Skip to main content
Top
Published in: Dermatology and Therapy 1/2024

Open Access 06-01-2024 | Acne | Review

The Microbiome and Acne: Perspectives for Treatment

Authors: Clio Dessinioti, Andreas Katsambas

Published in: Dermatology and Therapy | Issue 1/2024

Login to get access

Abstract

The skin microbiome consists of the microorganisms populating the human skin. Cutibacterium acnes (C. acnes, formerly named Propionibacterium acnes) is recognized as a key factor in acne development, regulating inflammatory and immune pathways. Dysbiosis has been described as the imbalance in skin microbiome homeostasis and may play a role in acne pathogenesis. Microbial interference has been shown to be a contributor to healthy skin homeostasis and staphylococcal strains may exclude acne-associated C. acnes phylotypes. In this review we present an update on the skin microbiome in acne and discuss how current acne treatments such as benzoyl peroxide, orally administered isotretinoin, and antibiotics may affect the skin microbiome homeostasis. We highlight the collateral damage of acne antibiotics on the skin microbiome, including the risk of antimicrobial resistance and the dysregulation of the microbiome equilibrium that may occur even with short-term antibiotic courses. Consequently, the interest is shifting towards new non-antibiotic pharmacological acne treatments. Orally administered spironolactone is an emerging off-label treatment for adult female patients and topical peroxisome proliferator-activated receptor gamma (PPARγ) modulation is being studied for patients with acne. The potential application of topical or oral probiotics, bacteriotherapy, and phage therapy for acne are further promising areas of future research.
Literature
1.
5.
6.
go back to reference Carmona-Cruz S, Orozco-Covarrubias L, Saez-de-Ocariz M. The human skin microbiome in selected cutaneous diseases. Front Cell Infect Microbiol. 2022;12:834135.PubMedPubMedCentralCrossRef Carmona-Cruz S, Orozco-Covarrubias L, Saez-de-Ocariz M. The human skin microbiome in selected cutaneous diseases. Front Cell Infect Microbiol. 2022;12:834135.PubMedPubMedCentralCrossRef
7.
go back to reference Robert C, Cascella F, Mellai M, et al. Influence of sex on the microbiota of the human face. Microorganisms. 2022;10(12):2470. Robert C, Cascella F, Mellai M, et al. Influence of sex on the microbiota of the human face. Microorganisms. 2022;10(12):2470.
8.
go back to reference Till AE, Goulden V, Cunliffe WJ, et al. The cutaneous microflora of adolescent, persistent and late-onset acne patients does not differ. Br J Dermatol. 2000;142:885–92.PubMedCrossRef Till AE, Goulden V, Cunliffe WJ, et al. The cutaneous microflora of adolescent, persistent and late-onset acne patients does not differ. Br J Dermatol. 2000;142:885–92.PubMedCrossRef
9.
go back to reference Kelhala HL, Aho VTE, Fyhrquist N, et al. Isotretinoin and lymecycline treatments modify the skin microbiota in acne. Exp Dermatol. 2018;27:30–6.PubMedCrossRef Kelhala HL, Aho VTE, Fyhrquist N, et al. Isotretinoin and lymecycline treatments modify the skin microbiota in acne. Exp Dermatol. 2018;27:30–6.PubMedCrossRef
10.
go back to reference Moradi Tuchayi S, Makrantonaki E, Ganceviciene R, Dessinioti C, Feldman SR, Zouboulis CC. Acne vulgaris. Nat Rev Dis Primers. 2015;1:15029.PubMedCrossRef Moradi Tuchayi S, Makrantonaki E, Ganceviciene R, Dessinioti C, Feldman SR, Zouboulis CC. Acne vulgaris. Nat Rev Dis Primers. 2015;1:15029.PubMedCrossRef
11.
go back to reference Dessinioti C, Tzanetakou V, Zisimou C, et al. A study of androgenic signs and disorders in Greek female patients with acne. J Eur Acad Dermatol Venereol. 2018;32:e279–82.PubMedCrossRef Dessinioti C, Tzanetakou V, Zisimou C, et al. A study of androgenic signs and disorders in Greek female patients with acne. J Eur Acad Dermatol Venereol. 2018;32:e279–82.PubMedCrossRef
12.
go back to reference Conwill A, Kuan AC, Damerla R, et al. Anatomy promotes neutral coexistence of strains in the human skin microbiome. Cell Host Microbe. 2022;30:171–182.e7. Conwill A, Kuan AC, Damerla R, et al. Anatomy promotes neutral coexistence of strains in the human skin microbiome. Cell Host Microbe. 2022;30:171–182.e7.
