Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 3/2012

01-03-2012 | Knee

Accuracy of anatomical references used for rotational alignment of tibial component in total knee arthroplasty

Authors: Namık Şahin, Teoman Atıcı, Alpaslan Öztürk, Güven Özkaya, Yüksel Özkan, Bülent Avcu

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 3/2012

Login to get access

Abstract

Purpose

This study aimed to research which was the most reliable of the four techniques based on local anatomic markers used to determine tibial component rotation in total knee arthroplasty, and whether the markers varied in knees with varus deformity.

Methods

The study included 33 knees with a normal anatomic axis and 32 knees with a varus deformity and osteoarthritis. On the MR images, the femoral transepicondylar axis (TEA) was determined and transposed to the standard tibial resection level. At this level, four axes were drawn on the axial sections: tibial posterior condylar line (PC), tibial plateau anterior line (AC), a vertical line (AA) drawn to Akagi’s line, and the maximal mediolateral distance (MMLD). The relationships of these lines and the transposed TEA were compared between two groups.

Results

In all the knees, the mean values of the PC, AA, and MMLD axes compared to TEA reference were 5.5° ± 5.7 (mean ± SD), 7° ± 3.2, and 6.7° ± 8.1 internal rotation, respectively, and the AC axis was 8.9° ± 6.7 external rotation. In the AC, AA, and MMLD axes, the change occured because of varus deformity was statistically meaningful. For all the observers, the axis with the least SD and the most accuracy was the AA axis.

Conclusions

Of the four axes used to determine tibial component rotation, only the PC axis is not affected by varus deformity, and the least affected axis according to the observers was the AA axis, and thus the AA and PC axes can be used for guidance in determining the rotation of the tibial component.

