Skip to main content
Top
Published in: Respiratory Research 1/2014

Open Access 01-12-2014 | Research

Accumulation of metals in GOLD4 COPD lungs is associated with decreased CFTR levels

Authors: Fatemat Hassan, Xiaohua Xu, Gerard Nuovo, David W Killilea, Jean Tyrrell, Chong Da Tan, Robert Tarran, Philip Diaz, Junbae Jee, Daren Knoell, Prosper N Boyaka, Estelle Cormet-Boyaka

Published in: Respiratory Research | Issue 1/2014

Login to get access

Abstract

Background

The Cystic Fibrosis Transmembrane conductance Regulator (CFTR) is a chloride channel that primarily resides in airway epithelial cells. Decreased CFTR expression and/or function lead to impaired airway surface liquid (ASL) volume homeostasis, resulting in accumulation of mucus, reduced clearance of bacteria, and chronic infection and inflammation.

Methods

Expression of CFTR and the cigarette smoke metal content were assessed in lung samples of controls and COPD patients with established GOLD stage 4. CFTR protein and mRNA were quantified by immunohistochemistry and quantitative RT-PCR, respectively. Metals present in lung samples were quantified by ICP-AES. The effect of cigarette smoke on down-regulation of CFTR expression and function was assessed using primary human airway epithelial cells. The role of leading metal(s) found in lung samples of GOLD 4 COPD patients involved in the alteration of CFTR was confirmed by exposing human bronchial epithelial cells 16HBE14o- to metal-depleted cigarette smoke extracts.

Results

We found that CFTR expression is reduced in the lungs of GOLD 4 COPD patients, especially in bronchial epithelial cells. Assessment of metals present in lung samples revealed that cadmium and manganese were significantly higher in GOLD 4 COPD patients when compared to control smokers (GOLD 0). Primary human airway epithelial cells exposed to cigarette smoke resulted in decreased expression of CFTR protein and reduced airway surface liquid height. 16HBE14o-cells exposed to cigarette smoke also exhibited reduced levels of CFTR protein and mRNA. Removal and/or addition of metals to cigarette smoke extracts before exposure established their role in decrease of CFTR in airway epithelial cells.

