Skip to main content
Top
Published in: Cardiovascular Drugs and Therapy 4/2018

Open Access 01-08-2018 | ORIGINAL ARTICLE

Abnormalities of Mitochondrial Dynamics in the Failing Heart: Normalization Following Long-Term Therapy with Elamipretide

Authors: Hani N. Sabbah, Ramesh C. Gupta, Vinita Singh-Gupta, Kefei Zhang, David E. Lanfear

Published in: Cardiovascular Drugs and Therapy | Issue 4/2018

Login to get access

Abstract

Purpose

Abnormalities of MITO dynamics occur in HF and have been implicated in disease progression. This study describes the broad range abnormalities of mitochondrial (MITO) dynamics in Heart Failure with reduced ejection fraction (HF) and evaluates the effects of long-term therapy with elamipretide (ELAM), a MITO-targeting peptide, on these abnormalities.

Methods

Studies were performed in left ventricular tissue from dogs and humans with HF, and were compared with tissue from healthy dogs and healthy donor human hearts. Dogs with HF were randomized to 3 months therapy with ELAM or vehicle. The following were evaluated in dog and human hearts: (1) regulators of MITO biogenesis, including endothelial nitric oxide synthase (eNOS), cyclic guanosine monophosphate (cGMP), and peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α, a transcription factor that drives MITO biogenesis); (2) regulators of MITO fission and fusion, including fission-1, dynamin-related protein-1, mitofusion-2, dominant optic atrophy-1, and mitofilin; and (3) determinants of cardiolipin (CL) synthesis and remodeling, including CL synthase-1, tafazzin-1, and acyl-CoA:lysocardiolipin acyltransferase-1.

Results

The study showed decreased levels of eNOS, cGMP, and PGC-1α in HF (dog and human). Increased levels of fission-associated proteins, decreased levels of fusion-associated proteins, decreased mitofilin, and abnormalities of CL synthesis and remodeling were also observed. In all instances, these maladaptations were normalized following long-term therapy with ELAM.