Level of evidence

Prognostic studies—investigating natural history and evaluating the effect of a patient characteristic: High-quality prospective cohort study with >80% follow-up, and all patients enrolled at same time point in disease, Level I.
Literature
1.
go back to reference Aglietti P, Sensi L, Cuomo P, Ciardullo A (2008) Rotational position of femoral and tibial components in TKA using the femoral transepicondylar axis. Clin Orthop Relat Res 466:2751–2755PubMedCrossRef Aglietti P, Sensi L, Cuomo P, Ciardullo A (2008) Rotational position of femoral and tibial components in TKA using the femoral transepicondylar axis. Clin Orthop Relat Res 466:2751–2755PubMedCrossRef
2.
go back to reference Akagi M, Oh M, Nonaka T, Tsujimoto H, Asano T, Hamanishi C (2004) An anteroposterior axis of the tibia for total knee arthroplasty. Clin Orthop Relat Res 420:213–219PubMedCrossRef Akagi M, Oh M, Nonaka T, Tsujimoto H, Asano T, Hamanishi C (2004) An anteroposterior axis of the tibia for total knee arthroplasty. Clin Orthop Relat Res 420:213–219PubMedCrossRef
3.
go back to reference Akagi M, Mori S, Nishimura S, Nishimura A, Asano T, Hamanishi C (2005) Variability of extraarticular tibial rotation references for total knee arthroplasty. Clin Orthop Relat Res 436:172–176PubMedCrossRef Akagi M, Mori S, Nishimura S, Nishimura A, Asano T, Hamanishi C (2005) Variability of extraarticular tibial rotation references for total knee arthroplasty. Clin Orthop Relat Res 436:172–176PubMedCrossRef
4.
go back to reference Anouchi YS, Whiteside LA, Kaiser AD, Milliano MT (1993) The effects of axial rotational alignment of the femoral component on knee stability and patellar tracking in total knee arthroplasty demonstrated on autopsy specimens. Clin Orthop Relat Res 287:170–177PubMed Anouchi YS, Whiteside LA, Kaiser AD, Milliano MT (1993) The effects of axial rotational alignment of the femoral component on knee stability and patellar tracking in total knee arthroplasty demonstrated on autopsy specimens. Clin Orthop Relat Res 287:170–177PubMed
5.
go back to reference Berger RA, Rubash HE, Seel MJ, Thompson WH, Crossett LS (1993) Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop Relat Res 286:40–47PubMed Berger RA, Rubash HE, Seel MJ, Thompson WH, Crossett LS (1993) Determining the rotational alignment of the femoral component in total knee arthroplasty using the epicondylar axis. Clin Orthop Relat Res 286:40–47PubMed
6.
go back to reference Berger RA, Crossett LS, Jacobs JJ, Rubash HE (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 356:144–153PubMedCrossRef Berger RA, Crossett LS, Jacobs JJ, Rubash HE (1998) Malrotation causing patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 356:144–153PubMedCrossRef
7.
go back to reference Chowdhury EA, Porter ML (2005) A study of the effect of tibial tray rotation on a specific mobile bearing total knee arthroplasty. J Arthroplasty 20:793–797PubMedCrossRef Chowdhury EA, Porter ML (2005) A study of the effect of tibial tray rotation on a specific mobile bearing total knee arthroplasty. J Arthroplasty 20:793–797PubMedCrossRef
8.
go back to reference Churchill DL, Incavo SJ, Johnson CC, Beynnon BD (1998) The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res 356:111–118PubMedCrossRef Churchill DL, Incavo SJ, Johnson CC, Beynnon BD (1998) The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res 356:111–118PubMedCrossRef
9.
go back to reference Czurda T, Fennema P, Baumgartner M, Ritschl P (2010) The association between component malalignment and post-operative pain following navigation-assisted total knee arthroplasty: results of a cohort/nested case-control study. Knee Surg Sports Traumatol Arthrosc 18:863–869PubMedCrossRef Czurda T, Fennema P, Baumgartner M, Ritschl P (2010) The association between component malalignment and post-operative pain following navigation-assisted total knee arthroplasty: results of a cohort/nested case-control study. Knee Surg Sports Traumatol Arthrosc 18:863–869PubMedCrossRef
10.
go back to reference Dalury DF (2001) Observations of the proximal tibia in total knee arthroplasty. Clin Orthop Relat Res 389:150–155PubMedCrossRef Dalury DF (2001) Observations of the proximal tibia in total knee arthroplasty. Clin Orthop Relat Res 389:150–155PubMedCrossRef
11.
go back to reference Fukagawa S, Matsuda S, Mitsuyasu H, Miura H, Okazaki K, Tashiro Y, Iwamoto Y (2011) Anterior border of the tibia as a landmark for extramedullary alignment guide in total knee arthroplasty for varus knees. J Orthop Res 29:919–924PubMedCrossRef Fukagawa S, Matsuda S, Mitsuyasu H, Miura H, Okazaki K, Tashiro Y, Iwamoto Y (2011) Anterior border of the tibia as a landmark for extramedullary alignment guide in total knee arthroplasty for varus knees. J Orthop Res 29:919–924PubMedCrossRef
12.
go back to reference Graw BP, Harris AH, Tripuraneni KR, Giori NJ (2010) Rotational references for total knee arthroplasty tibial components change with level of resection. Clin Orthop Relat Res 468:2734–2738PubMedCrossRef Graw BP, Harris AH, Tripuraneni KR, Giori NJ (2010) Rotational references for total knee arthroplasty tibial components change with level of resection. Clin Orthop Relat Res 468:2734–2738PubMedCrossRef
13.
go back to reference Incavo SJ, Coughlin KM, Pappas C, Beynnon BD (2003) Anatomic rotational relationships of the proximal tibia, distal femur, and patella: implications for rotational alignment in total knee arthroplasty. J Arthroplasty 18:643–648PubMedCrossRef Incavo SJ, Coughlin KM, Pappas C, Beynnon BD (2003) Anatomic rotational relationships of the proximal tibia, distal femur, and patella: implications for rotational alignment in total knee arthroplasty. J Arthroplasty 18:643–648PubMedCrossRef
14.
go back to reference Insall JN (1993) Surgical techniques and instrumentation in total knee arthroplasty. In: Insall JN, Windsor RE, Scott WN, Kelly M, Aglietti P (eds) Surgery of the knee, 2nd edn. Churchill-Livingstone, New York, pp 739–804 Insall JN (1993) Surgical techniques and instrumentation in total knee arthroplasty. In: Insall JN, Windsor RE, Scott WN, Kelly M, Aglietti P (eds) Surgery of the knee, 2nd edn. Churchill-Livingstone, New York, pp 739–804
