflammatory cells in rosacea. Br J Dermatol. 2007;157:474–81.PubMed Lacey N, Delaney S, Kavanagh K, Powell FC. Mite-related bacterial antigens stimulate inflammatory cells in rosacea. Br J Dermatol. 2007;157:474–81.PubMed
9.
go back to reference Murillo N, Mediannikov O, Aubert J, Raoult D. Bartonella quintana detection from Demodex in erythematotelangiectatic rosacea patients. Int J Infect Dis. 2014;29:176–7.PubMed Murillo N, Mediannikov O, Aubert J, Raoult D. Bartonella quintana detection from Demodex in erythematotelangiectatic rosacea patients. Int J Infect Dis. 2014;29:176–7.PubMed
10.
go back to reference Kong HH. Skin microbiome: genomics-based insights into the diversity and role of skin microbes. Trends Mol Med. 2011;17(6):320–8.PubMedPubMedCentral Kong HH. Skin microbiome: genomics-based insights into the diversity and role of skin microbes. Trends Mol Med. 2011;17(6):320–8.PubMedPubMedCentral
11.
go back to reference Kong HH, Oh J, Deming C, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22:850–9.PubMedPubMedCentral Kong HH, Oh J, Deming C, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22:850–9.PubMedPubMedCentral
12.
go back to reference Kong HH, Segre JA. Skin microbiome: looking back to move forward. J Investig Dermatol. 2012;132(302):933–9.PubMed Kong HH, Segre JA. Skin microbiome: looking back to move forward. J Investig Dermatol. 2012;132(302):933–9.PubMed
13.
go back to reference Gao Z, Tseng C, Strober BE, et al. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One. 2008;3(7):1–9. Gao Z, Tseng C, Strober BE, et al. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One. 2008;3(7):1–9.
14.
go back to reference Clauvand C, Jourdain R, Bar-Hen A, et al. Dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colonizing the scalp. PLoS One. 2013;8(3):1–8. Clauvand C, Jourdain R, Bar-Hen A, et al. Dandruff is associated with disequilibrium in the proportion of the major bacterial and fungal populations colonizing the scalp. PLoS One. 2013;8(3):1–8.
15.
go back to reference Roghman MC, Lydecker AD, Hittle L, et al. Comparison of the microbiota of older adults living in nursing homes and the community. mSphere. 2017;2(5):e00210–7. Roghman MC, Lydecker AD, Hittle L, et al. Comparison of the microbiota of older adults living in nursing homes and the community. mSphere. 2017;2(5):e00210–7.
16.
go back to reference Bromberg JS, Hittle L, Xiong Y, et al. Gut microbiota-dependent modulation of innate immunity and lymph node remodeling affects cardiac allograft outcomes. JCI Insight. 2018;3(19):121045.PubMed Bromberg JS, Hittle L, Xiong Y, et al. Gut microbiota-dependent modulation of innate immunity and lymph node remodeling affects cardiac allograft outcomes. JCI Insight. 2018;3(19):121045.PubMed
17.
go back to reference Fadrosh DW, Ma B, Gajer P, et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome. 2014;2(1):6.PubMedPubMedCentral Fadrosh DW, Ma B, Gajer P, et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome. 2014;2(1):6.PubMedPubMedCentral
18.
go back to reference Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6.PubMedPubMedCentral Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6.PubMedPubMedCentral
19.
go back to reference White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol. 2009;5(4):e1000352.PubMedPubMedCentral White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol. 2009;5(4):e1000352.PubMedPubMedCentral
20.
go back to reference Clarke KR. Non-parametric multivariate analyses of changes in community structure. Aust J Ecol. 1993;18(1):117–43. Clarke KR. Non-parametric multivariate analyses of changes in community structure. Aust J Ecol. 1993;18(1):117–43.
21.
go back to reference The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2013;486(7402):207–14. The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2013;486(7402):207–14.
