Skip to main content
Top
Published in: BMC Neurology 1/2022

Open Access 01-12-2022 | Research

Abnormal brain functional and structural connectivity between the left supplementary motor area and inferior frontal gyrus in moyamoya disease

Authors: Junwen Hu, Yin Li, Zhaoqing Li, Jingyin Chen, Yang Cao, Duo Xu, Leilei Zheng, Ruiliang Bai, Lin Wang

Published in: BMC Neurology | Issue 1/2022

Login to get access

Abstract

Background

Disruption of brain functional connectivity has been detected after stroke, but whether it also occurs in moyamoya disease (MMD) is unknown. Impaired functional connectivity is always correlated with abnormal white matter fibers. Herein, we used multimodal imaging techniques to explore the changes in brain functional and structural connectivity in MMD patients.

Methods

We collected structural images, resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging for each subject. Cognitive functions of MMD patients were evaluated using the Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Trail Making Test parts A and B (TMT-A/-B). We calculated the functional connectivity for every paired region using 90 regions of interest from the Anatomical Automatic Labeling Atlas and then determined the differences between MMD patients and HCs. We extracted the functional connectivity of paired brain regions with significant differences between the two groups. Correlation analyses were then performed between the functional connectivity and variable cognitive functions. To explore whether the impaired functional connectivity and cognitive performances were attributed to the destruction of white matter fibers, we further analyzed fiber integrity using tractography between paired regions that were correlated with cognition.

Results

There was lower functional connectivity in MMD patients as compared to HCs between the bilateral inferior frontal gyrus, between the bilateral supramarginal gyrus, between the left supplementary motor area (SMA) and the left orbital part of the inferior frontal gyrus (IFGorb), and between the left SMA and the left middle temporal gyrus (P < 0.01, FDR corrected). The decreased functional connectivity between the left SMA and the left IFGorb was significantly correlated with the MMSE (r = 0.52, P = 0.024), MoCA (r = 0.60, P = 0.006), and TMT-B (r = -0.54, P = 0.048) in MMD patients. White matter fibers were also injured between the SMA and IFGorb in the left hemisphere and were positively correlated with reduced functional connectivity.

