Skip to main content
Top
Published in: Respiratory Research 1/2023

Open Access 01-12-2023 | Acarbose | Research

Acarbose reduces Pseudomonas aeruginosa respiratory tract infection in type 2 diabetic mice

Authors: Lin Liu, Haiyang Fan, Liang Li, Yunping Fan

Published in: Respiratory Research | Issue 1/2023

Login to get access

Abstract

Background

Type 2 diabetes mellitus (T2DM) is widely prevalent worldwide, and respiratory tract infections (RTIs) have become the primary cause of death for T2DM patients who develop concurrent infections. Among these, Pseudomonas aeruginosa infection has been found to exhibit a high mortality rate and poor prognosis and is frequently observed in bacterial infections that are concurrent with COVID-19. Studies have suggested that acarbose can be used to treat T2DM and reduce inflammation. Our objective was to explore the effect of acarbose on P. aeruginosa RTI in T2DM individuals and elucidate its underlying mechanism.

Methods

High-fat diet (HFD) induction and P. aeruginosa inhalation were used to establish a RTI model in T2DM mice. The effect and mechanism of acarbose administered by gavage on P. aeruginosa RTI were investigated in T2DM and nondiabetic mice using survival curves, pathological examination, and transcriptomics.

Results

We found that P. aeruginosa RTI was more severe in T2DM mice than in nondiabetic individuals, which could be attributed to the activation of the NF-κB and TREM-1 signaling pathways. When acarbose alleviated P. aeruginosa RTI in T2DM mice, both HIF-1α and NF-κB signaling pathways were inhibited. Furthermore, inhibition of the calcium ion signaling pathway and NF-κB signaling pathway contributed to the attenuation of P. aeruginosa RTI by acarbose in nondiabetic mice.