13.
go back to reference Ahle CM, Stodkilde K, Poehlein A, et al. Interference and co-existence of staphylococci and Cutibacterium acnes within the healthy human skin microbiome. Commun Biol. 2022;5:923.PubMedPubMedCentralCrossRef Ahle CM, Stodkilde K, Poehlein A, et al. Interference and co-existence of staphylococci and Cutibacterium acnes within the healthy human skin microbiome. Commun Biol. 2022;5:923.PubMedPubMedCentralCrossRef
15.
go back to reference Dessinioti C, Katsambas A. Propionibacterium acnes and antimicrobial resistance in acne. Clin Dermatol. 2017;35:163–7.PubMedCrossRef Dessinioti C, Katsambas A. Propionibacterium acnes and antimicrobial resistance in acne. Clin Dermatol. 2017;35:163–7.PubMedCrossRef
16.
go back to reference Dessinioti C, Katsambas AD. The role of Propionibacterium acnes in acne pathogenesis: facts and controversies. Clin Dermatol. 2010;28:2–7.PubMedCrossRef Dessinioti C, Katsambas AD. The role of Propionibacterium acnes in acne pathogenesis: facts and controversies. Clin Dermatol. 2010;28:2–7.PubMedCrossRef
17.
go back to reference Fitz-Gibbon S, Tomida S, Chiu BH, et al. Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J Invest Dermatol. 2013;133:2152–60.PubMedPubMedCentralCrossRef Fitz-Gibbon S, Tomida S, Chiu BH, et al. Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J Invest Dermatol. 2013;133:2152–60.PubMedPubMedCentralCrossRef
18.
go back to reference Kim J, Ochoa MT, Krutzik SR, et al. Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol. 2002;169:1535–41.PubMedCrossRef Kim J, Ochoa MT, Krutzik SR, et al. Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol. 2002;169:1535–41.PubMedCrossRef
19.
go back to reference Qin M, Pirouz A, Kim MH, et al. Propionibacterium acnes induces IL-1beta secretion via the NLRP3 inflammasome in human monocytes. J Invest Dermatol. 2014;134:381–8.PubMedCrossRef Qin M, Pirouz A, Kim MH, et al. Propionibacterium acnes induces IL-1beta secretion via the NLRP3 inflammasome in human monocytes. J Invest Dermatol. 2014;134:381–8.PubMedCrossRef
20.
go back to reference Agak GW, Qin M, Nobe J, et al. Propionibacterium acnes induces an IL-17 response in acne vulgaris that is regulated by vitamin A and vitamin D. J Invest Dermatol. 2014;134:366–73.PubMedCrossRef Agak GW, Qin M, Nobe J, et al. Propionibacterium acnes induces an IL-17 response in acne vulgaris that is regulated by vitamin A and vitamin D. J Invest Dermatol. 2014;134:366–73.PubMedCrossRef
21.
go back to reference Kistowska M, Meier B, Proust T, et al. Propionibacterium acnes promotes Th17 and Th17/Th1 responses in acne patients. J Invest Dermatol. 2015;135:110–8.PubMedCrossRef Kistowska M, Meier B, Proust T, et al. Propionibacterium acnes promotes Th17 and Th17/Th1 responses in acne patients. J Invest Dermatol. 2015;135:110–8.PubMedCrossRef
22.
23.
go back to reference Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 1999;11:443–51.PubMedCrossRef Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 1999;11:443–51.PubMedCrossRef
24.
go back to reference Isard O, Knol AC, Aries MF, et al. Propionibacterium acnes activates the IGF-1/IGF-1R system in the epidermis and induces keratinocyte proliferation. J Invest Dermatol. 2011;131:59–66.PubMedCrossRef Isard O, Knol AC, Aries MF, et al. Propionibacterium acnes activates the IGF-1/IGF-1R system in the epidermis and induces keratinocyte proliferation. J Invest Dermatol. 2011;131:59–66.PubMedCrossRef
25.
go back to reference Kistowska M, Gehrke S, Jankovic D, et al. IL-1beta drives inflammatory responses to propionibacterium acnes in vitro and in vivo. J Invest Dermatol. 2014;134:677–85.PubMedCrossRef Kistowska M, Gehrke S, Jankovic D, et al. IL-1beta drives inflammatory responses to propionibacterium acnes in vitro and in vivo. J Invest Dermatol. 2014;134:677–85.PubMedCrossRef
26.
go back to reference O'Neill AM, Liggins MC, Seidman JS, et al. Antimicrobial production by perifollicular dermal preadipocytes is essential to the pathophysiology of acne. Sci Transl Med. 2022;14:eabh1478. O'Neill AM, Liggins MC, Seidman JS, et al. Antimicrobial production by perifollicular dermal preadipocytes is essential to the pathophysiology of acne. Sci Transl Med. 2022;14:eabh1478.
27.
go back to reference McDowell A, Gao A, Barnard E, et al. A novel multilocus sequence typing scheme for the opportunistic pathogen Propionibacterium acnes and characterization of type I cell surface-associated antigens. Microbiology. 2011;157:1990–2003.PubMedCrossRef McDowell A, Gao A, Barnard E, et al. A novel multilocus sequence typing scheme for the opportunistic pathogen Propionibacterium acnes and characterization of type I cell surface-associated antigens. Microbiology. 2011;157:1990–2003.PubMedCrossRef
28.
go back to reference McLaughlin J, Watterson S, Layton AM, et al. Propionibacterium acnes and acne vulgaris: new insights from the integration of population genetic, multi-omic, biochemical and host-microbe studies. Microorganisms. 2019;7:128. McLaughlin J, Watterson S, Layton AM, et al. Propionibacterium acnes and acne vulgaris: new insights from the integration of population genetic, multi-omic, biochemical and host-microbe studies. Microorganisms. 2019;7:128.