Conclusions

Brain functional and structural connectivity between the supplementary motor area and inferior frontal gyrus in the left hemisphere are damaged in MMD. These findings could be useful in the evaluation of disease progression and prognosis of MMD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zhang H, Zheng L, Feng L. Epidemiology, diagnosis and treatment of moyamoya disease. Exp Ther Med. 2019;17(3):1977–84.PubMedPubMedCentral Zhang H, Zheng L, Feng L. Epidemiology, diagnosis and treatment of moyamoya disease. Exp Ther Med. 2019;17(3):1977–84.PubMedPubMedCentral
2.
go back to reference Kazumata K, Tokairin K, Ito M, Uchino H, Sugiyama T, Kawabori M, et al. Combined structural and diffusion tensor imaging detection of ischemic injury in moyamoya disease: relation to disease advancement and cerebral hypoperfusion. J Neurosurg. 2020;134(3):1155–64.PubMed Kazumata K, Tokairin K, Ito M, Uchino H, Sugiyama T, Kawabori M, et al. Combined structural and diffusion tensor imaging detection of ischemic injury in moyamoya disease: relation to disease advancement and cerebral hypoperfusion. J Neurosurg. 2020;134(3):1155–64.PubMed
3.
go back to reference Shao Y, Chen Z, Ming S, Ye Q, Shu Z, Gong C, et al. Predicting the development of normal-appearing white matter with radiomics in the aging brain: a longitudinal clinical study. Front Aging Neurosci. 2018;10:393.CrossRef Shao Y, Chen Z, Ming S, Ye Q, Shu Z, Gong C, et al. Predicting the development of normal-appearing white matter with radiomics in the aging brain: a longitudinal clinical study. Front Aging Neurosci. 2018;10:393.CrossRef
4.
go back to reference Reber J, Hwang K, Bowren M, Bruss J, Mukherjee P, Tranel D, et al. Cognitive impairment after focal brain lesions is better predicted by damage to structural than functional network hubs. Proc Natl Acad Sci U S A. 2021;118(19):e2018784118.CrossRef Reber J, Hwang K, Bowren M, Bruss J, Mukherjee P, Tranel D, et al. Cognitive impairment after focal brain lesions is better predicted by damage to structural than functional network hubs. Proc Natl Acad Sci U S A. 2021;118(19):e2018784118.CrossRef
5.
go back to reference Puig J, Blasco G, Alberich-Bayarri A, Schlaug G, Deco G, Biarnes C, et al. Resting-state functional connectivity magnetic resonance imaging and outcome after acute stroke. Stroke. 2018;49(10):2353–60.CrossRef Puig J, Blasco G, Alberich-Bayarri A, Schlaug G, Deco G, Biarnes C, et al. Resting-state functional connectivity magnetic resonance imaging and outcome after acute stroke. Stroke. 2018;49(10):2353–60.CrossRef
6.
go back to reference Hickok G. Small S. Neurobiology of Language: Academic Press; 2015. p. 399–406. Hickok G. Small S. Neurobiology of Language: Academic Press; 2015. p. 399–406.
7.
go back to reference Kazumata K, Tha KK, Uchino H, Ito M, Nakayama N, Abumiya T. Mapping altered brain connectivity and its clinical associations in adult moyamoya disease: a resting-state functional MRI study. PLoS ONE. 2017;12(8):e0182759.CrossRef Kazumata K, Tha KK, Uchino H, Ito M, Nakayama N, Abumiya T. Mapping altered brain connectivity and its clinical associations in adult moyamoya disease: a resting-state functional MRI study. PLoS ONE. 2017;12(8):e0182759.CrossRef
8.
go back to reference Tae WS, Ham BJ, Pyun SB, Kang SH, Kim BJ. Current clinical applications of diffusion-tensor imaging in neurological disorders. J Clin Neurol. 2018;14(2):129–40.CrossRef Tae WS, Ham BJ, Pyun SB, Kang SH, Kim BJ. Current clinical applications of diffusion-tensor imaging in neurological disorders. J Clin Neurol. 2018;14(2):129–40.CrossRef
9.
go back to reference Beaulieu C. The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed. 2002;15(7–8):435–55.CrossRef Beaulieu C. The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed. 2002;15(7–8):435–55.CrossRef
10.
go back to reference Winston GP. The physical and biological basis of quantitative parameters derived from diffusion MRI. Quant Imaging Med Surg. 2012;2(4):254–65.PubMedPubMedCentral Winston GP. The physical and biological basis of quantitative parameters derived from diffusion MRI. Quant Imaging Med Surg. 2012;2(4):254–65.PubMedPubMedCentral
