Skip to main content
Top
Published in: BMC Neurology 1/2022

01-12-2022 | Alzheimer's Disease | Research

Key gene network related to primary ciliary dyskinesia in hippocampus of patients with Alzheimer’s disease revealed by weighted gene co-expression network analysis

Authors: Pengcheng Xia, Jing Chen, Xiaohui Bai, Ming Li, Le Wang, Zhiming Lu

Published in: BMC Neurology | Issue 1/2022

Login to get access

Abstract

Background

Alzheimer’s disease (AD) is closely related to aging, showing an increasing incidence rate for years. As one of the main brain regions involved in AD, hippocampus has been extensively studied due to its association with many human diseases. However, little is known about its association with primary ciliary dyskinesia (PCD).

Material and Methods

The microarray data of hippocampus on AD were retrieved from the Gene Expression Omnibus (GEO) database to construct the co-expression network by weighted gene co-expression network analysis (WGCNA). The gene network modules associated with AD screened with the common genes were further annotated based on Gene Ontology (GO) database and enriched based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The protein-protein interaction (PPI) network was constructed based on STRING database to identify the hub genes in the network.

Results

Genes involved in PCD were identified in the hippocampus of AD patients. Functional analysis revealed that these genes were mainly enriched in ciliary tissue, ciliary assembly, axoneme assembly, ciliary movement, microtubule based process, microtubule based movement, organelle assembly, axoneme dynamin complex, cell projection tissue, and microtubule cytoskeleton tissue. A total of 20 central genes, e.g., DYNLRB2, ZMYND10, DRC1, DNAH5, WDR16, TTC25, and ARMC4 were identified as hub genes related to PCD in hippocampus of AD patients.

Conclusion

Our study demonstrated that AD and PCD have common metabolic pathways. These common pathways provide novel evidence for further investigation of the pathophysiological mechanism and the hub genes suggest new therapeutic targets for the diagnosis and treatment of AD and PCD.