Conclusions

This study confirmed the attenuating effect of acarbose on P. aeruginosa RTIs in T2DM and nondiabetic mice and investigated its mechanism, providing novel support for its clinical application in related diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Organization WH: Global report on diabetes; 2016. Organization WH: Global report on diabetes; 2016.
2.
go back to reference Federation ID: IDF Diabetes Atlas 10th edition; 2021. Federation ID: IDF Diabetes Atlas 10th edition; 2021.
3.
go back to reference NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387(10027):1513–30. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387(10027):1513–30.
4.
go back to reference Zhang A, Quan J, Eggleston K. Association between the quality of primary care, insurance coverage, and diabetes-related health outcomes in a cohort of older adults in China: results from the China Health and Retirement Longitudinal Study. BMJ Open. 2022;12(9): e059756.PubMedPubMedCentralCrossRef Zhang A, Quan J, Eggleston K. Association between the quality of primary care, insurance coverage, and diabetes-related health outcomes in a cohort of older adults in China: results from the China Health and Retirement Longitudinal Study. BMJ Open. 2022;12(9): e059756.PubMedPubMedCentralCrossRef
5.
go back to reference Gregg EW, Cheng YJ, Srinivasan M, Lin J, Geiss LS, Albright AL, Imperatore G. Trends in cause-specific mortality among adults with and without diagnosed diabetes in the USA: an epidemiological analysis of linked national survey and vital statistics data. Lancet. 2018;391(10138):2430–40.PubMedCrossRef Gregg EW, Cheng YJ, Srinivasan M, Lin J, Geiss LS, Albright AL, Imperatore G. Trends in cause-specific mortality among adults with and without diagnosed diabetes in the USA: an epidemiological analysis of linked national survey and vital statistics data. Lancet. 2018;391(10138):2430–40.PubMedCrossRef
6.
go back to reference Ali MK, Pearson-Stuttard J, Selvin E, Gregg EW. Interpreting global trends in type 2 diabetes complications and mortality. Diabetologia. 2022;65(1):3–13.PubMedCrossRef Ali MK, Pearson-Stuttard J, Selvin E, Gregg EW. Interpreting global trends in type 2 diabetes complications and mortality. Diabetologia. 2022;65(1):3–13.PubMedCrossRef
7.
go back to reference Pearson-Stuttard J, Cheng YJ, Bennett J, Vamos EP, Zhou B, Valabhji J, Cross AJ, Ezzati M, Gregg EW. Trends in leading causes of hospitalisation of adults with diabetes in England from 2003 to 2018: an epidemiological analysis of linked primary care records. Lancet Diabetes Endocrinol. 2022;10(1):46–57.PubMedPubMedCentralCrossRef Pearson-Stuttard J, Cheng YJ, Bennett J, Vamos EP, Zhou B, Valabhji J, Cross AJ, Ezzati M, Gregg EW. Trends in leading causes of hospitalisation of adults with diabetes in England from 2003 to 2018: an epidemiological analysis of linked primary care records. Lancet Diabetes Endocrinol. 2022;10(1):46–57.PubMedPubMedCentralCrossRef
8.
go back to reference Rao KondapallySeshasai S, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, Whincup PH, Mukamal KJ, Gillum RF, Holme I, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011;364(9):829–41.CrossRef Rao KondapallySeshasai S, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, Whincup PH, Mukamal KJ, Gillum RF, Holme I, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011;364(9):829–41.CrossRef
9.
go back to reference Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2019;62(1):3–16. Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2019;62(1):3–16.
10.
go back to reference Egede LE, Hull BJ, Williams JS. Infections associated with diabetes. In: Cowie CC, Casagrande SS, Menke A, et al., editors. Diabetes in America. 3rd edn. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases (US); 2018 Aug. CHAPTER 30. Available from: https://www.ncbi.nlm.nih.gov/books/NBK567992/. Egede LE, Hull BJ, Williams JS. Infections associated with diabetes. In: Cowie CC, Casagrande SS, Menke A, et al., editors. Diabetes in America. 3rd edn. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases (US); 2018 Aug. CHAPTER 30. Available from: https://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK567992/​.