Conclusions

CFTR expression is reduced in the lungs of patients with severe COPD. This effect is associated with the accumulation of cadmium and manganese suggesting a role for these metals in the pathogenesis of COPD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chung KF, Adcock IM: Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur Respir J. 2008, 31: 1334-1356.PubMedCrossRef Chung KF, Adcock IM: Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur Respir J. 2008, 31: 1334-1356.PubMedCrossRef
2.
go back to reference Sandford AJ, Weir TD, Pare PD: Genetic risk factors for chronic obstructive pulmonary disease. Eur Respir J. 1997, 10: 1380-1391.PubMedCrossRef Sandford AJ, Weir TD, Pare PD: Genetic risk factors for chronic obstructive pulmonary disease. Eur Respir J. 1997, 10: 1380-1391.PubMedCrossRef
3.
go back to reference Roth M: Pathogenesis of COPD: Part III. Inflammation in COPD. Int J Tuberc Lung Dis. 2008, 12: 375-380.PubMed Roth M: Pathogenesis of COPD: Part III. Inflammation in COPD. Int J Tuberc Lung Dis. 2008, 12: 375-380.PubMed
4.
go back to reference Boucher RC: New concepts of the pathogenesis of cystic fibrosis lung disease. Eur Respir J. 2004, 23: 146-158.PubMedCrossRef Boucher RC: New concepts of the pathogenesis of cystic fibrosis lung disease. Eur Respir J. 2004, 23: 146-158.PubMedCrossRef
5.
go back to reference Cantin AM, Hanrahan JW, Bilodeau G, Ellis L, Dupuis A, Liao J, Zielenski J, Durie P: Cystic fibrosis transmembrane conductance regulator function is suppressed in cigarette smokers. Am J Respir Crit Care Med. 2006, 173: 1139-1144.PubMedCrossRef Cantin AM, Hanrahan JW, Bilodeau G, Ellis L, Dupuis A, Liao J, Zielenski J, Durie P: Cystic fibrosis transmembrane conductance regulator function is suppressed in cigarette smokers. Am J Respir Crit Care Med. 2006, 173: 1139-1144.PubMedCrossRef
7.
go back to reference Bodas M, Min T, Vij N: Critical role of CFTR-dependent lipid rafts in cigarette smoke-induced lung epithelial injury. Am J Physiol Lung Cell Mol Physiol. 2011, 300: L811-L820.PubMedPubMedCentralCrossRef Bodas M, Min T, Vij N: Critical role of CFTR-dependent lipid rafts in cigarette smoke-induced lung epithelial injury. Am J Physiol Lung Cell Mol Physiol. 2011, 300: L811-L820.PubMedPubMedCentralCrossRef
8.
go back to reference Clunes LA, Davies CM, Coakley RD, Aleksandrov AA, Henderson AG, Zeman KL, Worthington EN, Gentzsch M, Kreda SM, Cholon D, Bennett WD, Riordan JR, Boucher RC, Tarran R: Cigarette smoke exposure induces CFTR internalization and insolubility, leading to airway surface liquid dehydration. Faseb J. 2012, 26: 533-545.PubMedPubMedCentralCrossRef Clunes LA, Davies CM, Coakley RD, Aleksandrov AA, Henderson AG, Zeman KL, Worthington EN, Gentzsch M, Kreda SM, Cholon D, Bennett WD, Riordan JR, Boucher RC, Tarran R: Cigarette smoke exposure induces CFTR internalization and insolubility, leading to airway surface liquid dehydration. Faseb J. 2012, 26: 533-545.PubMedPubMedCentralCrossRef
9.
go back to reference Rennolds J, Butler S, Maloney K, Boyaka PN, Davis IC, Knoell DL, Parinandi NL, Cormet-Boyaka E: Cadmium regulates the expression of the CFTR chloride channel in human airway epithelial cells. Toxicol Sci. 2010, 116: 349-358.PubMedPubMedCentralCrossRef Rennolds J, Butler S, Maloney K, Boyaka PN, Davis IC, Knoell DL, Parinandi NL, Cormet-Boyaka E: Cadmium regulates the expression of the CFTR chloride channel in human airway epithelial cells. Toxicol Sci. 2010, 116: 349-358.PubMedPubMedCentralCrossRef
10.