Subjects

Bioinformatics, Cell Biology, Molecular Biology, Neurology.
Appendix
Available only for authorised users
Literature
1.
go back to reference Alzheimer's Association. 2016 Alzheimer's disease facts and figures. Alzheimers Dement. 2016;12:459–509. Alzheimer's Association. 2016 Alzheimer's disease facts and figures. Alzheimers Dement. 2016;12:459–509.
2.
go back to reference Reiman E. Alzheimer's disease and other dementias: advances in 2013. Lancet Neurol. 2014;13(1):3–5.PubMedCrossRef Reiman E. Alzheimer's disease and other dementias: advances in 2013. Lancet Neurol. 2014;13(1):3–5.PubMedCrossRef
4.
go back to reference Di Meco A, Curtis M, Lauretti E, Praticò D. Autophagy Dysfunction in Alzheimer's Disease: Mechanistic Insights and New Therapeutic Opportunities. Biol Psychiatry. 2020;87(9):797–807.PubMedCrossRef Di Meco A, Curtis M, Lauretti E, Praticò D. Autophagy Dysfunction in Alzheimer's Disease: Mechanistic Insights and New Therapeutic Opportunities. Biol Psychiatry. 2020;87(9):797–807.PubMedCrossRef
5.
go back to reference Pugazhenthi S, Qin L, Reddy P. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer's disease. Biochim Biophys Acta Mol basis Dis. 2017;1863(5):1037–45.PubMedCrossRef Pugazhenthi S, Qin L, Reddy P. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer's disease. Biochim Biophys Acta Mol basis Dis. 2017;1863(5):1037–45.PubMedCrossRef
6.
go back to reference Alzheimer's Association. 2021 Alzheimer's disease facts and figures. Alzheimers Dement. 2021;17:327–406. Alzheimer's Association. 2021 Alzheimer's disease facts and figures. Alzheimers Dement. 2021;17:327–406.
7.
go back to reference Aigbogun M, Stellhorn R, Hartry A, Baker R, Fillit H. Treatment patterns and burden of behavioral disturbances in patients with dementia in the United States: a claims database analysis. BMC Neurol. 2019;19(1):33.PubMedPubMedCentralCrossRef Aigbogun M, Stellhorn R, Hartry A, Baker R, Fillit H. Treatment patterns and burden of behavioral disturbances in patients with dementia in the United States: a claims database analysis. BMC Neurol. 2019;19(1):33.PubMedPubMedCentralCrossRef
8.
go back to reference Lee J, Kim D, Griffin P, Sheehan P, Kim D, Musiek E, et al. Inhibition of REV-ERBs stimulates microglial amyloid-beta clearance and reduces amyloid plaque deposition in the 5XFAD mouse model of Alzheimer's disease. Aging Cell. 2020;19(2):e13078.PubMedCrossRef Lee J, Kim D, Griffin P, Sheehan P, Kim D, Musiek E, et al. Inhibition of REV-ERBs stimulates microglial amyloid-beta clearance and reduces amyloid plaque deposition in the 5XFAD mouse model of Alzheimer's disease. Aging Cell. 2020;19(2):e13078.PubMedCrossRef
9.
go back to reference Carey D, Nolan H, Kenny R, Meaney J. Dissociable age and memory relationships with hippocampal subfield volumes in vivo:Data from the Irish Longitudinal Study on Ageing (TILDA). Sci Rep. 2019;9(1):10981.PubMedPubMedCentralCrossRef Carey D, Nolan H, Kenny R, Meaney J. Dissociable age and memory relationships with hippocampal subfield volumes in vivo:Data from the Irish Longitudinal Study on Ageing (TILDA). Sci Rep. 2019;9(1):10981.PubMedPubMedCentralCrossRef
10.
go back to reference Montero-Crespo M, Domínguez-Álvaro M, Alonso-Nanclares L, DeFelipe J, Blazquez-Llorca L. Three-dimensional analysis of synaptic organization in the hippocampal CA1 field in Alzheimer's disease. Brain J Neurol. 2021;144(2):553–73.CrossRef Montero-Crespo M, Domínguez-Álvaro M, Alonso-Nanclares L, DeFelipe J, Blazquez-Llorca L. Three-dimensional analysis of synaptic organization in the hippocampal CA1 field in Alzheimer's disease. Brain J Neurol. 2021;144(2):553–73.CrossRef
11.
go back to reference Gordon B, Blazey T, Su Y, Fagan A, Holtzman D, Morris J, et al. Longitudinal β-Amyloid Deposition and Hippocampal Volume in Preclinical Alzheimer Disease and Suspected Non-Alzheimer Disease Pathophysiology. JAMA Neurol. 2016;73(10):1192–200.PubMedPubMedCentralCrossRef Gordon B, Blazey T, Su Y, Fagan A, Holtzman D, Morris J, et al. Longitudinal β-Amyloid Deposition and Hippocampal Volume in Preclinical Alzheimer Disease and Suspected Non-Alzheimer Disease Pathophysiology. JAMA Neurol. 2016;73(10):1192–200.PubMedPubMedCentralCrossRef