11.
go back to reference Luk AOY, Wu H, Lau ESH, Yang A, So WY, Chow E, Kong APS, Hui DSC, Ma RCW, Chan JCN. Temporal trends in rates of infection-related hospitalisations in Hong Kong people with and without diabetes, 2001–2016: a retrospective study. Diabetologia. 2021;64(1):109–18.PubMedCrossRef Luk AOY, Wu H, Lau ESH, Yang A, So WY, Chow E, Kong APS, Hui DSC, Ma RCW, Chan JCN. Temporal trends in rates of infection-related hospitalisations in Hong Kong people with and without diabetes, 2001–2016: a retrospective study. Diabetologia. 2021;64(1):109–18.PubMedCrossRef
12.
go back to reference Muller LMAJ, Gorter KJ, Hak E, Goudzwaard WL, Schellevis FG, Hoepelman AIM, Rutten GEHM. Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clin Infect Dis. 2005;41(3):281–8.PubMedCrossRef Muller LMAJ, Gorter KJ, Hak E, Goudzwaard WL, Schellevis FG, Hoepelman AIM, Rutten GEHM. Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clin Infect Dis. 2005;41(3):281–8.PubMedCrossRef
13.
go back to reference Kornum JB, Thomsen RW, Riis A, Lervang H-H, Schønheyder HC, Sørensen HT. Diabetes, glycemic control, and risk of hospitalization with pneumonia: a population-based case-control study. Diabetes Care. 2008;31(8):1541–5.PubMedPubMedCentralCrossRef Kornum JB, Thomsen RW, Riis A, Lervang H-H, Schønheyder HC, Sørensen HT. Diabetes, glycemic control, and risk of hospitalization with pneumonia: a population-based case-control study. Diabetes Care. 2008;31(8):1541–5.PubMedPubMedCentralCrossRef
14.
go back to reference Joshi N, Caputo GM, Weitekamp MR, Karchmer AW. Infections in patients with diabetes mellitus. N Engl J Med. 1999;341(25):1906–12.PubMedCrossRef Joshi N, Caputo GM, Weitekamp MR, Karchmer AW. Infections in patients with diabetes mellitus. N Engl J Med. 1999;341(25):1906–12.PubMedCrossRef
15.
go back to reference Kornum JB, Thomsen RW, Riis A, Lervang H-H, Schønheyder HC, Sørensen HT. Type 2 diabetes and pneumonia outcomes: a population-based cohort study. Diabetes Care. 2007;30(9):2251–7.PubMedCrossRef Kornum JB, Thomsen RW, Riis A, Lervang H-H, Schønheyder HC, Sørensen HT. Type 2 diabetes and pneumonia outcomes: a population-based cohort study. Diabetes Care. 2007;30(9):2251–7.PubMedCrossRef
16.
go back to reference Wang M, Muraki I, Liu K, Shirai K, Tamakoshi A, Hu Y, Iso H. Diabetes and mortality from respiratory diseases: the Japan Collaborative Cohort Study. J Epidemiol. 2020;30(10):457–63.PubMedPubMedCentralCrossRef Wang M, Muraki I, Liu K, Shirai K, Tamakoshi A, Hu Y, Iso H. Diabetes and mortality from respiratory diseases: the Japan Collaborative Cohort Study. J Epidemiol. 2020;30(10):457–63.PubMedPubMedCentralCrossRef
17.
go back to reference Calvet HM, Yoshikawa TT. Infections in diabetes. Infect Dis Clin N Am. 2001;15(2):407–21.CrossRef Calvet HM, Yoshikawa TT. Infections in diabetes. Infect Dis Clin N Am. 2001;15(2):407–21.CrossRef
18.
go back to reference Zhang Z, Adappa ND, Lautenbach E, Chiu AG, Doghramji L, Howland TJ, Cohen NA, Palmer JN. The effect of diabetes mellitus on chronic rhinosinusitis and sinus surgery outcome. Int Forum Allergy Rhinol. 2014;4(4):315–20.PubMedPubMedCentralCrossRef Zhang Z, Adappa ND, Lautenbach E, Chiu AG, Doghramji L, Howland TJ, Cohen NA, Palmer JN. The effect of diabetes mellitus on chronic rhinosinusitis and sinus surgery outcome. Int Forum Allergy Rhinol. 2014;4(4):315–20.PubMedPubMedCentralCrossRef
19.
go back to reference Lim S, Bae JH, Kwon H-S, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol. 2021;17(1):11–30.PubMedCrossRef Lim S, Bae JH, Kwon H-S, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol. 2021;17(1):11–30.PubMedCrossRef
20.
go back to reference Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev. 2019;32(4):e00031-19. Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev. 2019;32(4):e00031-19.
21.
go back to reference GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022;400(10369):2221–48. GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022;400(10369):2221–48.
22.