go back to reference Bomberger JM, Coutermarsh BA, Barnaby RL, Stanton BA: Arsenic promotes ubiquitinylation and lysosomal degradation of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in human airway epithelial cells. J Biol Chem. 2012, 287: 17130-17139.PubMedPubMedCentralCrossRef Bomberger JM, Coutermarsh BA, Barnaby RL, Stanton BA: Arsenic promotes ubiquitinylation and lysosomal degradation of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in human airway epithelial cells. J Biol Chem. 2012, 287: 17130-17139.PubMedPubMedCentralCrossRef
11.
go back to reference Caruso RV, O'Connor RJ, Stephens WE, Cummings KM, Fong GT: Toxic metal concentrations in cigarettes obtained from U.S. smokers in 2009: results from the International Tobacco Control (ITC) United States survey cohort. Int J Environ Res Public Health. 2014, 11: 202-217.PubMedCentralCrossRef Caruso RV, O'Connor RJ, Stephens WE, Cummings KM, Fong GT: Toxic metal concentrations in cigarettes obtained from U.S. smokers in 2009: results from the International Tobacco Control (ITC) United States survey cohort. Int J Environ Res Public Health. 2014, 11: 202-217.PubMedCentralCrossRef
12.
go back to reference Matsui H, Grubb BR, Tarran R, Randell SH, Gatzy JT, Davis CW, Boucher RC: Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell. 1998, 95: 1005-1015.PubMedCrossRef Matsui H, Grubb BR, Tarran R, Randell SH, Gatzy JT, Davis CW, Boucher RC: Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell. 1998, 95: 1005-1015.PubMedCrossRef
13.
go back to reference Ghio AJ, Hilborn ED, Stonehuerner JG, Dailey LA, Carter JD, Richards JH, Crissman KM, Foronjy RF, Uyeminami DL, Pinkerton KE: Particulate matter in cigarette smoke alters iron homeostasis to produce a biological effect. Am J Respir Crit Care Med. 2008, 178: 1130-1138.PubMedCrossRef Ghio AJ, Hilborn ED, Stonehuerner JG, Dailey LA, Carter JD, Richards JH, Crissman KM, Foronjy RF, Uyeminami DL, Pinkerton KE: Particulate matter in cigarette smoke alters iron homeostasis to produce a biological effect. Am J Respir Crit Care Med. 2008, 178: 1130-1138.PubMedCrossRef
14.
go back to reference Tarran R, Sabater JR, Clarke TC, Tan CD, Davies CM, Liu J, Yeung A, Garland AL, Stutts MJ, Abraham WM, Phillips G, Baker WR, Wright CD, Wilbert S: Nonantibiotic macrolides prevent human neutrophil elastase-induced mucus stasis and airway surface liquid volume depletion. Am J Physiol Lung Cell Mol Physiol. 2013, 304: L746-L756.PubMedPubMedCentralCrossRef Tarran R, Sabater JR, Clarke TC, Tan CD, Davies CM, Liu J, Yeung A, Garland AL, Stutts MJ, Abraham WM, Phillips G, Baker WR, Wright CD, Wilbert S: Nonantibiotic macrolides prevent human neutrophil elastase-induced mucus stasis and airway surface liquid volume depletion. Am J Physiol Lung Cell Mol Physiol. 2013, 304: L746-L756.PubMedPubMedCentralCrossRef
15.
go back to reference Rollins BM, Burn M, Coakley RD, Chambers LA, Hirsh AJ, Clunes MT, Lethem MI, Donaldson SH, Tarran R: A2B adenosine receptors regulate the mucus clearance component of the lung's innate defense system. Am J Respir Cell Mol Biol. 2008, 39: 190-197.PubMedPubMedCentralCrossRef Rollins BM, Burn M, Coakley RD, Chambers LA, Hirsh AJ, Clunes MT, Lethem MI, Donaldson SH, Tarran R: A2B adenosine receptors regulate the mucus clearance component of the lung's innate defense system. Am J Respir Cell Mol Biol. 2008, 39: 190-197.PubMedPubMedCentralCrossRef
16.