12.
go back to reference Qin X, Wang Y, Paudel H. Inhibition of Early Growth Response 1 in the Hippocampus Alleviates Neuropathology and Improves Cognition in an Alzheimer Model with Plaques and Tangles. Am J Pathol. 2017;187(8):1828–47.PubMedCrossRef Qin X, Wang Y, Paudel H. Inhibition of Early Growth Response 1 in the Hippocampus Alleviates Neuropathology and Improves Cognition in an Alzheimer Model with Plaques and Tangles. Am J Pathol. 2017;187(8):1828–47.PubMedCrossRef
13.
go back to reference Zheng J, Li H, Tian N, Liu F, Wang L, Yin Y, et al. Interneuron Accumulation of Phosphorylated tau Impairs Adult Hippocampal Neurogenesis by Suppressing GABAergic Transmission. Cell Stem Cell. 2020;26(3):331–345.e336.PubMedCrossRef Zheng J, Li H, Tian N, Liu F, Wang L, Yin Y, et al. Interneuron Accumulation of Phosphorylated tau Impairs Adult Hippocampal Neurogenesis by Suppressing GABAergic Transmission. Cell Stem Cell. 2020;26(3):331–345.e336.PubMedCrossRef
14.
go back to reference Duyckaerts C, Delatour B, Potier M. Classification and basic pathology of Alzheimer disease. Acta Neuropathol. 2009;118(1):5–36.PubMedCrossRef Duyckaerts C, Delatour B, Potier M. Classification and basic pathology of Alzheimer disease. Acta Neuropathol. 2009;118(1):5–36.PubMedCrossRef
15.
go back to reference Kim D, Park J, Han D, Yang J, Kim A, Woo J, et al. Molecular and functional signatures in a novel Alzheimer's disease mouse model assessed by quantitative proteomics. Mol Neurodegener. 2018;13(1):2.PubMedPubMedCentralCrossRef Kim D, Park J, Han D, Yang J, Kim A, Woo J, et al. Molecular and functional signatures in a novel Alzheimer's disease mouse model assessed by quantitative proteomics. Mol Neurodegener. 2018;13(1):2.PubMedPubMedCentralCrossRef
16.
go back to reference Karunakaran K, Chaparala S, Lo C, Ganapathiraju M. Cilia interactome with predicted protein-protein interactions reveals connections to Alzheimer's disease, aging and other neuropsychiatric processes. Sci Rep. 2020;10(1):15629.PubMedPubMedCentralCrossRef Karunakaran K, Chaparala S, Lo C, Ganapathiraju M. Cilia interactome with predicted protein-protein interactions reveals connections to Alzheimer's disease, aging and other neuropsychiatric processes. Sci Rep. 2020;10(1):15629.PubMedPubMedCentralCrossRef
17.
go back to reference Hu L, Wang B, Zhang Y. Serotonin 5-HT6 receptors affect cognition in a mouse model of Alzheimer's disease by regulating cilia function. Alzheimers Res Ther. 2017;9(1):76.PubMedPubMedCentralCrossRef Hu L, Wang B, Zhang Y. Serotonin 5-HT6 receptors affect cognition in a mouse model of Alzheimer's disease by regulating cilia function. Alzheimers Res Ther. 2017;9(1):76.PubMedPubMedCentralCrossRef
18.
go back to reference Ilan Y. Microtubules: From understanding their dynamics to using them as potential therapeutic targets. J Cell Physiol. 2019;234(6):7923–37.PubMedCrossRef Ilan Y. Microtubules: From understanding their dynamics to using them as potential therapeutic targets. J Cell Physiol. 2019;234(6):7923–37.PubMedCrossRef
19.
go back to reference Cabrales Fontela Y, Kadavath H, Biernat J, Riedel D, Mandelkow E, Zweckstetter M. Multivalent cross-linking of actin filaments and microtubules through the microtubule-associated protein Tau. Nat Commun. 2017;8(1):1981.PubMedPubMedCentralCrossRef Cabrales Fontela Y, Kadavath H, Biernat J, Riedel D, Mandelkow E, Zweckstetter M. Multivalent cross-linking of actin filaments and microtubules through the microtubule-associated protein Tau. Nat Commun. 2017;8(1):1981.PubMedPubMedCentralCrossRef
20.
go back to reference O'Callaghan C, Rutman A, Williams G, Kulkarni N, Hayes J, Hirst R. Ciliated conical epithelial cell protrusions point towards a diagnosis of primary ciliary dyskinesia. Respir Res. 2018;19(1):125.PubMedPubMedCentralCrossRef O'Callaghan C, Rutman A, Williams G, Kulkarni N, Hayes J, Hirst R. Ciliated conical epithelial cell protrusions point towards a diagnosis of primary ciliary dyskinesia. Respir Res. 2018;19(1):125.PubMedPubMedCentralCrossRef