29.
go back to reference Dekio I, McDowell A, Sakamoto M, et al. Proposal of new combination, Cutibacterium acnes subsp. elongatum comb. nov., and emended descriptions of the genus Cutibacterium, Cutibacterium acnes subsp. acnes and Cutibacterium acnes subsp. defendens. Int J Syst Evol Microbiol. 2019;69:1087–1092. Dekio I, McDowell A, Sakamoto M, et al. Proposal of new combination, Cutibacterium acnes subsp. elongatum comb. nov., and emended descriptions of the genus Cutibacterium, Cutibacterium acnes subsp. acnes and Cutibacterium acnes subsp. defendens. Int J Syst Evol Microbiol. 2019;69:1087–1092.
31.
go back to reference Dagnelie MA, Corvec S, Saint-Jean M, et al. Decrease in diversity of Propionibacterium acnes phylotypes in patients with severe acne on the back. Acta Derm Venereol. 2018;98:262–7.PubMedCrossRef Dagnelie MA, Corvec S, Saint-Jean M, et al. Decrease in diversity of Propionibacterium acnes phylotypes in patients with severe acne on the back. Acta Derm Venereol. 2018;98:262–7.PubMedCrossRef
32.
go back to reference Paugam C, Corvec S, Saint-Jean M, et al. Propionibacterium acnes phylotypes and acne severity: an observational prospective study. J Eur Acad Dermatol Venereol. 2017;31:e398–9.PubMedCrossRef Paugam C, Corvec S, Saint-Jean M, et al. Propionibacterium acnes phylotypes and acne severity: an observational prospective study. J Eur Acad Dermatol Venereol. 2017;31:e398–9.PubMedCrossRef
33.
go back to reference Guo Z, Yang Y, Wu Q, et al. New insights into the characteristic skin microorganisms in different grades of acne and different acne sites. Front Microbiol. 2023;14:1167923.PubMedPubMedCentralCrossRef Guo Z, Yang Y, Wu Q, et al. New insights into the characteristic skin microorganisms in different grades of acne and different acne sites. Front Microbiol. 2023;14:1167923.PubMedPubMedCentralCrossRef
34.
go back to reference Nakase K, Hayashi N, Akiyama Y, et al. Antimicrobial susceptibility and phylogenetic analysis of Propionibacterium acnes isolated from acne patients in Japan between 2013 and 2015. J Dermatol. 2017;44:1248–54.PubMedCrossRef Nakase K, Hayashi N, Akiyama Y, et al. Antimicrobial susceptibility and phylogenetic analysis of Propionibacterium acnes isolated from acne patients in Japan between 2013 and 2015. J Dermatol. 2017;44:1248–54.PubMedCrossRef
35.
go back to reference Nakase K, Okamoto Y, Aoki S, et al. Long-term administration of oral macrolides for acne treatment increases macrolide-resistant Propionibacterium acnes. J Dermatol. 2018;45:340–3.PubMedCrossRef Nakase K, Okamoto Y, Aoki S, et al. Long-term administration of oral macrolides for acne treatment increases macrolide-resistant Propionibacterium acnes. J Dermatol. 2018;45:340–3.PubMedCrossRef
37.
go back to reference Bruggemann H, Salar-Vidal L, Gollnick HPM, et al. A Janus-faced bacterium: host-beneficial and -detrimental roles of Cutibacterium acnes. Front Microbiol. 2021;12:673845.PubMedPubMedCentralCrossRef Bruggemann H, Salar-Vidal L, Gollnick HPM, et al. A Janus-faced bacterium: host-beneficial and -detrimental roles of Cutibacterium acnes. Front Microbiol. 2021;12:673845.PubMedPubMedCentralCrossRef
38.
go back to reference Dagnelie MA, Corvec S, Timon-David E, et al. Cutibacterium acnes and Staphylococcus epidermidis: the unmissable modulators of skin inflammatory response. Exp Dermatol. 2022;31:406–12.PubMedCrossRef Dagnelie MA, Corvec S, Timon-David E, et al. Cutibacterium acnes and Staphylococcus epidermidis: the unmissable modulators of skin inflammatory response. Exp Dermatol. 2022;31:406–12.PubMedCrossRef
39.
go back to reference O'Neill AM, Nakatsuji T, Hayachi A, et al. Identification of a human skin commensal bacterium that selectively kills Cutibacterium acnes. J Invest Dermatol. 2020;140(8):1619–28.e2. O'Neill AM, Nakatsuji T, Hayachi A, et al. Identification of a human skin commensal bacterium that selectively kills Cutibacterium acnes. J Invest Dermatol. 2020;140(8):1619–28.e2.