go back to reference Cormet-Boyaka E, Di A, Chang SY, Naren AP, Tousson A, Nelson DJ, Kirk KL: CFTR chloride channels are regulated by a SNAP-23/syntaxin 1A complex. Proc Natl Acad Sci U S A. 2002, 99: 12477-12482.PubMedPubMedCentralCrossRef Cormet-Boyaka E, Di A, Chang SY, Naren AP, Tousson A, Nelson DJ, Kirk KL: CFTR chloride channels are regulated by a SNAP-23/syntaxin 1A complex. Proc Natl Acad Sci U S A. 2002, 99: 12477-12482.PubMedPubMedCentralCrossRef
17.
go back to reference Rennolds J, Malireddy S, Hassan F, Tridandapani S, Parinandi N, Boyaka PN, Cormet-Boyaka E: Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium. Biochem Biophys Res Commun. 2012, 417: 256-261.PubMedPubMedCentralCrossRef Rennolds J, Malireddy S, Hassan F, Tridandapani S, Parinandi N, Boyaka PN, Cormet-Boyaka E: Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium. Biochem Biophys Res Commun. 2012, 417: 256-261.PubMedPubMedCentralCrossRef
18.
go back to reference Killilea AN, Downing KH, Killilea DW: Zinc deficiency reduces paclitaxel efficacy in LNCaP prostate cancer cells. Cancer Lett. 2007, 258: 70-79.PubMedCrossRef Killilea AN, Downing KH, Killilea DW: Zinc deficiency reduces paclitaxel efficacy in LNCaP prostate cancer cells. Cancer Lett. 2007, 258: 70-79.PubMedCrossRef
19.
go back to reference Boucher RC: Evidence for airway surface dehydration as the initiating event in CF airway disease. J Intern Med. 2007, 261: 5-16.PubMedCrossRef Boucher RC: Evidence for airway surface dehydration as the initiating event in CF airway disease. J Intern Med. 2007, 261: 5-16.PubMedCrossRef
20.
go back to reference Stanton CR, Thibodeau R, Lankowski A, Shaw JR, Hamilton JW, Stanton BA: Arsenic inhibits CFTR-mediated chloride secretion by killifish (Fundulus heteroclitus) opercular membrane. Cell Physiol Biochem. 2006, 17: 269-278.PubMedCrossRef Stanton CR, Thibodeau R, Lankowski A, Shaw JR, Hamilton JW, Stanton BA: Arsenic inhibits CFTR-mediated chloride secretion by killifish (Fundulus heteroclitus) opercular membrane. Cell Physiol Biochem. 2006, 17: 269-278.PubMedCrossRef
21.
go back to reference Maitra R, Hamilton JW: Arsenite regulates Cystic Fibrosis Transmembrane Conductance Regulator and P-glycoprotein: evidence of pathway independence. Cell Physiol Biochem. 2005, 16: 109-118.PubMedCrossRef Maitra R, Hamilton JW: Arsenite regulates Cystic Fibrosis Transmembrane Conductance Regulator and P-glycoprotein: evidence of pathway independence. Cell Physiol Biochem. 2005, 16: 109-118.PubMedCrossRef
22.
24.
go back to reference Chung KF, Marwick JA: Molecular mechanisms of oxidative stress in airways and lungs with reference to asthma and chronic obstructive pulmonary disease. Ann N Y Acad Sci. 2010, 1203: 85-91.PubMedCrossRef Chung KF, Marwick JA: Molecular mechanisms of oxidative stress in airways and lungs with reference to asthma and chronic obstructive pulmonary disease. Ann N Y Acad Sci. 2010, 1203: 85-91.PubMedCrossRef
25.
go back to reference Barnes PJ: New anti-inflammatory targets for chronic obstructive pulmonary disease. Nat Rev Drug Discov. 2013, 12: 543-559.PubMedCrossRef Barnes PJ: New anti-inflammatory targets for chronic obstructive pulmonary disease. Nat Rev Drug Discov. 2013, 12: 543-559.PubMedCrossRef
26.
go back to reference Sloane PA, Shastry S, Wilhelm A, Courville C, Tang LP, Backer K, Levin E, Raju SV, Li Y, Mazur M, Byan-Parker S, Grizzle W, Sorscher EJ, Dransfield MT, Rowe SM: A pharmacologic approach to acquired cystic fibrosis transmembrane conductance regulator dysfunction in smoking related lung disease. PLoS One. 2012, 7: e39809-PubMedPubMedCentralCrossRef Sloane PA, Shastry S, Wilhelm A, Courville C, Tang LP, Backer K, Levin E, Raju SV, Li Y, Mazur M, Byan-Parker S, Grizzle W, Sorscher EJ, Dransfield MT, Rowe SM: A pharmacologic approach to acquired cystic fibrosis transmembrane conductance regulator dysfunction in smoking related lung disease. PLoS One. 2012, 7: e39809-PubMedPubMedCentralCrossRef