21.
22.
go back to reference Lucas J, Davis S, Omran H, Shoemark A. Primary ciliary dyskinesia in the genomics age. Lancet Respir Med. 2020;8(2):202–16.PubMedCrossRef Lucas J, Davis S, Omran H, Shoemark A. Primary ciliary dyskinesia in the genomics age. Lancet Respir Med. 2020;8(2):202–16.PubMedCrossRef
23.
go back to reference Mishra M, Paunesku T, Woloschak G, Siddique T, Zhu L, Lin S, et al. Gene expression analysis of frontotemporal lobar degeneration of the motor neuron disease type with ubiquitinated inclusions. Acta Neuropathol. 2007;114(1):81–94.PubMedCrossRef Mishra M, Paunesku T, Woloschak G, Siddique T, Zhu L, Lin S, et al. Gene expression analysis of frontotemporal lobar degeneration of the motor neuron disease type with ubiquitinated inclusions. Acta Neuropathol. 2007;114(1):81–94.PubMedCrossRef
24.
go back to reference Zhou Z, Bai J, Zhong S, Zhang R, Kang K, Zhang X, et al. Downregulation of ATP6V1A Involved in Alzheimer's Disease via Synaptic Vesicle Cycle, Phagosome, and Oxidative Phosphorylation. Oxidative Med Cell Longev. 2021;2021:5555634. Zhou Z, Bai J, Zhong S, Zhang R, Kang K, Zhang X, et al. Downregulation of ATP6V1A Involved in Alzheimer's Disease via Synaptic Vesicle Cycle, Phagosome, and Oxidative Phosphorylation. Oxidative Med Cell Longev. 2021;2021:5555634.
25.
go back to reference Edgar R, Domrachev M, Lash A. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10.PubMedPubMedCentralCrossRef Edgar R, Domrachev M, Lash A. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–10.PubMedPubMedCentralCrossRef
26.
go back to reference Berchtold N, Cribbs D, Coleman P, Rogers J, Head E, Kim R, et al. Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc Natl Acad Sci U S A. 2008;105(40):15605–10.PubMedPubMedCentralCrossRef Berchtold N, Cribbs D, Coleman P, Rogers J, Head E, Kim R, et al. Gene expression changes in the course of normal brain aging are sexually dimorphic. Proc Natl Acad Sci U S A. 2008;105(40):15605–10.PubMedPubMedCentralCrossRef
27.
go back to reference Ou Guan-Yong,Lin Wen-Wen,Zhao Wei-Jiang. Construction of Long Noncoding RNA-Associated ceRNA Networks Reveals Potential Biomarkers in Alzheimer's Disease. J Alzheimers Dis. 2021;82:169–83. Ou Guan-Yong,Lin Wen-Wen,Zhao Wei-Jiang. Construction of Long Noncoding RNA-Associated ceRNA Networks Reveals Potential Biomarkers in Alzheimer's Disease. J Alzheimers Dis. 2021;82:169–83.
28.
go back to reference Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.PubMedPubMedCentralCrossRef Subramanian A, Tamayo P, Mootha V, Mukherjee S, Ebert B, Gillette M, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.PubMedPubMedCentralCrossRef
29.
go back to reference Suárez-Fariñas M, Lowes M, Zaba L, Krueger J. Evaluation of the psoriasis transcriptome across different studies by gene set enrichment analysis (GSEA). PLoS One. 2010;5(4):e10247.PubMedPubMedCentralCrossRef Suárez-Fariñas M, Lowes M, Zaba L, Krueger J. Evaluation of the psoriasis transcriptome across different studies by gene set enrichment analysis (GSEA). PLoS One. 2010;5(4):e10247.PubMedPubMedCentralCrossRef
30.
go back to reference Luo Y, Coskun V, Liang A, Yu J, Cheng L, Ge W, et al. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell. 2015;161(5):1175–86.PubMedPubMedCentralCrossRef Luo Y, Coskun V, Liang A, Yu J, Cheng L, Ge W, et al. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell. 2015;161(5):1175–86.PubMedPubMedCentralCrossRef
31.
go back to reference Clarke C, Doolan P, Barron N, Meleady P, O'Sullivan F, Gammell P, et al. Large scale microarray profiling and coexpression network analysis of CHO cells identifies transcriptional modules associated with growth and productivity. J Biotechnol. 2011;155(3):350–9.PubMedCrossRef Clarke C, Doolan P, Barron N, Meleady P, O'Sullivan F, Gammell P, et al. Large scale microarray profiling and coexpression network analysis of CHO cells identifies transcriptional modules associated with growth and productivity. J Biotechnol. 2011;155(3):350–9.PubMedCrossRef