15.
go back to reference Jung YB, Lee HJ, Jung HJ, Song KS, Lee JS, Yang JJ (2009) Comparison of the radiological results between fluoroscopy-assisted and navigation-guided total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 17:286–292PubMedCrossRef Jung YB, Lee HJ, Jung HJ, Song KS, Lee JS, Yang JJ (2009) Comparison of the radiological results between fluoroscopy-assisted and navigation-guided total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 17:286–292PubMedCrossRef
16.
go back to reference Lützner J, Krummenauer F, Günther KP, Kirschner S (2010) Rotational alignment of the tibial component in total knee arthroplasty is beter at the medial third of tibial tuberosity than at the medial border. BMC Musculoskelet Disord 11:57PubMedCrossRef Lützner J, Krummenauer F, Günther KP, Kirschner S (2010) Rotational alignment of the tibial component in total knee arthroplasty is beter at the medial third of tibial tuberosity than at the medial border. BMC Musculoskelet Disord 11:57PubMedCrossRef
17.
go back to reference Matsui Y, Kadoya Y, Uehara K, Kobayashi A, Takaoka K (2005) Rotational deformity in varus osteoarthritis of the knee: analysis with computed tomography. Clin Orthop Relat Res 433:147–151PubMedCrossRef Matsui Y, Kadoya Y, Uehara K, Kobayashi A, Takaoka K (2005) Rotational deformity in varus osteoarthritis of the knee: analysis with computed tomography. Clin Orthop Relat Res 433:147–151PubMedCrossRef
18.
go back to reference Merkow RL, Soudry M, Insall JN (1985) Patellar dislocation following total knee replacement. J Bone Joint Surg Am 67:1321–1327PubMed Merkow RL, Soudry M, Insall JN (1985) Patellar dislocation following total knee replacement. J Bone Joint Surg Am 67:1321–1327PubMed
19.
go back to reference Miller MC, Berger RA, Petrella AJ, Karmas A, Rubash HE (2001) Optimizing femoral component rotation in total knee arthroplasty. Clin Orthop Relat Res 392:38–45PubMedCrossRef Miller MC, Berger RA, Petrella AJ, Karmas A, Rubash HE (2001) Optimizing femoral component rotation in total knee arthroplasty. Clin Orthop Relat Res 392:38–45PubMedCrossRef
20.
go back to reference Moreland JR (1988) Mechanisms of failure in total knee arthroplasty. Clin Orthop Relat Res 226:49–64PubMed Moreland JR (1988) Mechanisms of failure in total knee arthroplasty. Clin Orthop Relat Res 226:49–64PubMed
21.
go back to reference Nagamine R, Whiteside LA, White SE, McCarthy DS (1994) Patellar tracking after total knee arthroplasty. The effect of tibial tray malrotation and articular surface configuration. Clin Orthop Relat Res 304:262–271PubMed Nagamine R, Whiteside LA, White SE, McCarthy DS (1994) Patellar tracking after total knee arthroplasty. The effect of tibial tray malrotation and articular surface configuration. Clin Orthop Relat Res 304:262–271PubMed
22.
go back to reference Page SR, Deakin AH, Payne AP, Picard F (2011) Reliability of frames of reference used for tibial component rotation in total knee arthroplasty. Comput Aided Surg 16:86–92PubMedCrossRef Page SR, Deakin AH, Payne AP, Picard F (2011) Reliability of frames of reference used for tibial component rotation in total knee arthroplasty. Comput Aided Surg 16:86–92PubMedCrossRef
23.
go back to reference Rossi R, Bruzzone M, Bonasia DE, Marmotti A, Castoldi F (2010) Evaluation of tibial rotational alignment in total knee arthroplasty: a cadaver study. Knee Surg Sports Traumatol Arthrosc 18:889–893PubMedCrossRef Rossi R, Bruzzone M, Bonasia DE, Marmotti A, Castoldi F (2010) Evaluation of tibial rotational alignment in total knee arthroplasty: a cadaver study. Knee Surg Sports Traumatol Arthrosc 18:889–893PubMedCrossRef
24.
go back to reference Singerman R, Pagan HD, Peyser AB, Goldberg VM (1997) Effect of femoral component rotation and patellar design on patellar forces. Clin Orthop Relat Res 334:345–353PubMedCrossRef Singerman R, Pagan HD, Peyser AB, Goldberg VM (1997) Effect of femoral component rotation and patellar design on patellar forces. Clin Orthop Relat Res 334:345–353PubMedCrossRef
25.
go back to reference Siston RA, Goodman SB, Patel JJ, Delp SL, Giori NJ (2006) The high variability of tibial rotational alignment in total knee arthroplasty. Clin Orthop Relat Res 452:65–69PubMedCrossRef Siston RA, Goodman SB, Patel JJ, Delp SL, Giori NJ (2006) The high variability of tibial rotational alignment in total knee arthroplasty. Clin Orthop Relat Res 452:65–69PubMedCrossRef
26.
go back to reference Sun T, Lu H, Hong N, Wu J, Feng C (2009) Bony landmarks and rotational alignment in total knee arthroplasty for Chinese osteoarthritic knees with varus or valgus deformities. J Arthroplasty 24:427–431PubMedCrossRef Sun T, Lu H, Hong N, Wu J, Feng C (2009) Bony landmarks and rotational alignment in total knee arthroplasty for Chinese osteoarthritic knees with varus or valgus deformities. J Arthroplasty 24:427–431PubMedCrossRef
27.
go back to reference Whiteside LA, Arima J (1995) The anteroposterior axis for femoral rotational alignment in valgus total knee arthroplasty. Clin Orthop Relat Res 321:168–172PubMed Whiteside LA, Arima J (1995) The anteroposterior axis for femoral rotational alignment in valgus total knee arthroplasty. Clin Orthop Relat Res 321:168–172PubMed
28.
go back to reference Yoshioka Y, Siu DW, Scudamore RA, Cooke TD (1989) Tibial anatomy and functional axes. J Orthop Res 7:132–137PubMedCrossRef Yoshioka Y, Siu DW, Scudamore RA, Cooke TD (1989) Tibial anatomy and functional axes. J Orthop Res 7:132–137PubMedCrossRef
Metadata
Title
Accuracy of anatomical references used for rotational alignment of tibial component in total knee arthroplasty
Authors
Namık Şahin
Teoman Atıcı
Alpaslan Öztürk
Güven Özkaya
Yüksel Özkan
Bülent Avcu
Publication date
01-03-2012
Publisher
Springer-Verlag
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 3/2012
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-011-1606-x

Other articles of this Issue 3/2012

Knee Surgery, Sports Traumatology, Arthroscopy 3/2012 Go to the issue