40.
go back to reference Cogen AL, Yamasaki K, Sanchez KM, et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J Invest Dermatol. 2010;130:192–200.PubMedPubMedCentralCrossRef Cogen AL, Yamasaki K, Sanchez KM, et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J Invest Dermatol. 2010;130:192–200.PubMedPubMedCentralCrossRef
41.
go back to reference Nast A, Dreno B, Bettoli V, et al. European evidence-based (S3) guideline for the treatment of acne - update 2016 - short version. J Eur Acad Dermatol Venereol. 2016;30:1261–8.PubMedCrossRef Nast A, Dreno B, Bettoli V, et al. European evidence-based (S3) guideline for the treatment of acne - update 2016 - short version. J Eur Acad Dermatol Venereol. 2016;30:1261–8.PubMedCrossRef
42.
go back to reference Xu J, Mavranezouli I, Kuznetsov L, et al. Management of acne vulgaris: summary of NICE guidance. BMJ. 2021;374:n1800.PubMedCrossRef Xu J, Mavranezouli I, Kuznetsov L, et al. Management of acne vulgaris: summary of NICE guidance. BMJ. 2021;374:n1800.PubMedCrossRef
43.
go back to reference Gollnick H, Cunliffe W, Berson D, et al. Management of acne: a report from a global alliance to improve outcomes in acne. J Am Acad Dermatol. 2003;49:S1–37.PubMedCrossRef Gollnick H, Cunliffe W, Berson D, et al. Management of acne: a report from a global alliance to improve outcomes in acne. J Am Acad Dermatol. 2003;49:S1–37.PubMedCrossRef
44.
go back to reference Bojar RA, Holland KT, Cunliffe WJ. The in-vitro antimicrobial effects of azelaic acid upon Propionibacterium acnes strain P37. J Antimicrob Chemother. 1991;28:843–53.PubMedCrossRef Bojar RA, Holland KT, Cunliffe WJ. The in-vitro antimicrobial effects of azelaic acid upon Propionibacterium acnes strain P37. J Antimicrob Chemother. 1991;28:843–53.PubMedCrossRef
45.
go back to reference Cunliffe WJ, Holland KT. Clinical and laboratory studies on treatment with 20% azelaic acid cream for acne. Acta Derm Venereol Suppl (Stockh). 1989;143:31–4.PubMed Cunliffe WJ, Holland KT. Clinical and laboratory studies on treatment with 20% azelaic acid cream for acne. Acta Derm Venereol Suppl (Stockh). 1989;143:31–4.PubMed
46.
go back to reference Dessinioti C, Zouboulis CC, Bettoli V, et al. Comparison of guidelines and consensus articles on the management of patients with acne with oral isotretinoin. J Eur Acad Dermatol Venereol. 2020;34(10):2229–40. Dessinioti C, Zouboulis CC, Bettoli V, et al. Comparison of guidelines and consensus articles on the management of patients with acne with oral isotretinoin. J Eur Acad Dermatol Venereol. 2020;34(10):2229–40.
47.
go back to reference Katsambas AD, Dessinioti C. Hormonal therapy for acne: why not as first line therapy? facts and controversies. Clin Dermatol. 2010;28:17–23.PubMedCrossRef Katsambas AD, Dessinioti C. Hormonal therapy for acne: why not as first line therapy? facts and controversies. Clin Dermatol. 2010;28:17–23.PubMedCrossRef
48.
go back to reference Zaenglein AL, Pathy AL, Schlosser BJ, et al. Guidelines of care for the management of acne vulgaris. J Am Acad Dermatol. 2016;74:945–73.e33. Zaenglein AL, Pathy AL, Schlosser BJ, et al. Guidelines of care for the management of acne vulgaris. J Am Acad Dermatol. 2016;74:945–73.e33.
49.
go back to reference Bojar RA, Cunliffe WJ, Holland KT. The short-term treatment of acne vulgaris with benzoyl peroxide: effects on the surface and follicular cutaneous microflora. Br J Dermatol. 1995;132:204–8.PubMedCrossRef Bojar RA, Cunliffe WJ, Holland KT. The short-term treatment of acne vulgaris with benzoyl peroxide: effects on the surface and follicular cutaneous microflora. Br J Dermatol. 1995;132:204–8.PubMedCrossRef
50.
go back to reference Boonchaya P, Rojhirunsakool S, Kamanamool N, et al. Minimum contact time of 1.25%, 2.5%, 5%, and 10% benzoyl peroxide for a bactericidal effect against Cutibacterium acnes. Clin Cosmet Investig Dermatol. 2022;15:403–9. Boonchaya P, Rojhirunsakool S, Kamanamool N, et al. Minimum contact time of 1.25%, 2.5%, 5%, and 10% benzoyl peroxide for a bactericidal effect against Cutibacterium acnes. Clin Cosmet Investig Dermatol. 2022;15:403–9.