11.
go back to reference Min ZG, Shan HR, Xu L, Yuan DH, Sheng XX, Xie WC, et al. Diffusion tensor imaging revealed different pathological processes of white matter hyperintensities. BMC Neurol. 2021;21(1):128.CrossRef Min ZG, Shan HR, Xu L, Yuan DH, Sheng XX, Xie WC, et al. Diffusion tensor imaging revealed different pathological processes of white matter hyperintensities. BMC Neurol. 2021;21(1):128.CrossRef
12.
go back to reference Salat DH, Tuch DS, Greve DN, van der Kouwe AJ, Hevelone ND, Zaleta AK, et al. Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol Aging. 2005;26(8):1215–27.CrossRef Salat DH, Tuch DS, Greve DN, van der Kouwe AJ, Hevelone ND, Zaleta AK, et al. Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol Aging. 2005;26(8):1215–27.CrossRef
13.
go back to reference Sanchez-Cubillo I, Perianez JA, Adrover-Roig D, Rodriguez-Sanchez JM, Rios-Lago M, Tirapu J, et al. Construct validity of the trail making test: role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J Int Neuropsychol Soc. 2009;15(3):438–50.CrossRef Sanchez-Cubillo I, Perianez JA, Adrover-Roig D, Rodriguez-Sanchez JM, Rios-Lago M, Tirapu J, et al. Construct validity of the trail making test: role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J Int Neuropsychol Soc. 2009;15(3):438–50.CrossRef
14.
go back to reference Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2(3):125–41.CrossRef Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2(3):125–41.CrossRef
15.
go back to reference Nieto-Castanon A. Handbook of fcMRI methods in CONN. Boston, MA: Hilbert Press; 2020. Nieto-Castanon A. Handbook of fcMRI methods in CONN. Boston, MA: Hilbert Press; 2020.
16.
go back to reference Yeh FC, Panesar S, Fernandes D, Meola A, Yoshino M, Fernandez-Miranda JC, et al. Population-averaged atlas of the macroscale human structural connectome and its network topology. Neuroimage. 2018;178:57–68.CrossRef Yeh FC, Panesar S, Fernandes D, Meola A, Yoshino M, Fernandez-Miranda JC, et al. Population-averaged atlas of the macroscale human structural connectome and its network topology. Neuroimage. 2018;178:57–68.CrossRef
17.
go back to reference Yeh FC, Tseng WY. Sparse solution of fiber orientation distribution function by diffusion decomposition. PLoS ONE. 2013;8(10):e75747.CrossRef Yeh FC, Tseng WY. Sparse solution of fiber orientation distribution function by diffusion decomposition. PLoS ONE. 2013;8(10):e75747.CrossRef
18.
go back to reference Lei Y, Song B, Chen L, Su J, Zhang X, Ni W, et al. Reconfigured functional network dynamics in adult moyamoya disease: a resting-state fMRI study. Brain Imaging Behav. 2020;14(3):715–27.CrossRef Lei Y, Song B, Chen L, Su J, Zhang X, Ni W, et al. Reconfigured functional network dynamics in adult moyamoya disease: a resting-state fMRI study. Brain Imaging Behav. 2020;14(3):715–27.CrossRef
19.
go back to reference Lei Y, Chen X, Su JB, Zhang X, Yang H, Gao XJ, et al. Recognition of cognitive impairment in adult moyamoya disease: a classifier based on high-order resting-state functional connectivity network. Front Neural Circuits. 2020;14:603208.CrossRef Lei Y, Chen X, Su JB, Zhang X, Yang H, Gao XJ, et al. Recognition of cognitive impairment in adult moyamoya disease: a classifier based on high-order resting-state functional connectivity network. Front Neural Circuits. 2020;14:603208.CrossRef
20.
go back to reference Huang J, Duan Y, Liu S, Liang P, Ren Z, Gao Y, et al. Altered brain structure and functional connectivity of primary visual cortex in optic neuritis. Front Hum Neurosci. 2018;12:473.CrossRef Huang J, Duan Y, Liu S, Liang P, Ren Z, Gao Y, et al. Altered brain structure and functional connectivity of primary visual cortex in optic neuritis. Front Hum Neurosci. 2018;12:473.CrossRef
21.