27.
go back to reference Dransfield MT, Wilhelm AM, Flanagan B, Courville C, Tidwell SL, Raju SV, Gaggar A, Steele C, Tang LP, Liu B, Rowe SM: Acquired cystic fibrosis transmembrane conductance regulator dysfunction in the lower airways in COPD. Chest. 2013, 144: 498-506.PubMedPubMedCentralCrossRef Dransfield MT, Wilhelm AM, Flanagan B, Courville C, Tidwell SL, Raju SV, Gaggar A, Steele C, Tang LP, Liu B, Rowe SM: Acquired cystic fibrosis transmembrane conductance regulator dysfunction in the lower airways in COPD. Chest. 2013, 144: 498-506.PubMedPubMedCentralCrossRef
28.
go back to reference Croxton TL, Weinmann GG, Senior RM, Hoidal JR: Future research directions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2002, 165: 838-844.PubMedCrossRef Croxton TL, Weinmann GG, Senior RM, Hoidal JR: Future research directions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2002, 165: 838-844.PubMedCrossRef
29.
go back to reference Marcorelles P, Montier T, Gillet D, Lagarde N, Ferec C: Evolution of CFTR protein distribution in lung tissue from normal and CF human fetuses. Pediatr Pulmonol. 2007, 42: 1032-1040.PubMedCrossRef Marcorelles P, Montier T, Gillet D, Lagarde N, Ferec C: Evolution of CFTR protein distribution in lung tissue from normal and CF human fetuses. Pediatr Pulmonol. 2007, 42: 1032-1040.PubMedCrossRef
30.
go back to reference Fang X, Song Y, Hirsch J, Galietta LJ, Pedemonte N, Zemans RL, Dolganov G, Verkman AS, Matthay MA: Contribution of CFTR to apical-basolateral fluid transport in cultured human alveolar epithelial type II cells. Am J Physiol Lung Cell Mol Physiol. 2006, 290: L242-L249.PubMedCrossRef Fang X, Song Y, Hirsch J, Galietta LJ, Pedemonte N, Zemans RL, Dolganov G, Verkman AS, Matthay MA: Contribution of CFTR to apical-basolateral fluid transport in cultured human alveolar epithelial type II cells. Am J Physiol Lung Cell Mol Physiol. 2006, 290: L242-L249.PubMedCrossRef
31.
go back to reference Smith CJ, Livingston SD, Doolittle DJ: An international literature survey of “IARC Group I carcinogens” reported in mainstream cigarette smoke. Food Chem Toxicol. 1997, 35: 1107-1130.PubMedCrossRef Smith CJ, Livingston SD, Doolittle DJ: An international literature survey of “IARC Group I carcinogens” reported in mainstream cigarette smoke. Food Chem Toxicol. 1997, 35: 1107-1130.PubMedCrossRef
32.
go back to reference Paakko P, Anttila S, Kokkonen P, Kalliomaki PL: Cadmium in lung tissue as marker for smoking. Lancet. 1988, 1: 477-PubMedCrossRef Paakko P, Anttila S, Kokkonen P, Kalliomaki PL: Cadmium in lung tissue as marker for smoking. Lancet. 1988, 1: 477-PubMedCrossRef
33.
go back to reference Chambers RC, Laurent GJ, Westergren-Thorsson G: Cadmium inhibits proteoglycan and procollagen production by cultured human lung fibroblasts. Am J Respir Cell Mol Biol. 1998, 19: 498-506.PubMedCrossRef Chambers RC, Laurent GJ, Westergren-Thorsson G: Cadmium inhibits proteoglycan and procollagen production by cultured human lung fibroblasts. Am J Respir Cell Mol Biol. 1998, 19: 498-506.PubMedCrossRef
34.
go back to reference Abu-Hayyeh S, Sian M, Jones KG, Manuel A, Powell JT: Cadmium accumulation in aortas of smokers. Arterioscler Thromb Vasc Biol. 2001, 21: 863-867.PubMedCrossRef Abu-Hayyeh S, Sian M, Jones KG, Manuel A, Powell JT: Cadmium accumulation in aortas of smokers. Arterioscler Thromb Vasc Biol. 2001, 21: 863-867.PubMedCrossRef