22.
go back to reference Chao A, Chiu CH, Jost L. Phylogenetic diversity measures and their decomposition: a framework based on Hill numbers. In: Pellens R, Grandcolas P, editors. Biodiversity conservation and phylogenetic systematics: topics in biodiversity and conservation, vol. 14. Cham: Springer; 2016. Chao A, Chiu CH, Jost L. Phylogenetic diversity measures and their decomposition: a framework based on Hill numbers. In: Pellens R, Grandcolas P, editors. Biodiversity conservation and phylogenetic systematics: topics in biodiversity and conservation, vol. 14. Cham: Springer; 2016.
23.
go back to reference Hamandy M, Lozupone C, Knight R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 2010;4(1):17–27. Hamandy M, Lozupone C, Knight R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 2010;4(1):17–27.
24.
go back to reference Zaidi AK, Spaunhurst K, Sprockett D, Thomason Y, Mann MW, Fu P, et al. Characterization of the facial microbiome in twins discordant for rosacea. Exp Dermatol. 2018;27(3):295–8.PubMedPubMedCentral Zaidi AK, Spaunhurst K, Sprockett D, Thomason Y, Mann MW, Fu P, et al. Characterization of the facial microbiome in twins discordant for rosacea. Exp Dermatol. 2018;27(3):295–8.PubMedPubMedCentral
25.
go back to reference Murillo N, Aubert J, Raoult D. Microbiota of Demodex mites from rosacea patients and controls. Microb Pathog. 2014;71–72:37–40.PubMed Murillo N, Aubert J, Raoult D. Microbiota of Demodex mites from rosacea patients and controls. Microb Pathog. 2014;71–72:37–40.PubMed
26.
go back to reference Leyden JJ, McGinley KJ, Mills OH, Kligman AM. Age-related changes in the resident bacterial flora of the human face. J Investig Dermatol. 1975;65(4):379–81.PubMed Leyden JJ, McGinley KJ, Mills OH, Kligman AM. Age-related changes in the resident bacterial flora of the human face. J Investig Dermatol. 1975;65(4):379–81.PubMed
27.
go back to reference Barnard E, Shi B, Kang D, et al. The balance of metagenomics elements shapes the skin microbiome in acne and health. Sci Rep. 2016;6:39491.PubMedPubMedCentral Barnard E, Shi B, Kang D, et al. The balance of metagenomics elements shapes the skin microbiome in acne and health. Sci Rep. 2016;6:39491.PubMedPubMedCentral
28.
go back to reference Marples RR, Downing DT, Kligman AM. Control of free fatty acids in human surface lipids by Corynebacterium acnes. J Investig Dermatol. 1971;56(2):127–31.PubMed Marples RR, Downing DT, Kligman AM. Control of free fatty acids in human surface lipids by Corynebacterium acnes. J Investig Dermatol. 1971;56(2):127–31.PubMed
29.
go back to reference Jahns AC, Lundskog B, Dahlberg I, et al. No link between rosacea and Propionibacterium acnes. APMIS. 2012;120:922–5.PubMed Jahns AC, Lundskog B, Dahlberg I, et al. No link between rosacea and Propionibacterium acnes. APMIS. 2012;120:922–5.PubMed
30.
go back to reference Rihs JD, Brenner DJ, Weaver RE, et al. Roseomonas, a new genus associated with bacteremia and other human infections. J Clin Microbiol. 1993;31(12):3275–83.PubMedPubMedCentral Rihs JD, Brenner DJ, Weaver RE, et al. Roseomonas, a new genus associated with bacteremia and other human infections. J Clin Microbiol. 1993;31(12):3275–83.PubMedPubMedCentral
31.
go back to reference Romano-Bertrand S, Bourdier A, Aujoulat F, et al. Skin microbiota is the main reservoir of Roseomonas mucosa, an emerging opportunistic pathogen so far assumed to be environmental. Clin Microbiol Infect. 2016;22(737):e1–7. Romano-Bertrand S, Bourdier A, Aujoulat F, et al. Skin microbiota is the main reservoir of Roseomonas mucosa, an emerging opportunistic pathogen so far assumed to be environmental. Clin Microbiol Infect. 2016;22(737):e1–7.
32.
go back to reference Myles IA, Williams KW, Reckhow JD, et al. Transplantation of human skin microbiota in models of atopic dermatitis. JCI Insight. 2016;1(10):1–10. Myles IA, Williams KW, Reckhow JD, et al. Transplantation of human skin microbiota in models of atopic dermatitis. JCI Insight. 2016;1(10):1–10.