go back to reference Tumbarello M, De Pascale G, Trecarichi EM, Spanu T, Antonicelli F, Maviglia R, Pennisi MA, Bello G, Antonelli M. Clinical outcomes of Pseudomonas aeruginosa pneumonia in intensive care unit patients. Intensive Care Med. 2013;39(4):682–92.PubMedCrossRef Tumbarello M, De Pascale G, Trecarichi EM, Spanu T, Antonicelli F, Maviglia R, Pennisi MA, Bello G, Antonelli M. Clinical outcomes of Pseudomonas aeruginosa pneumonia in intensive care unit patients. Intensive Care Med. 2013;39(4):682–92.PubMedCrossRef
23.
go back to reference Oliveira TL, Candeia-Medeiros N, Cavalcante-Araújo PM, Melo IS, Fávaro-Pípi E, Fátima LA, Rocha AA, Goulart LR, Machado UF, Campos RR, et al. SGLT1 activity in lung alveolar cells of diabetic rats modulates airway surface liquid glucose concentration and bacterial proliferation. Sci Rep. 2016;6:21752.PubMedPubMedCentralCrossRef Oliveira TL, Candeia-Medeiros N, Cavalcante-Araújo PM, Melo IS, Fávaro-Pípi E, Fátima LA, Rocha AA, Goulart LR, Machado UF, Campos RR, et al. SGLT1 activity in lung alveolar cells of diabetic rats modulates airway surface liquid glucose concentration and bacterial proliferation. Sci Rep. 2016;6:21752.PubMedPubMedCentralCrossRef
24.
go back to reference Gill SK, Hui K, Farne H, Garnett JP, Baines DL, Moore LSP, Holmes AH, Filloux A, Tregoning JS. Increased airway glucose increases airway bacterial load in hyperglycaemia. Sci Rep. 2016;6:27636.PubMedPubMedCentralCrossRef Gill SK, Hui K, Farne H, Garnett JP, Baines DL, Moore LSP, Holmes AH, Filloux A, Tregoning JS. Increased airway glucose increases airway bacterial load in hyperglycaemia. Sci Rep. 2016;6:27636.PubMedPubMedCentralCrossRef
25.
go back to reference Micek ST, Wunderink RG, Kollef MH, Chen C, Rello J, Chastre J, Antonelli M, Welte T, Clair B, Ostermann H, et al. An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: impact of multidrug resistance. Crit Care (London, England). 2015;19(1):219.CrossRef Micek ST, Wunderink RG, Kollef MH, Chen C, Rello J, Chastre J, Antonelli M, Welte T, Clair B, Ostermann H, et al. An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: impact of multidrug resistance. Crit Care (London, England). 2015;19(1):219.CrossRef
26.
go back to reference Crouch Brewer S, Wunderink RG, Jones CB, Leeper KV. Ventilator-associated pneumonia due to Pseudomonas aeruginosa. Chest. 1996;109(4):1019–29.PubMedCrossRef Crouch Brewer S, Wunderink RG, Jones CB, Leeper KV. Ventilator-associated pneumonia due to Pseudomonas aeruginosa. Chest. 1996;109(4):1019–29.PubMedCrossRef
27.
go back to reference Pari B, Gallucci M, Ghigo A, Brizzi MF. Insight on infections in diabetic setting. Biomedicines. 2023; 11(3). Pari B, Gallucci M, Ghigo A, Brizzi MF. Insight on infections in diabetic setting. Biomedicines. 2023; 11(3).
28.
go back to reference Kariyawasam RM, Julien DA, Jelinski DC, Larose SL, Rennert-May E, Conly JM, Dingle TC, Chen JZ, Tyrrell GJ, Ronksley PE, et al. Antimicrobial resistance (AMR) in COVID-19 patients: a systematic review and meta-analysis (November 2019–June 2021). Antimicrob Resist Infect Control. 2022;11(1):45.PubMedPubMedCentralCrossRef Kariyawasam RM, Julien DA, Jelinski DC, Larose SL, Rennert-May E, Conly JM, Dingle TC, Chen JZ, Tyrrell GJ, Ronksley PE, et al. Antimicrobial resistance (AMR) in COVID-19 patients: a systematic review and meta-analysis (November 2019–June 2021). Antimicrob Resist Infect Control. 2022;11(1):45.PubMedPubMedCentralCrossRef
29.
30.
go back to reference Amarsy R, Trystram D, Cambau E, Monteil C, Fournier S, Oliary J, Junot H, Sabatier P, Porcher R, Robert J, et al. Surging bloodstream infections and antimicrobial resistance during the first wave of COVID-19: a study in a large multihospital institution in the Paris region. Int J Infect Dis. 2022;114:90–6.PubMedCrossRef Amarsy R, Trystram D, Cambau E, Monteil C, Fournier S, Oliary J, Junot H, Sabatier P, Porcher R, Robert J, et al. Surging bloodstream infections and antimicrobial resistance during the first wave of COVID-19: a study in a large multihospital institution in the Paris region. Int J Infect Dis. 2022;114:90–6.PubMedCrossRef