35.
go back to reference Roels H, Lauwerys R, Buchet JP, Genet P, Sarhan MJ, Hanotiau I, de Fays M, Bernard A, Stanescu D: Epidemiological survey among workers exposed to manganese: effects on lung, central nervous system, and some biological indices. Am J Ind Med. 1987, 11: 307-327.PubMedCrossRef Roels H, Lauwerys R, Buchet JP, Genet P, Sarhan MJ, Hanotiau I, de Fays M, Bernard A, Stanescu D: Epidemiological survey among workers exposed to manganese: effects on lung, central nervous system, and some biological indices. Am J Ind Med. 1987, 11: 307-327.PubMedCrossRef
36.
go back to reference Mahoney JP, Small WJ: Studies on manganese. 3. The biological half-life of radiomanganese in man and factors which affect this half-life. J Clin Invest. 1968, 47: 643-653.PubMedPubMedCentralCrossRef Mahoney JP, Small WJ: Studies on manganese. 3. The biological half-life of radiomanganese in man and factors which affect this half-life. J Clin Invest. 1968, 47: 643-653.PubMedPubMedCentralCrossRef
37.
go back to reference Mannino DM, Holguin F, Greves HM, Savage-Brown A, Stock AL, Jones RL: Urinary cadmium levels predict lower lung function in current and former smokers: data from the Third National Health and Nutrition Examination Survey. Thorax. 2004, 59: 194-198.PubMedPubMedCentralCrossRef Mannino DM, Holguin F, Greves HM, Savage-Brown A, Stock AL, Jones RL: Urinary cadmium levels predict lower lung function in current and former smokers: data from the Third National Health and Nutrition Examination Survey. Thorax. 2004, 59: 194-198.PubMedPubMedCentralCrossRef
38.
go back to reference Davison AG, Fayers PM, Taylor AJ, Venables KM, Darbyshire J, Pickering CA, Chettle DR, Franklin D, Guthrie CJ, Scott MC: Cadmium fume inhalation and emphysema. Lancet. 1988, 1: 663-667.PubMedCrossRef Davison AG, Fayers PM, Taylor AJ, Venables KM, Darbyshire J, Pickering CA, Chettle DR, Franklin D, Guthrie CJ, Scott MC: Cadmium fume inhalation and emphysema. Lancet. 1988, 1: 663-667.PubMedCrossRef
39.
go back to reference Kirschvink N, Martin N, Fievez L, Smith N, Marlin D, Gustin P: Airway inflammation in cadmium-exposed rats is associated with pulmonary oxidative stress and emphysema. Free Radic Res. 2006, 40: 241-250.PubMedCrossRef Kirschvink N, Martin N, Fievez L, Smith N, Marlin D, Gustin P: Airway inflammation in cadmium-exposed rats is associated with pulmonary oxidative stress and emphysema. Free Radic Res. 2006, 40: 241-250.PubMedCrossRef
40.
go back to reference Kirschvink N, Vincke G, Fievez L, Onclinx C, Wirth D, Belleflamme M, Louis R, Cataldo D, Peck MJ, Gustin P: Repeated cadmium nebulizations induce pulmonary MMP-2 and MMP-9 production and emphysema in rats. Toxicology. 2005, 211: 36-48.PubMedCrossRef Kirschvink N, Vincke G, Fievez L, Onclinx C, Wirth D, Belleflamme M, Louis R, Cataldo D, Peck MJ, Gustin P: Repeated cadmium nebulizations induce pulmonary MMP-2 and MMP-9 production and emphysema in rats. Toxicology. 2005, 211: 36-48.PubMedCrossRef
Metadata
Title
Accumulation of metals in GOLD4 COPD lungs is associated with decreased CFTR levels
Authors
Fatemat Hassan
Xiaohua Xu
Gerard Nuovo
David W Killilea
Jean Tyrrell
Chong Da Tan
Robert Tarran
Philip Diaz
Junbae Jee
Daren Knoell
Prosper N Boyaka
Estelle Cormet-Boyaka
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2014
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-15-69

Other articles of this Issue 1/2014

Respiratory Research 1/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.