33.
go back to reference Myles IA, Earland NJ, Anderson ED, et al. First-in-human topical microbiome transplantation with Roseomonas mucosa for atopic dermatitis. JCI Insight. 2018;3(9):1–13. Myles IA, Earland NJ, Anderson ED, et al. First-in-human topical microbiome transplantation with Roseomonas mucosa for atopic dermatitis. JCI Insight. 2018;3(9):1–13.
34.
go back to reference Tauch A, Fernandez-Natal I, Soriano F. A microbiological and clinical review on Corynebacterium kroppenstedtii. Int J Infect Dis. 2016;48:33–9.PubMed Tauch A, Fernandez-Natal I, Soriano F. A microbiological and clinical review on Corynebacterium kroppenstedtii. Int J Infect Dis. 2016;48:33–9.PubMed
35.
go back to reference Fujii M, Mizutani Y, Sakuma T, et al. Corynebacterium kroppenstedtii in granulomatous mastitis: analysis of formalin-fixed, paraffin-embedded biopsy specimens by immunostaining using low-specificity bacterial antisera and real-time polymerase chain reaction. Pathol Int. 2018;68(7):409–18.PubMed Fujii M, Mizutani Y, Sakuma T, et al. Corynebacterium kroppenstedtii in granulomatous mastitis: analysis of formalin-fixed, paraffin-embedded biopsy specimens by immunostaining using low-specificity bacterial antisera and real-time polymerase chain reaction. Pathol Int. 2018;68(7):409–18.PubMed
36.
go back to reference Johnstone KJ, Robson J, Cherian SG, et al. Cystic neutrophilic granulomatous mastitis associated with Corynebacterium including Corynebacterium kroppenstedtii. Pathology. 2017;49(4):405–12.PubMed Johnstone KJ, Robson J, Cherian SG, et al. Cystic neutrophilic granulomatous mastitis associated with Corynebacterium including Corynebacterium kroppenstedtii. Pathology. 2017;49(4):405–12.PubMed
37.
go back to reference Fernandez-Natal I, Rodriguez-Lazaro D, Marrodan-Ciordia T, et al. Characterization and antimicrobial susceptibility of one antibiotic-sensitive and one multidrug-resistant Corynebacterium kroppenstedtii strain isolated from patients with granulomatous mastitis. New Microbes New Infect. 2016;14:93–7.PubMedPubMedCentral Fernandez-Natal I, Rodriguez-Lazaro D, Marrodan-Ciordia T, et al. Characterization and antimicrobial susceptibility of one antibiotic-sensitive and one multidrug-resistant Corynebacterium kroppenstedtii strain isolated from patients with granulomatous mastitis. New Microbes New Infect. 2016;14:93–7.PubMedPubMedCentral
38.
go back to reference Johnson MG, Leal S, Plongla R, et al. The brief case: recurrent granulomatous mastitis due to Corynebacterium kroppenstedtii. J Clin Microbiol. 2016;54(8):1938–41.PubMedPubMedCentral Johnson MG, Leal S, Plongla R, et al. The brief case: recurrent granulomatous mastitis due to Corynebacterium kroppenstedtii. J Clin Microbiol. 2016;54(8):1938–41.PubMedPubMedCentral
39.
go back to reference Riegel P, Leigeois P, Chenard MP, et al. Case report: isolations of Corynebacterium kroppenstedtii from a breast abscess. Int J Med Microbiol. 2004;294(6):413–6.PubMed Riegel P, Leigeois P, Chenard MP, et al. Case report: isolations of Corynebacterium kroppenstedtii from a breast abscess. Int J Med Microbiol. 2004;294(6):413–6.PubMed
40.
go back to reference Poojary I, Kurian A, Jayalekshmi VA, et al. Corynebacterium species causing breast abscesses among patients attending a tertiary care hospital in Chennai, South India. Infect Dis (Lond). 2017;49(7):528–31. Poojary I, Kurian A, Jayalekshmi VA, et al. Corynebacterium species causing breast abscesses among patients attending a tertiary care hospital in Chennai, South India. Infect Dis (Lond). 2017;49(7):528–31.