51.
go back to reference Zhou L, Chen L, Liu X, et al. The influence of benzoyl peroxide on skin microbiota and the epidermal barrier for acne vulgaris. Dermatol Ther. 2022;35:e15288.PubMedCrossRef Zhou L, Chen L, Liu X, et al. The influence of benzoyl peroxide on skin microbiota and the epidermal barrier for acne vulgaris. Dermatol Ther. 2022;35:e15288.PubMedCrossRef
52.
go back to reference Weissmann A, Wagner A, Plewig G. Reduction of bacterial skin flora during oral treatment of severe acne with 13-cis retinoic acid. Arch Dermatol Res. 1981;270:179–83.PubMedCrossRef Weissmann A, Wagner A, Plewig G. Reduction of bacterial skin flora during oral treatment of severe acne with 13-cis retinoic acid. Arch Dermatol Res. 1981;270:179–83.PubMedCrossRef
53.
go back to reference King K, Jones DH, Daltrey DC, et al. A double-blind study of the effects of 13-cis-retinoic acid on acne, sebum excretion rate and microbial population. Br J Dermatol. 1982;107:583–90.PubMedCrossRef King K, Jones DH, Daltrey DC, et al. A double-blind study of the effects of 13-cis-retinoic acid on acne, sebum excretion rate and microbial population. Br J Dermatol. 1982;107:583–90.PubMedCrossRef
54.
go back to reference McCoy WH 4th, Otchere E, Rosa BA, et al. Skin ecology during sebaceous drought—how skin microbes respond to isotretinoin. J Invest Dermatol. 2019;139:732–5. McCoy WH 4th, Otchere E, Rosa BA, et al. Skin ecology during sebaceous drought—how skin microbes respond to isotretinoin. J Invest Dermatol. 2019;139:732–5.
55.
go back to reference Nolan ZT, Banerjee K, Cong Z, et al. Treatment response to isotretinoin correlates with specific shifts in Cutibacterium acnes strain composition within the follicular microbiome. Exp Dermatol. 2023;32(7):955–64. Nolan ZT, Banerjee K, Cong Z, et al. Treatment response to isotretinoin correlates with specific shifts in Cutibacterium acnes strain composition within the follicular microbiome. Exp Dermatol. 2023;32(7):955–64.
56.
go back to reference Bhate K, Mansfield KE, Sinnott SJ, et al. Long-term oral antibiotic use in people with acne vulgaris in UK primary care: a drug utilization study. Br J Dermatol. 2023;188:361–71.PubMedCrossRef Bhate K, Mansfield KE, Sinnott SJ, et al. Long-term oral antibiotic use in people with acne vulgaris in UK primary care: a drug utilization study. Br J Dermatol. 2023;188:361–71.PubMedCrossRef
57.
go back to reference Grada A, Ghannoum MA, Bunick CG. Sarecycline demonstrates clinical effectiveness against Staphylococcal infections and inflammatory dermatoses: evidence for improving antibiotic stewardship in dermatology. Antibiotics (Basel). 2022;11(6):722. Grada A, Ghannoum MA, Bunick CG. Sarecycline demonstrates clinical effectiveness against Staphylococcal infections and inflammatory dermatoses: evidence for improving antibiotic stewardship in dermatology. Antibiotics (Basel). 2022;11(6):722.
58.
go back to reference Moore A, Green LJ, Bruce S, et al. Once-daily oral sarecycline 1.5 mg/kg/day is effective for moderate to severe acne vulgaris: results from two identically designed, phase 3, randomized, double-blind clinical trials. J Drugs Dermatol. 2018;17:987–96. Moore A, Green LJ, Bruce S, et al. Once-daily oral sarecycline 1.5 mg/kg/day is effective for moderate to severe acne vulgaris: results from two identically designed, phase 3, randomized, double-blind clinical trials. J Drugs Dermatol. 2018;17:987–96.
59.
go back to reference Ross JI, Snelling AM, Carnegie E, et al. Antibiotic-resistant acne: lessons from Europe. Br J Dermatol. 2003;148:467–78.PubMedCrossRef Ross JI, Snelling AM, Carnegie E, et al. Antibiotic-resistant acne: lessons from Europe. Br J Dermatol. 2003;148:467–78.PubMedCrossRef
60.
go back to reference Dessinioti C, Katsambas A. Antibiotics and antimicrobial resistance in acne: epidemiological trends and clinical practice considerations. Yale J Biol Med. 2022;95:429–43.PubMedPubMedCentral Dessinioti C, Katsambas A. Antibiotics and antimicrobial resistance in acne: epidemiological trends and clinical practice considerations. Yale J Biol Med. 2022;95:429–43.PubMedPubMedCentral
61.
go back to reference Chien AL, Tsai J, Leung S, et al. Association of systemic antibiotic treatment of acne with skin microbiota characteristics. JAMA Dermatol. 2019;155:425–34.PubMedPubMedCentralCrossRef Chien AL, Tsai J, Leung S, et al. Association of systemic antibiotic treatment of acne with skin microbiota characteristics. JAMA Dermatol. 2019;155:425–34.PubMedPubMedCentralCrossRef
62.
go back to reference Mills O Jr, Thornsberry C, Cardin CW, et al. Bacterial resistance and therapeutic outcome following three months of topical acne therapy with 2% erythromycin gel versus its vehicle. Acta Derm Venereol. 2002;82:260–5.PubMedCrossRef Mills O Jr, Thornsberry C, Cardin CW, et al. Bacterial resistance and therapeutic outcome following three months of topical acne therapy with 2% erythromycin gel versus its vehicle. Acta Derm Venereol. 2002;82:260–5.PubMedCrossRef
63.