32.
go back to reference Tang R, Liu X, Wang W, Hua J, Xu J, Liang C, et al. Identification of the Roles of a Stemness Index Based on mRNA Expression in the Prognosis and Metabolic Reprograming of Pancreatic Ductal Adenocarcinoma. Front Oncol. 2021;11:643465.PubMedPubMedCentralCrossRef Tang R, Liu X, Wang W, Hua J, Xu J, Liang C, et al. Identification of the Roles of a Stemness Index Based on mRNA Expression in the Prognosis and Metabolic Reprograming of Pancreatic Ductal Adenocarcinoma. Front Oncol. 2021;11:643465.PubMedPubMedCentralCrossRef
33.
go back to reference Sundarrajan S, Arumugam M. Weighted gene co-expression based biomarker discovery for psoriasis detection. Gene. 2016;593(1):225–34.PubMedCrossRef Sundarrajan S, Arumugam M. Weighted gene co-expression based biomarker discovery for psoriasis detection. Gene. 2016;593(1):225–34.PubMedCrossRef
34.
go back to reference Szklarczyk D, Morris J, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362–8.PubMedCrossRef Szklarczyk D, Morris J, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362–8.PubMedCrossRef
35.
go back to reference Shannon P, Markiel A, Ozier O, Baliga N, Wang J, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.PubMedPubMedCentralCrossRef Shannon P, Markiel A, Ozier O, Baliga N, Wang J, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.PubMedPubMedCentralCrossRef
36.
go back to reference Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 2009;37:D105–10.PubMedCrossRef Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 2009;37:D105–10.PubMedCrossRef
37.
go back to reference Mootha V, Lindgren C, Eriksson K, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267–73.PubMedCrossRef Mootha V, Lindgren C, Eriksson K, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267–73.PubMedCrossRef
39.
go back to reference Schwartzentruber J, Cooper S, Liu J, Barrio-Hernandez I, Bello E, Kumasaka N, et al. Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer's disease risk genes. Nat Genet. 2021;53(3):392–402.PubMedPubMedCentralCrossRef Schwartzentruber J, Cooper S, Liu J, Barrio-Hernandez I, Bello E, Kumasaka N, et al. Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer's disease risk genes. Nat Genet. 2021;53(3):392–402.PubMedPubMedCentralCrossRef
41.
go back to reference Guo C, Yang Z, Zhang S, Chai R, Xue H, Zhang Y, et al. Intranasal Lactoferrin Enhances α-Secretase-Dependent Amyloid Precursor Protein Processing via the ERK1/2-CREB and HIF-1α Pathways in an Alzheimer's Disease Mouse Model. Neuropsychopharmacology. 2017;42(13):2504–15.PubMedPubMedCentralCrossRef Guo C, Yang Z, Zhang S, Chai R, Xue H, Zhang Y, et al. Intranasal Lactoferrin Enhances α-Secretase-Dependent Amyloid Precursor Protein Processing via the ERK1/2-CREB and HIF-1α Pathways in an Alzheimer's Disease Mouse Model. Neuropsychopharmacology. 2017;42(13):2504–15.PubMedPubMedCentralCrossRef
42.
go back to reference Kashani A, Lepicard E, Poirel O, Videau C, David J, Fallet-Bianco C, et al. Loss of VGLUT1 and VGLUT2 in the prefrontal cortex is correlated with cognitive decline in Alzheimer disease. Neurobiol Aging. 2008;29(11):1619–30.PubMedCrossRef Kashani A, Lepicard E, Poirel O, Videau C, David J, Fallet-Bianco C, et al. Loss of VGLUT1 and VGLUT2 in the prefrontal cortex is correlated with cognitive decline in Alzheimer disease. Neurobiol Aging. 2008;29(11):1619–30.PubMedCrossRef
43.
44.
go back to reference Pi G, Gao D, Wu D, Wang Y, Lei H, Zeng W, et al. Posterior basolateral amygdala to ventral hippocampal CA1 drives approach behaviour to exert an anxiolytic effect. Nat Commun. 2020;11(1):183.PubMedPubMedCentralCrossRef Pi G, Gao D, Wu D, Wang Y, Lei H, Zeng W, et al. Posterior basolateral amygdala to ventral hippocampal CA1 drives approach behaviour to exert an anxiolytic effect. Nat Commun. 2020;11(1):183.PubMedPubMedCentralCrossRef
45.