41.
go back to reference Goh A, Tan AL, Madhukhumar P, Yong WS. Recurrent Corynebacterium kroppenstedtii breast abscess in a young Asian female. Breast J. 2015;21(4):431–2.PubMed Goh A, Tan AL, Madhukhumar P, Yong WS. Recurrent Corynebacterium kroppenstedtii breast abscess in a young Asian female. Breast J. 2015;21(4):431–2.PubMed
42.
go back to reference Le Fleche-Mateos A, Berthet N, Lomprez F, et al. Case report: recurrent breast abscesses due to Corynebacterium kroppenstedtii, a human pathogen uncommon in Caucasian women. Case Rep Infect Dis. 2012;2012:120968.PubMedPubMedCentral Le Fleche-Mateos A, Berthet N, Lomprez F, et al. Case report: recurrent breast abscesses due to Corynebacterium kroppenstedtii, a human pathogen uncommon in Caucasian women. Case Rep Infect Dis. 2012;2012:120968.PubMedPubMedCentral
43.
go back to reference Hagemann JB, Essig A, Herrman M, et al. Early prosthetic valve endocarditis caused by Corynebacterium kroppenstedtii. Int J Med Microbiol. 2015;305:957–9.PubMed Hagemann JB, Essig A, Herrman M, et al. Early prosthetic valve endocarditis caused by Corynebacterium kroppenstedtii. Int J Med Microbiol. 2015;305:957–9.PubMed
44.
go back to reference Ni Raghallaigh S, Bender K, Lacey N, et al. The fatty acid profile of the skin surface lipid layer in papulopustular rosacea. Br J Dermatol. 2012;166(2):279–87.PubMed Ni Raghallaigh S, Bender K, Lacey N, et al. The fatty acid profile of the skin surface lipid layer in papulopustular rosacea. Br J Dermatol. 2012;166(2):279–87.PubMed
45.
go back to reference Mak TN, Schmid M, Brzuszkiewicz E, et al. Comparative genomics reveals distinct host-interacting traits of three major human-associated Propionibacteria. BMC Genom. 2013;14:640. Mak TN, Schmid M, Brzuszkiewicz E, et al. Comparative genomics reveals distinct host-interacting traits of three major human-associated Propionibacteria. BMC Genom. 2013;14:640.
46.
go back to reference Meisel JS, Hannigan GD, Tyldsley AS, SanMiguel AJ, Hodkinson BP, Zheng Q, et al. Skin microbiome surveys are strongly influenced by experimental design. J Investig Dermatol. 2016;146(5):947–56. Meisel JS, Hannigan GD, Tyldsley AS, SanMiguel AJ, Hodkinson BP, Zheng Q, et al. Skin microbiome surveys are strongly influenced by experimental design. J Investig Dermatol. 2016;146(5):947–56.
47.
go back to reference Chen CJ, Su LH, Lin TY, Huang YC. Molecular analysis of repeated methicillin-resistant Staphyloccocus aureus infections in children. PLoS One. 2010;5(12):e14431.PubMedPubMedCentral Chen CJ, Su LH, Lin TY, Huang YC. Molecular analysis of repeated methicillin-resistant Staphyloccocus aureus infections in children. PLoS One. 2010;5(12):e14431.PubMedPubMedCentral
Metadata
Title
Characterization and Analysis of the Skin Microbiota in Rosacea: A Case–Control Study
Authors
Barbara M. Rainer
Katherine G. Thompson
Corina Antonescu
Liliana Florea
Emmanuel F. Mongodin
Jonathan Bui
Alexander H. Fischer
Helena B. Pasieka
Luis A. Garza
Sewon Kang
Anna L. Chien
Publication date
01-02-2020
Publisher
Springer International Publishing
Published in
American Journal of Clinical Dermatology / Issue 1/2020
Print ISSN: 1175-0561
Electronic ISSN: 1179-1888
DOI
https://doi.org/10.1007/s40257-019-00471-5

Other articles of this Issue 1/2020

American Journal of Clinical Dermatology 1/2020 Go to the issue