go back to reference Herold F, Torpel A, Schega L, Muller NG. Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements - a systematic review. Eur Rev Aging Phys Act. 2019;16:10.CrossRef Herold F, Torpel A, Schega L, Muller NG. Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements - a systematic review. Eur Rev Aging Phys Act. 2019;16:10.CrossRef
22.
go back to reference Galiano A, Mengual E, de GarciaEulate R, Galdeano I, Vidorreta M, Recio M, et al. Coupling of cerebral blood flow and functional connectivity is decreased in healthy aging. Brain Imaging Behav. 2020;14(2):436–50.CrossRef Galiano A, Mengual E, de GarciaEulate R, Galdeano I, Vidorreta M, Recio M, et al. Coupling of cerebral blood flow and functional connectivity is decreased in healthy aging. Brain Imaging Behav. 2020;14(2):436–50.CrossRef
23.
go back to reference Grefkes C, Fink GR. Connectivity-based approaches in stroke and recovery of function. Lancet Neurol. 2014;13(2):206–16.CrossRef Grefkes C, Fink GR. Connectivity-based approaches in stroke and recovery of function. Lancet Neurol. 2014;13(2):206–16.CrossRef
24.
go back to reference Hausman HK, O’Shea A, Kraft JN, Boutzoukas EM, Evangelista ND, Van Etten EJ, et al. The role of resting-state network functional connectivity in cognitive aging. Front Aging Neurosci. 2020;12:177.CrossRef Hausman HK, O’Shea A, Kraft JN, Boutzoukas EM, Evangelista ND, Van Etten EJ, et al. The role of resting-state network functional connectivity in cognitive aging. Front Aging Neurosci. 2020;12:177.CrossRef
25.
go back to reference Bozkurt B, Yagmurlu K, Middlebrooks EH, Karadag A, Ovalioglu TC, Jagadeesan B, et al. Microsurgical and tractographic anatomy of the supplementary motor area complex in humans. World Neurosurg. 2016;95:99–107.CrossRef Bozkurt B, Yagmurlu K, Middlebrooks EH, Karadag A, Ovalioglu TC, Jagadeesan B, et al. Microsurgical and tractographic anatomy of the supplementary motor area complex in humans. World Neurosurg. 2016;95:99–107.CrossRef
26.
go back to reference Canas A, Juncadella M, Lau R, Gabarros A, Hernandez M. Working memory deficits after lesions involving the supplementary motor area. Front Psychol. 2018;9:765.CrossRef Canas A, Juncadella M, Lau R, Gabarros A, Hernandez M. Working memory deficits after lesions involving the supplementary motor area. Front Psychol. 2018;9:765.CrossRef
27.
go back to reference Nakajima R, Okita H, Kinoshita M, Miyashita K, Nakada M, Yahata T, et al. Direct evidence for the causal role of the left supplementary motor area in working memory: a preliminary study. Clin Neurol Neurosurg. 2014;126:201–4.CrossRef Nakajima R, Okita H, Kinoshita M, Miyashita K, Nakada M, Yahata T, et al. Direct evidence for the causal role of the left supplementary motor area in working memory: a preliminary study. Clin Neurol Neurosurg. 2014;126:201–4.CrossRef
28.
go back to reference Sjoberg RL, Stalnacke M, Andersson M, Eriksson J. The supplementary motor area syndrome and cognitive control. Neuropsychologia. 2019;129:141–5.CrossRef Sjoberg RL, Stalnacke M, Andersson M, Eriksson J. The supplementary motor area syndrome and cognitive control. Neuropsychologia. 2019;129:141–5.CrossRef
29.
go back to reference de la Pena MJ, Gil-Robles S, de Vega VM, Aracil C, Acevedo A, Rodriguez MR. A practical approach to imaging of the supplementary motor area and its subcortical connections. Curr Neurol Neurosci Rep. 2020;20(11):50.CrossRef de la Pena MJ, Gil-Robles S, de Vega VM, Aracil C, Acevedo A, Rodriguez MR. A practical approach to imaging of the supplementary motor area and its subcortical connections. Curr Neurol Neurosci Rep. 2020;20(11):50.CrossRef
30.
go back to reference La Corte E, Eldahaby D, Greco E, Aquino D, Bertolini G, Levi V, et al. The frontal aslant tract: a systematic review for neurosurgical applications. Front Neurol. 2021;12:641586.CrossRef La Corte E, Eldahaby D, Greco E, Aquino D, Bertolini G, Levi V, et al. The frontal aslant tract: a systematic review for neurosurgical applications. Front Neurol. 2021;12:641586.CrossRef
31.