Conclusions

Critical abnormalities of MITO dynamics occur in HF and are normalized following long-term therapy with ELAM. The findings provide support for the continued development of ELAM for the treatment of HF.
Literature
1.
go back to reference Givvimani S, Pushpakumar S, Veeranki S, Tyagi SC. Dysregulation of Mfn2 and Drp-1 proteins in heart failure. Can J Physiol Pharmacol. 2014;92:583–91.CrossRefPubMedPubMedCentral Givvimani S, Pushpakumar S, Veeranki S, Tyagi SC. Dysregulation of Mfn2 and Drp-1 proteins in heart failure. Can J Physiol Pharmacol. 2014;92:583–91.CrossRefPubMedPubMedCentral
2.
go back to reference Frohman MA. Role of mitochondrial lipids in guiding fission and fusion. Mol Med. 2015;93:263–9.CrossRef Frohman MA. Role of mitochondrial lipids in guiding fission and fusion. Mol Med. 2015;93:263–9.CrossRef
4.
go back to reference Sharov VG, Sabbah HN, Shimoyama H, Goussev AV, Lesch M, Goldstein S. Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol. 1996;148:141–9.PubMedPubMedCentral Sharov VG, Sabbah HN, Shimoyama H, Goussev AV, Lesch M, Goldstein S. Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol. 1996;148:141–9.PubMedPubMedCentral
6.
go back to reference Zhao K, Luo G, Zhao GM, Schiller PW, Szeto HH. Transcellular transport of a highly polar 3+ net charge opioid tetrapeptide. J Pharmacol Exp Ther. 2003;304:425–32.CrossRefPubMed Zhao K, Luo G, Zhao GM, Schiller PW, Szeto HH. Transcellular transport of a highly polar 3+ net charge opioid tetrapeptide. J Pharmacol Exp Ther. 2003;304:425–32.CrossRefPubMed
7.
go back to reference DeVay RM, Dominguez-Ramirez L, Lackner LL, Hoppins S, Stahlberg H, Nunnari J. Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner memberane fusion. J Cell Biol. 2009;186:793–803.CrossRefPubMedPubMedCentral DeVay RM, Dominguez-Ramirez L, Lackner LL, Hoppins S, Stahlberg H, Nunnari J. Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner memberane fusion. J Cell Biol. 2009;186:793–803.CrossRefPubMedPubMedCentral
8.
go back to reference Joshi AS, Thompson MN, Fei N, Huttemann M, Greenberg ML. Cardiolipin and mitochondrial phosphatidylethanolamine have overlapping functions in mitochondrial fusion in Saccharomyces cerevisiae. J Biol Chem. 2012;287:17589–97.CrossRefPubMedPubMedCentral Joshi AS, Thompson MN, Fei N, Huttemann M, Greenberg ML. Cardiolipin and mitochondrial phosphatidylethanolamine have overlapping functions in mitochondrial fusion in Saccharomyces cerevisiae. J Biol Chem. 2012;287:17589–97.CrossRefPubMedPubMedCentral
9.
go back to reference Luevano-Martinez LA, Forni MF. Tiago dios Santios V, Souza-Pinto NC, Kowaltowski AJ. Cardiolipin is a key determinant for mtDNA stability and segregation during mitochondrial stress. Biochim Biophys Acta. 2015;1847:587–98.CrossRefPubMed Luevano-Martinez LA, Forni MF. Tiago dios Santios V, Souza-Pinto NC, Kowaltowski AJ. Cardiolipin is a key determinant for mtDNA stability and segregation during mitochondrial stress. Biochim Biophys Acta. 2015;1847:587–98.CrossRefPubMed
10.
go back to reference Zhao K, Zhao GM, Wu D, et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death. and reperfusion injury. J Biol Chem. 2004;279:34682–90.CrossRefPubMed Zhao K, Zhao GM, Wu D, et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death. and reperfusion injury. J Biol Chem. 2004;279:34682–90.CrossRefPubMed
11.
go back to reference Birk AV, Liu S, Soong Y, et al. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J Am Soc Nephrol. 2013;24:1250–61.CrossRefPubMedPubMedCentral Birk AV, Liu S, Soong Y, et al. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J Am Soc Nephrol. 2013;24:1250–61.CrossRefPubMedPubMedCentral
12.
go back to reference Szeto HH, Schiller PQ. Novel therapies targeting inner mitochondrial membrane—from discovery to clinical development. Pharm Res. 2011;28:2669–79.CrossRefPubMed Szeto HH, Schiller PQ. Novel therapies targeting inner mitochondrial membrane—from discovery to clinical development. Pharm Res. 2011;28:2669–79.CrossRefPubMed
13.
go back to reference Talbert EE, Smuder AJ, Min K, Kwon OS, Szeto HH, Powers SK. Immobilization-induced activation of key proteolytic systems in skeletal muscles is prevented by a mitochondria-targeted antioxidant. J Appl Physiol (1985). 2013;115:529–38.CrossRef Talbert EE, Smuder AJ, Min K, Kwon OS, Szeto HH, Powers SK. Immobilization-induced activation of key proteolytic systems in skeletal muscles is prevented by a mitochondria-targeted antioxidant. J Appl Physiol (1985). 2013;115:529–38.CrossRef
14.
go back to reference Yang L, Zhao K, Calingasan NY, Luo G, Szeto HH, Beal MF. Mitochondria targeted peptides protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Antioxid Redox Signal. 2009;11:2095–104.CrossRefPubMedPubMedCentral Yang L, Zhao K, Calingasan NY, Luo G, Szeto HH, Beal MF. Mitochondria targeted peptides protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Antioxid Redox Signal. 2009;11:2095–104.CrossRefPubMedPubMedCentral