go back to reference Mihailescu S, Drucker-Colín R. Nicotine, brain nicotinic receptors, and neuropsychiatric disorders. Arch Med Res. 2000;31(2):131–44.PubMedCrossRef Mihailescu S, Drucker-Colín R. Nicotine, brain nicotinic receptors, and neuropsychiatric disorders. Arch Med Res. 2000;31(2):131–44.PubMedCrossRef
46.
go back to reference Zhang T, Shen Y, Guo Y, Yao J. Identification of key transcriptome biomarkers based on a vital gene module associated with pathological changes in Alzheimer's disease. Aging (Albany NY). 2021;13(11):14940–67. Zhang T, Shen Y, Guo Y, Yao J. Identification of key transcriptome biomarkers based on a vital gene module associated with pathological changes in Alzheimer's disease. Aging (Albany NY). 2021;13(11):14940–67.
47.
go back to reference Ren RJ, Huang Q, Xu G, Gu K, Dammer EB, Wang CF, Xie XY, Chen W, Shao ZY, Chen SD, et al. Association between Alzheimer's disease and risk of cancer: A retrospective cohort study in Shanghai, China. Alzheimers Dement. 2022;18(5):924–33. Ren RJ, Huang Q, Xu G, Gu K, Dammer EB, Wang CF, Xie XY, Chen W, Shao ZY, Chen SD, et al. Association between Alzheimer's disease and risk of cancer: A retrospective cohort study in Shanghai, China. Alzheimers Dement. 2022;18(5):924–33.
48.
go back to reference Delorey T, Ziegler C, Heimberg G, Normand R, Yang Y, Segerstolpe Å, et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature. 2021;595(7865):107–13. Delorey T, Ziegler C, Heimberg G, Normand R, Yang Y, Segerstolpe Å, et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature. 2021;595(7865):107–13.
49.
go back to reference Andjelkovic M, Minic P, Vreca M, Stojiljkovic M, Skakic A, Sovtic A, et al. Genomic profiling supports the diagnosis of primary ciliary dyskinesia and reveals novel candidate genes and genetic variants. PLoS One. 2018;13(10):e0205422.PubMedPubMedCentralCrossRef Andjelkovic M, Minic P, Vreca M, Stojiljkovic M, Skakic A, Sovtic A, et al. Genomic profiling supports the diagnosis of primary ciliary dyskinesia and reveals novel candidate genes and genetic variants. PLoS One. 2018;13(10):e0205422.PubMedPubMedCentralCrossRef
50.
go back to reference Guo Z, Chen W, Huang J, Wang L, Qian L. Clinical and genetic analysis of patients with primary ciliary dyskinesia caused by novel DNAAF3 mutations. J Hum Genet. 2019;64(8):711–9.PubMedCrossRef Guo Z, Chen W, Huang J, Wang L, Qian L. Clinical and genetic analysis of patients with primary ciliary dyskinesia caused by novel DNAAF3 mutations. J Hum Genet. 2019;64(8):711–9.PubMedCrossRef
51.
go back to reference Li P, He Y, Cai G, Xiao F, Yang J, Li Q, et al. CCDC114 is mutated in patient with a complex phenotype combining primary ciliary dyskinesia, sensorineural deafness, and renal disease. J Hum Genet. 2019;64(1):39–48.PubMedCrossRef Li P, He Y, Cai G, Xiao F, Yang J, Li Q, et al. CCDC114 is mutated in patient with a complex phenotype combining primary ciliary dyskinesia, sensorineural deafness, and renal disease. J Hum Genet. 2019;64(1):39–48.PubMedCrossRef
52.
go back to reference Bower R, Tritschler D, Mills K, Heuser T, Nicastro D, Porter M. DRC2/CCDC65 is a central hub for assembly of the nexin-dynein regulatory complex and other regulators of ciliary and flagellar motility. Mol Biol Cell. 2018;29(2):137–53.PubMedPubMedCentralCrossRef Bower R, Tritschler D, Mills K, Heuser T, Nicastro D, Porter M. DRC2/CCDC65 is a central hub for assembly of the nexin-dynein regulatory complex and other regulators of ciliary and flagellar motility. Mol Biol Cell. 2018;29(2):137–53.PubMedPubMedCentralCrossRef
53.
go back to reference van de Willige D, Hummel J, Alkemade C, Kahn O, Au F, Qi R, et al. Cytolinker Gas2L1 regulates axon morphology through microtubule-modulated actin stabilization. EMBO Rep. 2019;20(11):e47732.PubMedPubMedCentralCrossRef van de Willige D, Hummel J, Alkemade C, Kahn O, Au F, Qi R, et al. Cytolinker Gas2L1 regulates axon morphology through microtubule-modulated actin stabilization. EMBO Rep. 2019;20(11):e47732.PubMedPubMedCentralCrossRef
54.