go back to reference Margolis DJ, Bowe WP, Hoffstad O, et al. Antibiotic treatment of acne may be associated with upper respiratory tract infections. Arch Dermatol. 2005;141:1132–6.PubMedCrossRef Margolis DJ, Bowe WP, Hoffstad O, et al. Antibiotic treatment of acne may be associated with upper respiratory tract infections. Arch Dermatol. 2005;141:1132–6.PubMedCrossRef
64.
go back to reference Tan J, Thiboutot D, Popp G, et al. Randomized phase 3 evaluation of trifarotene 50 mug/g cream treatment of moderate facial and truncal acne. J Am Acad Dermatol. 2019;80:1691–9.PubMedCrossRef Tan J, Thiboutot D, Popp G, et al. Randomized phase 3 evaluation of trifarotene 50 mug/g cream treatment of moderate facial and truncal acne. J Am Acad Dermatol. 2019;80:1691–9.PubMedCrossRef
65.
go back to reference Blume-Peytavi U, Fowler J, Kemeny L, et al. Long-term safety and efficacy of trifarotene 50 mug/g cream, a first-in-class RAR-gamma selective topical retinoid, in patients with moderate facial and truncal acne. J Eur Acad Dermatol Venereol. 2020;34:166–73.PubMedCrossRef Blume-Peytavi U, Fowler J, Kemeny L, et al. Long-term safety and efficacy of trifarotene 50 mug/g cream, a first-in-class RAR-gamma selective topical retinoid, in patients with moderate facial and truncal acne. J Eur Acad Dermatol Venereol. 2020;34:166–73.PubMedCrossRef
66.
go back to reference Hebert A, Thiboutot D, Stein Gold L, et al. Efficacy and safety of topical clascoterone cream, 1%, for treatment in patients with facial acne: two phase 3 randomized clinical trials. JAMA Dermatol. 2020;156(6):621–30. Hebert A, Thiboutot D, Stein Gold L, et al. Efficacy and safety of topical clascoterone cream, 1%, for treatment in patients with facial acne: two phase 3 randomized clinical trials. JAMA Dermatol. 2020;156(6):621–30.
67.
go back to reference Eichenfield L, Hebert A, Gold LS, et al. Open-label, long-term extension study to evaluate the safety of clascoterone (CB-03-01) cream, 1% twice daily, in patients with acne vulgaris. J Am Acad Dermatol. 2020;83:477–85.PubMedCrossRef Eichenfield L, Hebert A, Gold LS, et al. Open-label, long-term extension study to evaluate the safety of clascoterone (CB-03-01) cream, 1% twice daily, in patients with acne vulgaris. J Am Acad Dermatol. 2020;83:477–85.PubMedCrossRef
68.
go back to reference Corvol P, Michaud A, Menard J, et al. Antiandrogenic effect of spirolactones: mechanism of action. Endocrinology. 1975;97:52–8.PubMedCrossRef Corvol P, Michaud A, Menard J, et al. Antiandrogenic effect of spirolactones: mechanism of action. Endocrinology. 1975;97:52–8.PubMedCrossRef
69.
go back to reference Berman HS, Cheng CE, Hogeling M. Spironolactone in the treatment of adolescent acne: a retrospective review. J Am Acad Dermatol. 2021;85:269–71.PubMedCrossRef Berman HS, Cheng CE, Hogeling M. Spironolactone in the treatment of adolescent acne: a retrospective review. J Am Acad Dermatol. 2021;85:269–71.PubMedCrossRef
70.
go back to reference Grandhi R, Alikhan A. Spironolactone for the treatment of acne: a 4-year retrospective study. Dermatology. 2017;233:141–4.PubMedCrossRef Grandhi R, Alikhan A. Spironolactone for the treatment of acne: a 4-year retrospective study. Dermatology. 2017;233:141–4.PubMedCrossRef
71.
go back to reference Garg V, Choi JK, James WD, et al. Long-term use of spironolactone for acne in women: a case series of 403 patients. J Am Acad Dermatol. 2021;84:1348–55.PubMedCrossRef Garg V, Choi JK, James WD, et al. Long-term use of spironolactone for acne in women: a case series of 403 patients. J Am Acad Dermatol. 2021;84:1348–55.PubMedCrossRef
72.
go back to reference Isvy-Joubert A, Nguyen JM, Gaultier A, et al. Adult female acne treated with spironolactone: a retrospective data review of 70 cases. Eur J Dermatol. 2017;27:393–8.PubMedCrossRef Isvy-Joubert A, Nguyen JM, Gaultier A, et al. Adult female acne treated with spironolactone: a retrospective data review of 70 cases. Eur J Dermatol. 2017;27:393–8.PubMedCrossRef
73.
go back to reference Alekseev S, Ayadi M, Brino L, et al. A small molecule screen identifies an inhibitor of DNA repair inducing the degradation of TFIIH and the chemosensitization of tumor cells to platinum. Chem Biol. 2014;21:398–407.PubMedCrossRef Alekseev S, Ayadi M, Brino L, et al. A small molecule screen identifies an inhibitor of DNA repair inducing the degradation of TFIIH and the chemosensitization of tumor cells to platinum. Chem Biol. 2014;21:398–407.PubMedCrossRef
74.