go back to reference Hoogenboom WS, Marder TJ, Flores VL, Huisman S, Eaton HP, Schneiderman JS, et al. Cerebral white matter integrity and resting-state functional connectivity in middle-aged patients with type 2 diabetes. Diabetes. 2014;63(2):728–38.CrossRef Hoogenboom WS, Marder TJ, Flores VL, Huisman S, Eaton HP, Schneiderman JS, et al. Cerebral white matter integrity and resting-state functional connectivity in middle-aged patients with type 2 diabetes. Diabetes. 2014;63(2):728–38.CrossRef
32.
go back to reference Della Nave R, Ginestroni A, Diciotti S, Salvatore E, Soricelli A, Mascalchi M. Axial diffusivity is increased in the degenerating superior cerebellar peduncles of Friedreich’s ataxia. Neuroradiology. 2011;53(5):367–72.CrossRef Della Nave R, Ginestroni A, Diciotti S, Salvatore E, Soricelli A, Mascalchi M. Axial diffusivity is increased in the degenerating superior cerebellar peduncles of Friedreich’s ataxia. Neuroradiology. 2011;53(5):367–72.CrossRef
33.
go back to reference Winklewski PJ, Sabisz A, Naumczyk P, Jodzio K, Szurowska E, Szarmach A. Understanding the physiopathology behind axial and radial diffusivity changes-what do we know? Front Neurol. 2018;9:92.CrossRef Winklewski PJ, Sabisz A, Naumczyk P, Jodzio K, Szurowska E, Szarmach A. Understanding the physiopathology behind axial and radial diffusivity changes-what do we know? Front Neurol. 2018;9:92.CrossRef
34.
go back to reference Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B. 1996;111(3):209–19.CrossRef Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B. 1996;111(3):209–19.CrossRef
35.
go back to reference Jia X, Wang Z, Huang F, Su C, Du W, Jiang H, et al. A comparison of the Mini-Mental State Examination (MMSE) with the Montreal Cognitive Assessment (MoCA) for mild cognitive impairment screening in Chinese middle-aged and older population: a cross-sectional study. BMC Psychiatry. 2021;21(1):485.CrossRef Jia X, Wang Z, Huang F, Su C, Du W, Jiang H, et al. A comparison of the Mini-Mental State Examination (MMSE) with the Montreal Cognitive Assessment (MoCA) for mild cognitive impairment screening in Chinese middle-aged and older population: a cross-sectional study. BMC Psychiatry. 2021;21(1):485.CrossRef
36.
go back to reference Kokkinakis I, Vaucher P, Cardoso I, Favrat B. Assessment of cognitive screening tests as predictors of driving cessation: a prospective cohort study of a median 4-year follow-up. PLoS ONE. 2021;16(8):e0256527.CrossRef Kokkinakis I, Vaucher P, Cardoso I, Favrat B. Assessment of cognitive screening tests as predictors of driving cessation: a prospective cohort study of a median 4-year follow-up. PLoS ONE. 2021;16(8):e0256527.CrossRef
37.
go back to reference Vaucher P, Herzig D, Cardoso I, Herzog MH, Mangin P, Favrat B. The trail making test as a screening instrument for driving performance in older drivers; a translational research. BMC Geriatr. 2014;14:123.CrossRef Vaucher P, Herzig D, Cardoso I, Herzog MH, Mangin P, Favrat B. The trail making test as a screening instrument for driving performance in older drivers; a translational research. BMC Geriatr. 2014;14:123.CrossRef
38.
go back to reference Hara S, Hori M, Hagiwara A, Tsurushima Y, Tanaka Y, Maehara T, et al. Myelin and axonal damage in normal-appearing white matter in patients with moyamoya disease. AJNR Am J Neuroradiol. 2020;41(9):1618–24.PubMedPubMedCentral Hara S, Hori M, Hagiwara A, Tsurushima Y, Tanaka Y, Maehara T, et al. Myelin and axonal damage in normal-appearing white matter in patients with moyamoya disease. AJNR Am J Neuroradiol. 2020;41(9):1618–24.PubMedPubMedCentral
Metadata
Title
Abnormal brain functional and structural connectivity between the left supplementary motor area and inferior frontal gyrus in moyamoya disease
Authors
Junwen Hu
Yin Li
Zhaoqing Li
Jingyin Chen
Yang Cao
Duo Xu
Leilei Zheng
Ruiliang Bai
Lin Wang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2022
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-022-02705-2

Other articles of this Issue 1/2022

BMC Neurology 1/2022 Go to the issue