31.
go back to reference Ceballos ME, Nuñez C, Uribe J, Vera MM, Castro R, García P, Arriata G, Gándara V, Vargas C, Dominguez A, et al. Secondary respiratory early and late infections in mechanically ventilated patients with COVID-19. BMC Infect Dis. 2022;22(1):760.PubMedPubMedCentralCrossRef Ceballos ME, Nuñez C, Uribe J, Vera MM, Castro R, García P, Arriata G, Gándara V, Vargas C, Dominguez A, et al. Secondary respiratory early and late infections in mechanically ventilated patients with COVID-19. BMC Infect Dis. 2022;22(1):760.PubMedPubMedCentralCrossRef
32.
go back to reference Luo SK, Hu WH, Lu ZJ, Li C, Fan YM, Chen QJ, Chen ZS, Ye JF, Chen SY, Tong JL, et al. Diabetes patients with comorbidities had unfavorable outcomes following COVID-19: a retrospective study. World J Diabetes. 2021;12(10):1789–808.PubMedPubMedCentralCrossRef Luo SK, Hu WH, Lu ZJ, Li C, Fan YM, Chen QJ, Chen ZS, Ye JF, Chen SY, Tong JL, et al. Diabetes patients with comorbidities had unfavorable outcomes following COVID-19: a retrospective study. World J Diabetes. 2021;12(10):1789–808.PubMedPubMedCentralCrossRef
33.
go back to reference Li W, Li J, Wei Q, McCowen K, Xiong W, Liu J, Jiang W, Thomas R, Hepokoski M, He M et al. Inpatient use of metformin and acarbose is associated with reduced mortality of COVID-19 patients with type 2 diabetes mellitus. Res Square. 2021. Li W, Li J, Wei Q, McCowen K, Xiong W, Liu J, Jiang W, Thomas R, Hepokoski M, He M et al. Inpatient use of metformin and acarbose is associated with reduced mortality of COVID-19 patients with type 2 diabetes mellitus. Res Square. 2021.
34.
go back to reference Su B, Liu H, Li J, Sunli Y, Liu B, Liu D, Zhang P, Meng X. Acarbose treatment affects the serum levels of inflammatory cytokines and the gut content of bifidobacteria in Chinese patients with type 2 diabetes mellitus. J Diabetes. 2015;7(5):729–39.PubMedCrossRef Su B, Liu H, Li J, Sunli Y, Liu B, Liu D, Zhang P, Meng X. Acarbose treatment affects the serum levels of inflammatory cytokines and the gut content of bifidobacteria in Chinese patients with type 2 diabetes mellitus. J Diabetes. 2015;7(5):729–39.PubMedCrossRef
35.
go back to reference Mo D, Liu S, Ma H, Tian H, Yu H, Zhang X, Tong N, Liao J, Ren Y. Effects of acarbose and metformin on the inflammatory state in newly diagnosed type 2 diabetes patients: a one-year randomized clinical study. Drug Des Dev Ther. 2019;13:2769–76.CrossRef Mo D, Liu S, Ma H, Tian H, Yu H, Zhang X, Tong N, Liao J, Ren Y. Effects of acarbose and metformin on the inflammatory state in newly diagnosed type 2 diabetes patients: a one-year randomized clinical study. Drug Des Dev Ther. 2019;13:2769–76.CrossRef
36.
go back to reference Feng Z, Chen M, Xue Y, Liang T, Chen H, Zhou Y, Nolin TD, Smith RB, Xie XQ. MCCS: a novel recognition pattern-based method for fast track discovery of anti-SARS-CoV-2 drugs. Brief Bioinform. 2021;22(2):946–62.PubMedCrossRef Feng Z, Chen M, Xue Y, Liang T, Chen H, Zhou Y, Nolin TD, Smith RB, Xie XQ. MCCS: a novel recognition pattern-based method for fast track discovery of anti-SARS-CoV-2 drugs. Brief Bioinform. 2021;22(2):946–62.PubMedCrossRef
37.
go back to reference Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–9.PubMedPubMedCentralCrossRef Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–9.PubMedPubMedCentralCrossRef
39.
go back to reference Chiasson J-L, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet. 2002;359(9323):2072–7.PubMedCrossRef Chiasson J-L, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet. 2002;359(9323):2072–7.PubMedCrossRef
40.
go back to reference Yang W, Liu J, Shan Z, Tian H, Zhou Z, Ji Q, Weng J, Jia W, Lu J, Liu J, et al. Acarbose compared with metformin as initial therapy in patients with newly diagnosed type 2 diabetes: an open-label, non-inferiority randomised trial. Lancet Diabetes Endocrinol. 2014;2(1):46–55.PubMedCrossRef Yang W, Liu J, Shan Z, Tian H, Zhou Z, Ji Q, Weng J, Jia W, Lu J, Liu J, et al. Acarbose compared with metformin as initial therapy in patients with newly diagnosed type 2 diabetes: an open-label, non-inferiority randomised trial. Lancet Diabetes Endocrinol. 2014;2(1):46–55.PubMedCrossRef