15.
go back to reference Brown DA, Hale SL, Baines CP, et al. Reduction of early reperfusion injury with the mitochondria-targeting peptide Bendavia. J Cardiovasc Pharmacol Ther. 2014;19:121–32.CrossRefPubMed Brown DA, Hale SL, Baines CP, et al. Reduction of early reperfusion injury with the mitochondria-targeting peptide Bendavia. J Cardiovasc Pharmacol Ther. 2014;19:121–32.CrossRefPubMed
16.
go back to reference Dai W, Shi J, Gupta RC, Sabbah HN, Hale SL, Kloner RA. Bendavia, a mitochondria-targeting peptide, improves postinfarction cardiac function, prevents adverse left ventricular remodeling, and restores mitochondria-related gene expression in rats. J Cardiovasc Pharmacol. 2014;64:543–53.CrossRefPubMed Dai W, Shi J, Gupta RC, Sabbah HN, Hale SL, Kloner RA. Bendavia, a mitochondria-targeting peptide, improves postinfarction cardiac function, prevents adverse left ventricular remodeling, and restores mitochondria-related gene expression in rats. J Cardiovasc Pharmacol. 2014;64:543–53.CrossRefPubMed
17.
18.
go back to reference Szeto HH. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol. 2014b;171:2029–50.CrossRefPubMedPubMedCentral Szeto HH. First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br J Pharmacol. 2014b;171:2029–50.CrossRefPubMedPubMedCentral
19.
go back to reference Righi V, Constantinou C, Mintzopoulos D, et al. Mitochondria-targeted antioxidant promotes recovery of skeletal muscle mitochondrial function after burn trauma assessed by in vivo 31P nuclear magnetic resonance and electron paramagnetic resonance spectroscopy. FASEB J. 2013;27:2521–30.CrossRefPubMedPubMedCentral Righi V, Constantinou C, Mintzopoulos D, et al. Mitochondria-targeted antioxidant promotes recovery of skeletal muscle mitochondrial function after burn trauma assessed by in vivo 31P nuclear magnetic resonance and electron paramagnetic resonance spectroscopy. FASEB J. 2013;27:2521–30.CrossRefPubMedPubMedCentral
20.
go back to reference Siegel MP, Kruse SE, Percival JM, et al. Mitochondrial-targeted peptide rapidly improves mitochondrial energetic and skeletal muscle performance in aged mice. Aging Cell. 2013;12:763–71.CrossRefPubMedPubMedCentral Siegel MP, Kruse SE, Percival JM, et al. Mitochondrial-targeted peptide rapidly improves mitochondrial energetic and skeletal muscle performance in aged mice. Aging Cell. 2013;12:763–71.CrossRefPubMedPubMedCentral
21.
go back to reference Powers SK, Hudson MB, Nelson WB, et al. Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med. 2011;39:1749–59.CrossRefPubMedPubMedCentral Powers SK, Hudson MB, Nelson WB, et al. Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med. 2011;39:1749–59.CrossRefPubMedPubMedCentral
22.
go back to reference Sabbah HN, Gupta RC, Kohli S, Wang M, Hachem S, Zhang K. Chronic therapy with elamipretide (MTP-131), a novel mitochondria-targeting peptide, improves left ventricular and mitochondrial function in dogs with advanced heart failure. Circ Heart Fail. 2016;9:e002206.PubMedPubMedCentralCrossRef Sabbah HN, Gupta RC, Kohli S, Wang M, Hachem S, Zhang K. Chronic therapy with elamipretide (MTP-131), a novel mitochondria-targeting peptide, improves left ventricular and mitochondrial function in dogs with advanced heart failure. Circ Heart Fail. 2016;9:e002206.PubMedPubMedCentralCrossRef
23.
go back to reference Sabbah HN, Stein PD, Kono T, et al. A canine model of chronic heart failure produced by multiple sequential coronary microembolisations. Am J Physiol. 1991;260:H1379–84.PubMed Sabbah HN, Stein PD, Kono T, et al. A canine model of chronic heart failure produced by multiple sequential coronary microembolisations. Am J Physiol. 1991;260:H1379–84.PubMed
24.
go back to reference He Q, Harris N, Ren J, Han X. Mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes. Oxid Med Cell Longev. 2014;2014:654198.CrossRefPubMedPubMedCentral He Q, Harris N, Ren J, Han X. Mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes. Oxid Med Cell Longev. 2014;2014:654198.CrossRefPubMedPubMedCentral
25.
go back to reference Liu HJ, Liao H-H, Yang Z, Tang Q-Z. Peroxisome proliferator-activated receptor-γ is critical to cardiac fibrosis. PPAR Res. 2016;2016:2198645.PubMedPubMedCentral Liu HJ, Liao H-H, Yang Z, Tang Q-Z. Peroxisome proliferator-activated receptor-γ is critical to cardiac fibrosis. PPAR Res. 2016;2016:2198645.PubMedPubMedCentral
26.
go back to reference Papanicolaou KN, Dhairallah RJ, Ngoh GA, et al. Mifofusion-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol Cell Biol. 2011;31:1309–28.CrossRefPubMedPubMedCentral Papanicolaou KN, Dhairallah RJ, Ngoh GA, et al. Mifofusion-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes. Mol Cell Biol. 2011;31:1309–28.CrossRefPubMedPubMedCentral
