Skip to main content
Top
Published in: BMC Infectious Diseases 1/2011

Open Access 01-12-2011 | Research article

Accumulation and transport of microbial-size particles in a pressure protected model burn unit: CFD simulations and experimental evidence

Authors: Christian Beauchêne, Nicolas Laudinet, Firas Choukri, Jean-Luc Rousset, Sofiane Benhamadouche, Juliette Larbre, Marc Chaouat, Marc Benbunan, Maurice Mimoun, Jean-Patrick Lajonchère, Vance Bergeron, Francis Derouin

Published in: BMC Infectious Diseases | Issue 1/2011

Login to get access

Abstract

Background

Controlling airborne contamination is of major importance in burn units because of the high susceptibility of burned patients to infections and the unique environmental conditions that can accentuate the infection risk. In particular the required elevated temperatures in the patient room can create thermal convection flows which can transport airborne contaminates throughout the unit. In order to estimate this risk and optimize the design of an intensive care room intended to host severely burned patients, we have relied on a computational fluid dynamic methodology (CFD).

Methods

The study was carried out in 4 steps: i) patient room design, ii) CFD simulations of patient room design to model air flows throughout the patient room, adjacent anterooms and the corridor, iii) construction of a prototype room and subsequent experimental studies to characterize its performance iv) qualitative comparison of the tendencies between CFD prediction and experimental results. The Electricité De France (EDF) open-source software Code_Saturne ® (http://​www.​code-saturne.​org) was used and CFD simulations were conducted with an hexahedral mesh containing about 300 000 computational cells. The computational domain included the treatment room and two anterooms including equipment, staff and patient. Experiments with inert aerosol particles followed by time-resolved particle counting were conducted in the prototype room for comparison with the CFD observations.

Results

We found that thermal convection can create contaminated zones near the ceiling of the room, which can subsequently lead to contaminate transfer in adjacent rooms. Experimental confirmation of these phenomena agreed well with CFD predictions and showed that particles greater than one micron (i.e. bacterial or fungal spore sizes) can be influenced by these thermally induced flows. When the temperature difference between rooms was 7°C, a significant contamination transfer was observed to enter into the positive pressure room when the access door was opened, while 2°C had little effect. Based on these findings the constructed burn unit was outfitted with supplemental air exhaust ducts over the doors to compensate for the thermal convective flows.