41.
go back to reference Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN. Diet-induced type II diabetes in C57BL/6J mice. Diabetes. 1988;37(9):1163–7.PubMedCrossRef Surwit RS, Kuhn CM, Cochrane C, McCubbin JA, Feinglos MN. Diet-induced type II diabetes in C57BL/6J mice. Diabetes. 1988;37(9):1163–7.PubMedCrossRef
42.
go back to reference Hansotia T, Maida A, Flock G, Yamada Y, Tsukiyama K, Seino Y, Drucker DJ. Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure. J Clin Investig. 2007;117(1):143–52.PubMedCrossRef Hansotia T, Maida A, Flock G, Yamada Y, Tsukiyama K, Seino Y, Drucker DJ. Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure. J Clin Investig. 2007;117(1):143–52.PubMedCrossRef
44.
go back to reference Silamiķele L, Saksis R, Silamiķelis I, Kotoviča PP, Brīvība M, Kalniņa I, Kalniņa Z, Fridmanis D, Kloviņš J. Spatial variation of the gut microbiome in response to long-term metformin treatment in high-fat diet-induced type 2 diabetes mouse model of both sexes. Gut microbes. 2023;15(1):2188663.PubMedPubMedCentralCrossRef Silamiķele L, Saksis R, Silamiķelis I, Kotoviča PP, Brīvība M, Kalniņa I, Kalniņa Z, Fridmanis D, Kloviņš J. Spatial variation of the gut microbiome in response to long-term metformin treatment in high-fat diet-induced type 2 diabetes mouse model of both sexes. Gut microbes. 2023;15(1):2188663.PubMedPubMedCentralCrossRef
45.
go back to reference Tang M, Liao S, Qu J, Liu Y, Han S, Cai Z, Fan Y, Yang L, Li S, Li L. Evaluating bacterial pathogenesis using a model of human airway organoids infected with Pseudomonas aeruginosa biofilms. Microbiol Spectr. 2022;10(6): e0240822.PubMedCrossRef Tang M, Liao S, Qu J, Liu Y, Han S, Cai Z, Fan Y, Yang L, Li S, Li L. Evaluating bacterial pathogenesis using a model of human airway organoids infected with Pseudomonas aeruginosa biofilms. Microbiol Spectr. 2022;10(6): e0240822.PubMedCrossRef
46.
go back to reference Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics (Oxford, England). 2018;34(17):i884–90.PubMed Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics (Oxford, England). 2018;34(17):i884–90.PubMed
48.
go back to reference Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics (Oxford, England). 2015;31(2):166–9.PubMed Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics (Oxford, England). 2015;31(2):166–9.PubMed
49.
go back to reference Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 2011;12(3):R22.PubMedPubMedCentralCrossRef Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 2011;12(3):R22.PubMedPubMedCentralCrossRef
51.
go back to reference Barraclough H, Simms L, Govindan R. Biostatistics primer: what a clinician ought to know: hazard ratios. J Thorac Oncol. 2011;6(6):978–82.PubMedCrossRef Barraclough H, Simms L, Govindan R. Biostatistics primer: what a clinician ought to know: hazard ratios. J Thorac Oncol. 2011;6(6):978–82.PubMedCrossRef
52.
go back to reference Huang C, Chen H, Ding Y, Ma X, Zhu H, Zhang S, Du W, Summah HD, Shi G, Feng Y. A microbial world: could metagenomic next-generation sequencing be involved in acute respiratory failure? Front Cell Infect Microbiol. 2021;11: 738074.PubMedPubMedCentralCrossRef Huang C, Chen H, Ding Y, Ma X, Zhu H, Zhang S, Du W, Summah HD, Shi G, Feng Y. A microbial world: could metagenomic next-generation sequencing be involved in acute respiratory failure? Front Cell Infect Microbiol. 2021;11: 738074.PubMedPubMedCentralCrossRef
53.
go back to reference Chen HH, Chen DY, Chao YH, Chen YM, Wu CL, Lai KL, Lin CH, Lin CC. Acarbose decreases the rheumatoid arthritis risk of diabetic patients and attenuates the incidence and severity of collagen-induced arthritis in mice. Sci Rep. 2015;5:18288.PubMedPubMedCentralCrossRef Chen HH, Chen DY, Chao YH, Chen YM, Wu CL, Lai KL, Lin CH, Lin CC. Acarbose decreases the rheumatoid arthritis risk of diabetic patients and attenuates the incidence and severity of collagen-induced arthritis in mice. Sci Rep. 2015;5:18288.PubMedPubMedCentralCrossRef
54.