go back to reference Pillai J, Bebek G, Khrestian M, Bena J, Bergmann C, Bush W, et al. TNFRSF1B Gene Variants and Related Soluble TNFR2 Levels Impact Resilience in Alzheimer's Disease. Front Aging Neurosci. 2021;13:638922.PubMedPubMedCentralCrossRef Pillai J, Bebek G, Khrestian M, Bena J, Bergmann C, Bush W, et al. TNFRSF1B Gene Variants and Related Soluble TNFR2 Levels Impact Resilience in Alzheimer's Disease. Front Aging Neurosci. 2021;13:638922.PubMedPubMedCentralCrossRef
55.
go back to reference Liu S, Fan M, Zheng Q, Hao S, Yang L, Xia Q, et al. MicroRNAs in Alzheimer's disease: Potential diagnostic markers and therapeutic targets. Biomed Pharmacother. 2022;148:112681.PubMedCrossRef Liu S, Fan M, Zheng Q, Hao S, Yang L, Xia Q, et al. MicroRNAs in Alzheimer's disease: Potential diagnostic markers and therapeutic targets. Biomed Pharmacother. 2022;148:112681.PubMedCrossRef
56.
go back to reference Zhang L, Trushin S, Christensen T, Tripathi U, Hong C, Geroux R, et al. Differential effect of amyloid beta peptides on mitochondrial axonal trafficking depends on their state of aggregation and binding to the plasma membrane. Neurobiol Dis. 2018;114:1–16.PubMedPubMedCentralCrossRef Zhang L, Trushin S, Christensen T, Tripathi U, Hong C, Geroux R, et al. Differential effect of amyloid beta peptides on mitochondrial axonal trafficking depends on their state of aggregation and binding to the plasma membrane. Neurobiol Dis. 2018;114:1–16.PubMedPubMedCentralCrossRef
57.
go back to reference Romoli M, Sen A, Parnetti L, Calabresi P, Costa C. Amyloid-β: a potential link between epilepsy and cognitive decline. Nat Rev Neurol. 2021;17(8):469–85. Romoli M, Sen A, Parnetti L, Calabresi P, Costa C. Amyloid-β: a potential link between epilepsy and cognitive decline. Nat Rev Neurol. 2021;17(8):469–85.
58.
go back to reference Pannuzzo M. Beta-amyloid pore linked to controlled calcium influx into the cell: A new paradigm for Alzheimer's Disease. Alzheimers Dement. 2022;18(1):191–6. Pannuzzo M. Beta-amyloid pore linked to controlled calcium influx into the cell: A new paradigm for Alzheimer's Disease. Alzheimers Dement. 2022;18(1):191–6.
59.
go back to reference Song H, Shim S, Kim D, Won S, Joo S, Kim S, et al. β-Amyloid is transmitted via neuronal connections along axonal membranes. Ann Neurol. 2014;75(1):88–97.PubMedCrossRef Song H, Shim S, Kim D, Won S, Joo S, Kim S, et al. β-Amyloid is transmitted via neuronal connections along axonal membranes. Ann Neurol. 2014;75(1):88–97.PubMedCrossRef
60.
go back to reference Legendre M, Zaragosi L, Mitchison H. Motile cilia and airway disease. Semin Cell Dev Biol. 2021;110:19–33.PubMedCrossRef Legendre M, Zaragosi L, Mitchison H. Motile cilia and airway disease. Semin Cell Dev Biol. 2021;110:19–33.PubMedCrossRef
61.
go back to reference Ibañez-Tallon I, Gorokhova S, Heintz N. Loss of function of axonemal dynein Mdnah5 causes primary ciliary dyskinesia and hydrocephalus. Hum Mol Genet. 2002;11(6):715–21.PubMedCrossRef Ibañez-Tallon I, Gorokhova S, Heintz N. Loss of function of axonemal dynein Mdnah5 causes primary ciliary dyskinesia and hydrocephalus. Hum Mol Genet. 2002;11(6):715–21.PubMedCrossRef
62.
go back to reference Zhang Y, O'Neal W, Randell S, Blackburn K, Moyer M, Boucher R, et al. Identification of dynein heavy chain 7 as an inner arm component of human cilia that is synthesized but not assembled in a case of primary ciliary dyskinesia. J Biol Chem. 2002;277(20):17906–15.PubMedCrossRef Zhang Y, O'Neal W, Randell S, Blackburn K, Moyer M, Boucher R, et al. Identification of dynein heavy chain 7 as an inner arm component of human cilia that is synthesized but not assembled in a case of primary ciliary dyskinesia. J Biol Chem. 2002;277(20):17906–15.PubMedCrossRef
Metadata
Title
Key gene network related to primary ciliary dyskinesia in hippocampus of patients with Alzheimer’s disease revealed by weighted gene co-expression network analysis
Authors
Pengcheng Xia
Jing Chen
Xiaohui Bai
Ming Li
Le Wang
Zhiming Lu
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2022
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-022-02724-z

Other articles of this Issue 1/2022

BMC Neurology 1/2022 Go to the issue