27.
go back to reference Sumida M, Doi K, Ogasawara E, et al. Regulation of mitochondrial dynamics of dynamin-related protein-1 in acute cardiorenal syndrome. J Am Soc Nephrol. 2015;26:2378–87.CrossRefPubMedPubMedCentral Sumida M, Doi K, Ogasawara E, et al. Regulation of mitochondrial dynamics of dynamin-related protein-1 in acute cardiorenal syndrome. J Am Soc Nephrol. 2015;26:2378–87.CrossRefPubMedPubMedCentral
29.
30.
go back to reference Baseler WA, Dabkowski ER, Williamson CL, et al. Proteomic alterations of distinct mitochondrial subpopulations in the type 1 diabetic heart: contribution of protein import dysfunction. Am J Physiol Regul Integr Comp Physiol. 2011;300:R186–200.CrossRefPubMed Baseler WA, Dabkowski ER, Williamson CL, et al. Proteomic alterations of distinct mitochondrial subpopulations in the type 1 diabetic heart: contribution of protein import dysfunction. Am J Physiol Regul Integr Comp Physiol. 2011;300:R186–200.CrossRefPubMed
31.
go back to reference Sabbah HN, Sharov VG, Riddle JM, Kono T, Lesch M, Goldstein S. Mitochondrial abnormalities in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol. 1992;24:1333–47.CrossRefPubMed Sabbah HN, Sharov VG, Riddle JM, Kono T, Lesch M, Goldstein S. Mitochondrial abnormalities in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol. 1992;24:1333–47.CrossRefPubMed
32.
go back to reference Sharov VG, Goussev A, Lesch M, Goldstein S, Sabbah HN. Abnormal mitochondrial function in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol. 1998;30:1757–62.CrossRefPubMed Sharov VG, Goussev A, Lesch M, Goldstein S, Sabbah HN. Abnormal mitochondrial function in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol. 1998;30:1757–62.CrossRefPubMed
33.
go back to reference Dai D-F, Hsieh EJ, Chen T, Menendez LG, Basisty NB, Tsai L, et al. Global proteomics and pathway analysis of pressure-overload–induced heart failure and its attenuation by mitochondrial-targeted peptides. Circ Heart Fail. 2013;6:1067–76.CrossRefPubMed Dai D-F, Hsieh EJ, Chen T, Menendez LG, Basisty NB, Tsai L, et al. Global proteomics and pathway analysis of pressure-overload–induced heart failure and its attenuation by mitochondrial-targeted peptides. Circ Heart Fail. 2013;6:1067–76.CrossRefPubMed
34.
go back to reference Sweetwyne MT, Pippin JW, Eng DG, Hudkins KL, Chiao YA, Campbell MD, et al. The mitochondrial-targeted peptide, SS-31, improves glomerular architecture in mice of advanced age. Kidney Int. 2017;91:1126–45.CrossRefPubMedPubMedCentral Sweetwyne MT, Pippin JW, Eng DG, Hudkins KL, Chiao YA, Campbell MD, et al. The mitochondrial-targeted peptide, SS-31, improves glomerular architecture in mice of advanced age. Kidney Int. 2017;91:1126–45.CrossRefPubMedPubMedCentral
35.
go back to reference Szeto HH, Liu S, Soong Y, Wu D, Darrah SF, Cheng FY, et al. Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J Am Soc Nephrol. 2011;22:1041–52.CrossRefPubMedPubMedCentral Szeto HH, Liu S, Soong Y, Wu D, Darrah SF, Cheng FY, et al. Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J Am Soc Nephrol. 2011;22:1041–52.CrossRefPubMedPubMedCentral
36.
go back to reference Liu S, Soong Y, Seshan SV, Szeto HH. Novel cardiolipin therapeutic protects endothelial mitochondria during renal ischemia and mitigates microvascular rarefaction, inflammation. and fibrosis. Am J Physiol Renal Physiol. 2014;306:F970–80.CrossRefPubMed Liu S, Soong Y, Seshan SV, Szeto HH. Novel cardiolipin therapeutic protects endothelial mitochondria during renal ischemia and mitigates microvascular rarefaction, inflammation. and fibrosis. Am J Physiol Renal Physiol. 2014;306:F970–80.CrossRefPubMed
37.
go back to reference Zhao H, Li H, Hao S, Chen J, Wu J, Song C, Zhang M, Qiao T, Li K. Peptide SS-31 upregulates frataxin expression and improves the quality of mitochondria: implications in the treatment of Friedreich ataxia. Sci Rep. 2017;7:9840 (1–11). Zhao H, Li H, Hao S, Chen J, Wu J, Song C, Zhang M, Qiao T, Li K. Peptide SS-31 upregulates frataxin expression and improves the quality of mitochondria: implications in the treatment of Friedreich ataxia. Sci Rep. 2017;7:9840 (1–11).
Metadata
Title
Abnormalities of Mitochondrial Dynamics in the Failing Heart: Normalization Following Long-Term Therapy with Elamipretide
Authors
Hani N. Sabbah
Ramesh C. Gupta
Vinita Singh-Gupta
Kefei Zhang
David E. Lanfear
Publication date
01-08-2018
Publisher
Springer US
Published in
Cardiovascular Drugs and Therapy / Issue 4/2018
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-018-6805-y

Other articles of this Issue 4/2018

Cardiovascular Drugs and Therapy 4/2018 Go to the issue