go back to reference Chen HH, Chao YH, Chen DY, Yang DH, Chung TW, Li YR, Lin CC. Oral administration of acarbose ameliorates imiquimod-induced psoriasis-like dermatitis in a mouse model. Int Immunopharmacol. 2016;33:70–82.PubMedCrossRef Chen HH, Chao YH, Chen DY, Yang DH, Chung TW, Li YR, Lin CC. Oral administration of acarbose ameliorates imiquimod-induced psoriasis-like dermatitis in a mouse model. Int Immunopharmacol. 2016;33:70–82.PubMedCrossRef
55.
go back to reference Gallo M, Candido R, De Micheli A, Esposito K, Gentile S, Ceriello A. Acarbose vs metformin for new-onset type 2 diabetes. Lancet Diabetes Endocrinol. 2014;2(2):104.PubMedCrossRef Gallo M, Candido R, De Micheli A, Esposito K, Gentile S, Ceriello A. Acarbose vs metformin for new-onset type 2 diabetes. Lancet Diabetes Endocrinol. 2014;2(2):104.PubMedCrossRef
56.
go back to reference Ma RC. Acarbose: an alternative to metformin for first-line treatment in type 2 diabetes? Lancet Diabetes Endocrinol. 2014;2(1):6–7.PubMedCrossRef Ma RC. Acarbose: an alternative to metformin for first-line treatment in type 2 diabetes? Lancet Diabetes Endocrinol. 2014;2(1):6–7.PubMedCrossRef
57.
go back to reference Zangiabadian M, Nejadghaderi SA, Zahmatkesh MM, Hajikhani B, Mirsaeidi M, Nasiri MJ. The efficacy and potential mechanisms of metformin in the treatment of COVID-19 in the diabetics: a systematic review. Front Endocrinol. 2021;12: 645194.CrossRef Zangiabadian M, Nejadghaderi SA, Zahmatkesh MM, Hajikhani B, Mirsaeidi M, Nasiri MJ. The efficacy and potential mechanisms of metformin in the treatment of COVID-19 in the diabetics: a systematic review. Front Endocrinol. 2021;12: 645194.CrossRef
58.
go back to reference Åstrand A, Wingren C, Benjamin A, Tregoning JS, Garnett JP, Groves H, Gill S, Orogo-Wenn M, Lundqvist AJ, Walters D, et al. Dapagliflozin-lowered blood glucose reduces respiratory Pseudomonas aeruginosa infection in diabetic mice. Br J Pharmacol. 2017;174(9):836–47.PubMedPubMedCentralCrossRef Åstrand A, Wingren C, Benjamin A, Tregoning JS, Garnett JP, Groves H, Gill S, Orogo-Wenn M, Lundqvist AJ, Walters D, et al. Dapagliflozin-lowered blood glucose reduces respiratory Pseudomonas aeruginosa infection in diabetic mice. Br J Pharmacol. 2017;174(9):836–47.PubMedPubMedCentralCrossRef
59.
go back to reference Penaranda C, Chumbler NM, Hung DT. Dual transcriptional analysis reveals adaptation of host and pathogen to intracellular survival of Pseudomonas aeruginosa associated with urinary tract infection. PLoS Pathog. 2021;17(4): e1009534.PubMedPubMedCentralCrossRef Penaranda C, Chumbler NM, Hung DT. Dual transcriptional analysis reveals adaptation of host and pathogen to intracellular survival of Pseudomonas aeruginosa associated with urinary tract infection. PLoS Pathog. 2021;17(4): e1009534.PubMedPubMedCentralCrossRef
60.
go back to reference Saadane A, Soltys J, Berger M. Acute Pseudomonas challenge in cystic fibrosis mice causes prolonged nuclear factor-kappa B activation, cytokine secretion, and persistent lung inflammation. J Allergy Clin Immunol. 2006;117(5):1163–9.PubMedCrossRef Saadane A, Soltys J, Berger M. Acute Pseudomonas challenge in cystic fibrosis mice causes prolonged nuclear factor-kappa B activation, cytokine secretion, and persistent lung inflammation. J Allergy Clin Immunol. 2006;117(5):1163–9.PubMedCrossRef
61.
go back to reference DiMango E, Ratner AJ, Bryan R, Tabibi S, Prince A. Activation of NF-kappaB by adherent Pseudomonas aeruginosa in normal and cystic fibrosis respiratory epithelial cells. J Clin Investig. 1998;101(11):2598–605.PubMedPubMedCentralCrossRef DiMango E, Ratner AJ, Bryan R, Tabibi S, Prince A. Activation of NF-kappaB by adherent Pseudomonas aeruginosa in normal and cystic fibrosis respiratory epithelial cells. J Clin Investig. 1998;101(11):2598–605.PubMedPubMedCentralCrossRef
62.
go back to reference Wang F, Liu S, Wu S, Zhu Q, Ou G, Liu C, Wang Y, Liao Y, Sun Z. Blocking TREM-1 signaling prolongs survival of mice with Pseudomonas aeruginosa induced sepsis. Cell Immunol. 2012;272(2):251–8.PubMedCrossRef Wang F, Liu S, Wu S, Zhu Q, Ou G, Liu C, Wang Y, Liao Y, Sun Z. Blocking TREM-1 signaling prolongs survival of mice with Pseudomonas aeruginosa induced sepsis. Cell Immunol. 2012;272(2):251–8.PubMedCrossRef