Conclusions

CFD simulations proved to be a particularly useful tool for the design and optimization of a burn unit treatment room. Our results, which have been confirmed qualitatively by experimental investigation, stressed that airborne transfer of microbial size particles via thermal convection flows are able to bypass the protective overpressure in the patient room, which can represent a potential risk of cross contamination between rooms in protected environments.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Murray CK, Loo FL, Hospenthal DR, Cancio LC, Jones JA, Kim SH, Holcomb JB, Wade CE, Wolf SE: Incidence of systemic fungal infection and related mortality following severe burns. Burns. 2008, 34: 1108-1112. 10.1016/j.burns.2008.04.007.CrossRefPubMed Murray CK, Loo FL, Hospenthal DR, Cancio LC, Jones JA, Kim SH, Holcomb JB, Wade CE, Wolf SE: Incidence of systemic fungal infection and related mortality following severe burns. Burns. 2008, 34: 1108-1112. 10.1016/j.burns.2008.04.007.CrossRefPubMed
3.
go back to reference Chim H, Tan BH, Song C: Five-year review of infections in a burn intensive care unit: High incidence of Acinetobacter baumannii in a tropical climate. Burns. 2007, 33: 1008-1014. 10.1016/j.burns.2007.03.003.CrossRefPubMed Chim H, Tan BH, Song C: Five-year review of infections in a burn intensive care unit: High incidence of Acinetobacter baumannii in a tropical climate. Burns. 2007, 33: 1008-1014. 10.1016/j.burns.2007.03.003.CrossRefPubMed
4.
go back to reference Weber J, McManus A: Nursing Committee of the International Society for Burn Injuries. Infection control in burn patients. Burns. 2004, 30: A16-24. 10.1016/j.burns.2004.08.003.CrossRefPubMed Weber J, McManus A: Nursing Committee of the International Society for Burn Injuries. Infection control in burn patients. Burns. 2004, 30: A16-24. 10.1016/j.burns.2004.08.003.CrossRefPubMed
5.
go back to reference Bayat A, Shaaban H, Dodgson A, Dunn KW: Implications for burns unit design following outbreak of multi-resistant Acinetobacter infection in ICU and burns unit. Burns. 2003, 29: 303-306.CrossRefPubMed Bayat A, Shaaban H, Dodgson A, Dunn KW: Implications for burns unit design following outbreak of multi-resistant Acinetobacter infection in ICU and burns unit. Burns. 2003, 29: 303-306.CrossRefPubMed
6.
go back to reference McManus AT, Mason AD, McManus WF, Pruitt BA: A decade of reduced gram-negative infections and mortality associated with improved isolation of burned patients. Arch Surg. 1994, 129: 1306-1309.CrossRefPubMed McManus AT, Mason AD, McManus WF, Pruitt BA: A decade of reduced gram-negative infections and mortality associated with improved isolation of burned patients. Arch Surg. 1994, 129: 1306-1309.CrossRefPubMed
7.
go back to reference Shirani KZ, McManus AT, Vaughan GM, McManus WF, Pruitt BA, Mason AD: Effects of environment on infection in burn patients. Arch Surg. 1986, 121: 31-36.CrossRefPubMed Shirani KZ, McManus AT, Vaughan GM, McManus WF, Pruitt BA, Mason AD: Effects of environment on infection in burn patients. Arch Surg. 1986, 121: 31-36.CrossRefPubMed
8.
go back to reference Safdar N, Marx J, Meyer NA, Maki DG: Effectiveness of preemptive barrier precautions in controlling nosocomial colonization and infection by methicillin-resistant Staphylococcus aureus in a burn unit. Am J Infect Control. 2006, 34: 476-483. 10.1016/j.ajic.2006.01.011.CrossRefPubMed Safdar N, Marx J, Meyer NA, Maki DG: Effectiveness of preemptive barrier precautions in controlling nosocomial colonization and infection by methicillin-resistant Staphylococcus aureus in a burn unit. Am J Infect Control. 2006, 34: 476-483. 10.1016/j.ajic.2006.01.011.CrossRefPubMed
9.
go back to reference Demling RH, Maly J: The treatment of burn patients in a laminar airflow environment. Ann N Y Acad Sci. 1980, 353: 294-299. 10.1111/j.1749-6632.1980.tb18932.x.CrossRefPubMed Demling RH, Maly J: The treatment of burn patients in a laminar airflow environment. Ann N Y Acad Sci. 1980, 353: 294-299. 10.1111/j.1749-6632.1980.tb18932.x.CrossRefPubMed
10.
go back to reference Fletcher CAJ, Mayer IF, Eghlimi A, Wee KHA: CFD as a building services engineering tool. Int J Arch Sci. 2001, 2: 67-82. Fletcher CAJ, Mayer IF, Eghlimi A, Wee KHA: CFD as a building services engineering tool. Int J Arch Sci. 2001, 2: 67-82.
12.