go back to reference Kemp MG, Krishnamurthy S, Kent MN, et al. Spironolactone depletes the XPB protein and inhibits DNA damage responses in UVB-irradiated human skin. J Invest Dermatol. 2019;139:448–54.PubMedCrossRef Kemp MG, Krishnamurthy S, Kent MN, et al. Spironolactone depletes the XPB protein and inhibits DNA damage responses in UVB-irradiated human skin. J Invest Dermatol. 2019;139:448–54.PubMedCrossRef
75.
go back to reference Choi JH, Han S, Kemp MG. Detection of the small oligonucleotide products of nucleotide excision repair in UVB-irradiated human skin. DNA Repair (Amst). 2020;86:102766. Choi JH, Han S, Kemp MG. Detection of the small oligonucleotide products of nucleotide excision repair in UVB-irradiated human skin. DNA Repair (Amst). 2020;86:102766.
76.
go back to reference Ueda M, Matsuura K, Kawai H, et al. Spironolactone-induced XPB degradation depends on CDK7 kinase and SCF(FBXL18) E3 ligase. Genes Cells. 2019;24:284–96.PubMedCrossRef Ueda M, Matsuura K, Kawai H, et al. Spironolactone-induced XPB degradation depends on CDK7 kinase and SCF(FBXL18) E3 ligase. Genes Cells. 2019;24:284–96.PubMedCrossRef
77.
go back to reference Afzali BM, Yaghoobi E, Yaghoobi R, et al. Comparison of the efficacy of 5% topical spironolactone gel and placebo in the treatment of mild and moderate acne vulgaris: a randomized controlled trial. J Dermatolog Treat. 2012;23:21–5.PubMedCrossRef Afzali BM, Yaghoobi E, Yaghoobi R, et al. Comparison of the efficacy of 5% topical spironolactone gel and placebo in the treatment of mild and moderate acne vulgaris: a randomized controlled trial. J Dermatolog Treat. 2012;23:21–5.PubMedCrossRef
78.
go back to reference Rehan ST, Khan Z, Abbas S, et al. Role of topical spironolactone in the treatment of acne: a systematic review of clinical trials—Does this therapy open a path towards favorable outcomes? J Dermatol. 2023;50:166–74.PubMedCrossRef Rehan ST, Khan Z, Abbas S, et al. Role of topical spironolactone in the treatment of acne: a systematic review of clinical trials—Does this therapy open a path towards favorable outcomes? J Dermatol. 2023;50:166–74.PubMedCrossRef
80.
go back to reference Bommareddy K, Hamade H, Lopez-Olivo MA, et al. Association of spironolactone use with risk of cancer: a systematic review and meta-analysis. JAMA Dermatol. 2022;158:275–82.PubMedPubMedCentralCrossRef Bommareddy K, Hamade H, Lopez-Olivo MA, et al. Association of spironolactone use with risk of cancer: a systematic review and meta-analysis. JAMA Dermatol. 2022;158:275–82.PubMedPubMedCentralCrossRef
81.
go back to reference Santer M, Lawrence M, Renz S, et al. Effectiveness of spironolactone for women with acne vulgaris (SAFA) in England and wales: pragmatic, multicentre, phase 3, double blind, randomised controlled trial. BMJ. 2023;381:e074349.PubMedPubMedCentralCrossRef Santer M, Lawrence M, Renz S, et al. Effectiveness of spironolactone for women with acne vulgaris (SAFA) in England and wales: pragmatic, multicentre, phase 3, double blind, randomised controlled trial. BMJ. 2023;381:e074349.PubMedPubMedCentralCrossRef
82.
go back to reference Trivedi NR, Cong Z, Nelson AM, et al. Peroxisome proliferator-activated receptors increase human sebum production. J Invest Dermatol. 2006;126:2002–9.PubMedCrossRef Trivedi NR, Cong Z, Nelson AM, et al. Peroxisome proliferator-activated receptors increase human sebum production. J Invest Dermatol. 2006;126:2002–9.PubMedCrossRef
83.
go back to reference Mao-Qiang M, Fowler AJ, Schmuth M, et al. Peroxisome-proliferator-activated receptor (PPAR)-gamma activation stimulates keratinocyte differentiation. J Invest Dermatol. 2004;123:305–12.PubMedCrossRef Mao-Qiang M, Fowler AJ, Schmuth M, et al. Peroxisome-proliferator-activated receptor (PPAR)-gamma activation stimulates keratinocyte differentiation. J Invest Dermatol. 2004;123:305–12.PubMedCrossRef
84.
go back to reference Ottaviani M, Flori E, Mastrofrancesco A, et al. Sebocyte differentiation as a new target for acne therapy: an in vivo experience. J Eur Acad Dermatol Venereol. 2020;34:1803–14.PubMedCrossRef Ottaviani M, Flori E, Mastrofrancesco A, et al. Sebocyte differentiation as a new target for acne therapy: an in vivo experience. J Eur Acad Dermatol Venereol. 2020;34:1803–14.PubMedCrossRef
85.
go back to reference Picardo M, Cardinali C, La Placa M, et al. Efficacy and safety of N-acetyl-GED-0507–34-LEVO gel in patients with moderate-to severe facial acne vulgaris: a phase 2B randomised double-blind, vehicle-controlled trial. Br J Dermatol. 2022;187(4):507–14. Picardo M, Cardinali C, La Placa M, et al. Efficacy and safety of N-acetyl-GED-0507–34-LEVO gel in patients with moderate-to severe facial acne vulgaris: a phase 2B randomised double-blind, vehicle-controlled trial. Br J Dermatol. 2022;187(4):507–14.