64.
go back to reference Polke M, Seiler F, Lepper PM, Kamyschnikow A, Langer F, Monz D, Herr C, Bals R, Beisswenger C. Hypoxia and the hypoxia-regulated transcription factor HIF-1α suppress the host defence of airway epithelial cells. Innate Immun. 2017;23(4):373–80.PubMedCrossRef Polke M, Seiler F, Lepper PM, Kamyschnikow A, Langer F, Monz D, Herr C, Bals R, Beisswenger C. Hypoxia and the hypoxia-regulated transcription factor HIF-1α suppress the host defence of airway epithelial cells. Innate Immun. 2017;23(4):373–80.PubMedCrossRef
65.
go back to reference Shukla SD, Walters EH, Simpson JL, Keely S, Wark PAB, O’Toole RF, Hansbro PM. Hypoxia-inducible factor and bacterial infections in chronic obstructive pulmonary disease. Respirology. 2020;25(1):53–63.PubMedCrossRef Shukla SD, Walters EH, Simpson JL, Keely S, Wark PAB, O’Toole RF, Hansbro PM. Hypoxia-inducible factor and bacterial infections in chronic obstructive pulmonary disease. Respirology. 2020;25(1):53–63.PubMedCrossRef
66.
go back to reference Legendre C, Reen FJ, Mooij MJ, McGlacken GP, Adams C, O’Gara F. Pseudomonas aeruginosa Alkyl quinolones repress hypoxia-inducible factor 1 (HIF-1) signaling through HIF-1α degradation. Infect Immun. 2012;80(11):3985–92.PubMedPubMedCentralCrossRef Legendre C, Reen FJ, Mooij MJ, McGlacken GP, Adams C, O’Gara F. Pseudomonas aeruginosa Alkyl quinolones repress hypoxia-inducible factor 1 (HIF-1) signaling through HIF-1α degradation. Infect Immun. 2012;80(11):3985–92.PubMedPubMedCentralCrossRef
67.
go back to reference Kirienko NV, Kirienko DR, Larkins-Ford J, Wählby C, Ruvkun G, Ausubel FM. Pseudomonas aeruginosa disrupts Caenorhabditis elegans iron homeostasis, causing a hypoxic response and death. Cell Host Microbe. 2013;13(4):406–16.PubMedPubMedCentralCrossRef Kirienko NV, Kirienko DR, Larkins-Ford J, Wählby C, Ruvkun G, Ausubel FM. Pseudomonas aeruginosa disrupts Caenorhabditis elegans iron homeostasis, causing a hypoxic response and death. Cell Host Microbe. 2013;13(4):406–16.PubMedPubMedCentralCrossRef
68.
go back to reference Lee MK, Lee Y, Huh JW, Chen H, Wu W, Ha UH. The Pseudomonas aeruginosa HSP90-like protein HtpG regulates IL-8 expression through NF-κB/p38 MAPK and CYLD signaling triggered by TLR4 and CD91. Microbes Infect. 2020;22(10):558–66.PubMedCrossRef Lee MK, Lee Y, Huh JW, Chen H, Wu W, Ha UH. The Pseudomonas aeruginosa HSP90-like protein HtpG regulates IL-8 expression through NF-κB/p38 MAPK and CYLD signaling triggered by TLR4 and CD91. Microbes Infect. 2020;22(10):558–66.PubMedCrossRef
69.
go back to reference Ratner AJ, Bryan R, Weber A, Nguyen S, Barnes D, Pitt A, Gelber S, Cheung A, Prince A. Cystic fibrosis pathogens activate Ca2+-dependent mitogen-activated protein kinase signaling pathways in airway epithelial cells. J Biol Chem. 2001;276(22):19267–75.PubMedCrossRef Ratner AJ, Bryan R, Weber A, Nguyen S, Barnes D, Pitt A, Gelber S, Cheung A, Prince A. Cystic fibrosis pathogens activate Ca2+-dependent mitogen-activated protein kinase signaling pathways in airway epithelial cells. J Biol Chem. 2001;276(22):19267–75.PubMedCrossRef
70.
go back to reference Fu Z, Bettega K, Carroll S, Buchholz KR, Machen TE. Role of Ca2+ in responses of airway epithelia to Pseudomonas aeruginosa, flagellin, ATP, and thapsigargin. Am J Physiol Lung Cell Mol Physiol. 2007;292(1):L353-364.PubMedCrossRef Fu Z, Bettega K, Carroll S, Buchholz KR, Machen TE. Role of Ca2+ in responses of airway epithelia to Pseudomonas aeruginosa, flagellin, ATP, and thapsigargin. Am J Physiol Lung Cell Mol Physiol. 2007;292(1):L353-364.PubMedCrossRef
Metadata
Title
Acarbose reduces Pseudomonas aeruginosa respiratory tract infection in type 2 diabetic mice
Authors
Lin Liu
Haiyang Fan
Liang Li
Yunping Fan
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2023
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-023-02619-8

Other articles of this Issue 1/2023

Respiratory Research 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.