go back to reference Loomans MGLC, van Houdt W, Lemaire AD, Hensen JLM: Performance assessment of an operating theatre design using CFD simulation and tracer gas measurements. Ind Built Env. 2008, 17: 299-312. 10.1177/1420326X08094948.CrossRef Loomans MGLC, van Houdt W, Lemaire AD, Hensen JLM: Performance assessment of an operating theatre design using CFD simulation and tracer gas measurements. Ind Built Env. 2008, 17: 299-312. 10.1177/1420326X08094948.CrossRef
13.
go back to reference Jiang Y, Zhao B, Li X, Yang X, Zhang Z, Zhang Y: Investigating a safe ventilation rate for the prevention of indoor SARS transmission: An attempt based on a simulation approach. Build Simul. 2009, 2: 281-289. 10.1007/s12273-009-9325-7.CrossRef Jiang Y, Zhao B, Li X, Yang X, Zhang Z, Zhang Y: Investigating a safe ventilation rate for the prevention of indoor SARS transmission: An attempt based on a simulation approach. Build Simul. 2009, 2: 281-289. 10.1007/s12273-009-9325-7.CrossRef
14.
go back to reference Zhao B, Yang C, Chen C, Feng C, Yang X, Sun L, Gong W, Yu L: How Many Airborne Particles Emitted from a Nurse will Reach the Breathing Zone/Body Surface of the Patient in ISO Class-5 Single-Bed Hospital Protective Environments?--A Numerical Analysis. Aerosol Science and Technology. 2009, 43: 990-1005. 10.1080/02786820903107925.CrossRef Zhao B, Yang C, Chen C, Feng C, Yang X, Sun L, Gong W, Yu L: How Many Airborne Particles Emitted from a Nurse will Reach the Breathing Zone/Body Surface of the Patient in ISO Class-5 Single-Bed Hospital Protective Environments?--A Numerical Analysis. Aerosol Science and Technology. 2009, 43: 990-1005. 10.1080/02786820903107925.CrossRef
15.
go back to reference Chow TT, Yang XY: Ventilation performance in operating theatres against airborne infection: review of research activities and practical guidance. J Hosp Infect. 2004, 56: 85-92. 10.1016/j.jhin.2003.09.020.CrossRefPubMed Chow TT, Yang XY: Ventilation performance in operating theatres against airborne infection: review of research activities and practical guidance. J Hosp Infect. 2004, 56: 85-92. 10.1016/j.jhin.2003.09.020.CrossRefPubMed
16.
go back to reference Memarzadeh F, Manning AP: Comparison of operating room ventilation systems in the protection of the surgical site. ASHRAE Trans. 2002, 108: 3-15. Memarzadeh F, Manning AP: Comparison of operating room ventilation systems in the protection of the surgical site. ASHRAE Trans. 2002, 108: 3-15.
17.
go back to reference Lavedrine I, Thomas P, Tharp J, Sipes J: Innovative design solutions for burn intensive care units. Ninth International IBPSA Conference. 2005, Montréal, Canada, August 15-18, 603-608. Lavedrine I, Thomas P, Tharp J, Sipes J: Innovative design solutions for burn intensive care units. Ninth International IBPSA Conference. 2005, Montréal, Canada, August 15-18, 603-608.
18.
go back to reference Department of Health: Estate and facilities division. Health technical memorandum Health Technical Memorandum 03-01: specialised ventilation for health premises. Part A - design and installation. TSO, Norwich UK, 120- Department of Health: Estate and facilities division. Health technical memorandum Health Technical Memorandum 03-01: specialised ventilation for health premises. Part A - design and installation. TSO, Norwich UK, 120-
19.
go back to reference Dong S, Tu G, Cao R, Yu Z: Numerical study on effects of door-opening on airflow patterns and dynamic cross-contamination in an ISO Class 5 Operating Room. Trans Tianjin Univ. 2009, 15: 210-215. 10.1007/s12209-009-0037-y.CrossRef Dong S, Tu G, Cao R, Yu Z: Numerical study on effects of door-opening on airflow patterns and dynamic cross-contamination in an ISO Class 5 Operating Room. Trans Tianjin Univ. 2009, 15: 210-215. 10.1007/s12209-009-0037-y.CrossRef
Metadata
Title
Accumulation and transport of microbial-size particles in a pressure protected model burn unit: CFD simulations and experimental evidence
Authors
Christian Beauchêne
Nicolas Laudinet
Firas Choukri
Jean-Luc Rousset
Sofiane Benhamadouche
Juliette Larbre
Marc Chaouat
Marc Benbunan
Maurice Mimoun
Jean-Patrick Lajonchère
Vance Bergeron
Francis Derouin
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2011
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/1471-2334-11-58

Other articles of this Issue 1/2011

BMC Infectious Diseases 1/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.