86.
go back to reference Jung GW, Tse JE, Guiha I, et al. Prospective, randomized, open-label trial comparing the safety, efficacy, and tolerability of an acne treatment regimen with and without a probiotic supplement and minocycline in subjects with mild to moderate acne. J Cutan Med Surg. 2013;17:114–22.PubMedCrossRef Jung GW, Tse JE, Guiha I, et al. Prospective, randomized, open-label trial comparing the safety, efficacy, and tolerability of an acne treatment regimen with and without a probiotic supplement and minocycline in subjects with mild to moderate acne. J Cutan Med Surg. 2013;17:114–22.PubMedCrossRef
87.
go back to reference Kim J, Ko Y, Park YK, et al. Dietary effect of lactoferrin-enriched fermented milk on skin surface lipid and clinical improvement of acne vulgaris. Nutrition. 2010;26:902–9.PubMedCrossRef Kim J, Ko Y, Park YK, et al. Dietary effect of lactoferrin-enriched fermented milk on skin surface lipid and clinical improvement of acne vulgaris. Nutrition. 2010;26:902–9.PubMedCrossRef
88.
go back to reference Fabbrocini G, Bertona M, Picazo O, et al. Supplementation with lactobacillus rhamnosus SP1 normalises skin expression of genes implicated in insulin signalling and improves adult acne. Benef Microbes. 2016;7:625–30.PubMedCrossRef Fabbrocini G, Bertona M, Picazo O, et al. Supplementation with lactobacillus rhamnosus SP1 normalises skin expression of genes implicated in insulin signalling and improves adult acne. Benef Microbes. 2016;7:625–30.PubMedCrossRef
89.
90.
go back to reference Salminen S, Collado MC, Endo A, et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat Rev Gastroenterol Hepatol. 2021;18:649–67.PubMedPubMedCentralCrossRef Salminen S, Collado MC, Endo A, et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat Rev Gastroenterol Hepatol. 2021;18:649–67.PubMedPubMedCentralCrossRef
91.
go back to reference Nakatsuji T, Hata TR, Tong Y, et al. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nat Med. 2021;27:700–9.PubMedCrossRef Nakatsuji T, Hata TR, Tong Y, et al. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nat Med. 2021;27:700–9.PubMedCrossRef
92.
go back to reference Nakatsuji T, Gallo RL, Shafiq F, et al. Use of autologous bacteriotherapy to treat Staphylococcus aureus in patients with atopic dermatitis: a randomized double-blind clinical trial. JAMA Dermatol. 2021;157:978–82.PubMedPubMedCentralCrossRef Nakatsuji T, Gallo RL, Shafiq F, et al. Use of autologous bacteriotherapy to treat Staphylococcus aureus in patients with atopic dermatitis: a randomized double-blind clinical trial. JAMA Dermatol. 2021;157:978–82.PubMedPubMedCentralCrossRef
93.
go back to reference Dagnelie MA, Corvec S, Saint-Jean M, et al. Cutibacterium acnes phylotypes diversity loss: a trigger for skin inflammatory process. J Eur Acad Dermatol Venereol. 2019;33:2340–8.PubMedCrossRef Dagnelie MA, Corvec S, Saint-Jean M, et al. Cutibacterium acnes phylotypes diversity loss: a trigger for skin inflammatory process. J Eur Acad Dermatol Venereol. 2019;33:2340–8.PubMedCrossRef
94.
95.
go back to reference Kim S, Song H, Jin JS, et al. Genomic and phenotypic characterization of Cutibacterium acnes bacteriophages isolated from acne patients. Antibiotics (Basel). 2022;11:1041. Kim S, Song H, Jin JS, et al. Genomic and phenotypic characterization of Cutibacterium acnes bacteriophages isolated from acne patients. Antibiotics (Basel). 2022;11:1041.
96.
go back to reference Farfan J, Gonzalez JM, Vives M. The immunomodulatory potential of phage therapy to treat acne: a review on bacterial lysis and immunomodulation. PeerJ. 2022;10:e13553.PubMedPubMedCentralCrossRef Farfan J, Gonzalez JM, Vives M. The immunomodulatory potential of phage therapy to treat acne: a review on bacterial lysis and immunomodulation. PeerJ. 2022;10:e13553.PubMedPubMedCentralCrossRef
97.
98.
99.
Metadata
Title
The Microbiome and Acne: Perspectives for Treatment
Authors
Clio Dessinioti
Andreas Katsambas
Publication date
06-01-2024
Publisher
Springer Healthcare
Published in
Dermatology and Therapy / Issue 1/2024
Print ISSN: 2193-8210
Electronic ISSN: 2190-9172
DOI
https://doi.org/10.1007/s13555-023-01079-8

Other articles of this Issue 1/2024

Dermatology and Therapy 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.