Skip to main content
Top
Published in: BMC Cancer 1/2015

Open Access 01-12-2015 | Research article

Aberrant activation of NF-κB signaling in mammary epithelium leads to abnormal growth and ductal carcinoma in situ

Authors: Whitney Barham, Lianyi Chen, Oleg Tikhomirov, Halina Onishko, Linda Gleaves, Thomas P. Stricker, Timothy S. Blackwell, Fiona E. Yull

Published in: BMC Cancer | Issue 1/2015

Login to get access

Abstract

Background

Approximately 1 in 5 women diagnosed with breast cancer are considered to have in situ disease, most often termed ductal carcinoma in situ (DCIS). Though recognized as a risk factor for the development of more invasive cancer, it remains unclear what factors contribute to DCIS development. It has been shown that inflammation contributes to the progression of a variety of tumor types, and nuclear factor kappa B (NF-κB) is recognized as a master-regulator of inflammatory signaling. However, the contributions of NF-κB signaling to tumor initiation are less well understood. Aberrant up-regulation of NF-κB activity, either systemically or locally within the breast, could occur due to a variety of commonly experienced stimuli such as acute infection, obesity, or psychological stress. In this study, we seek to determine if activation of NF-κB in mammary epithelium could play a role in the formation of hyperplastic ductal lesions.

Methods

Our studies utilize a doxycycline-inducible transgenic mouse model in which constitutively active IKKβ is expressed specifically in mammary epithelium. All previously published models of NF-κB modulation in the virgin mammary gland have been constitutive models, with transgene or knock-out present throughout the life and development of the animal. For the first time, we will induce activation at later time points after normal ducts have formed, thus being able to determine if NF-κB activation can promote pre-malignant changes in previously normal mammary epithelium.

Results

We found that even a short pulse of NF-κB activation could induce profound remodeling of mammary ductal structures. Short-term activation created hyperproliferative, enlarged ducts with filled lumens. Increased expression of inflammatory markers was concurrent with the down-regulation of hormone receptors and markers of epithelial differentiation. Furthermore, the oncoprotein mucin 1, known to be up-regulated in human and mouse DCIS, was over-expressed and mislocalized in the activated ductal tissue.

Conclusions

These results indicate that aberrant NF-κB activation within mammary epithelium can lead to molecular and morphological changes consistent with the earliest stages of breast cancer. Thus, inhibition of NF-κB signaling following acute inflammation or the initial signs of hyperplastic ductal growth could represent an important opportunity for breast cancer prevention.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Hinck L, Näthke I. Changes in cell and tissue organization in cancer of the breast and colon. Curr Opin Cell Biol. 2014;26:87–95.CrossRefPubMed Hinck L, Näthke I. Changes in cell and tissue organization in cancer of the breast and colon. Curr Opin Cell Biol. 2014;26:87–95.CrossRefPubMed
3.
go back to reference Ernster V, Barclay J, Kerlikowske K, Grady D, Henderson C. Incidence of and Treatment for Ductal Carcinoma In Situ of the Breast. JAMA. 1996;275:913–8.CrossRefPubMed Ernster V, Barclay J, Kerlikowske K, Grady D, Henderson C. Incidence of and Treatment for Ductal Carcinoma In Situ of the Breast. JAMA. 1996;275:913–8.CrossRefPubMed
4.
go back to reference American Cancer Society: Breast Cancer Facts and Figures 2011–2012. American Cancer Society Inc. Atlanta, GA; 2012 American Cancer Society: Breast Cancer Facts and Figures 2011–2012. American Cancer Society Inc. Atlanta, GA; 2012
5.
go back to reference Wells CJ, O’Donoghue C, Ojeda-Fournier H, Retallack HEG, Esserman LJ. Evolving paradigm for imaging, diagnosis, and management of DCIS. J Am Coll Radiol. 2013;10:918–23.CrossRefPubMed Wells CJ, O’Donoghue C, Ojeda-Fournier H, Retallack HEG, Esserman LJ. Evolving paradigm for imaging, diagnosis, and management of DCIS. J Am Coll Radiol. 2013;10:918–23.CrossRefPubMed
6.
go back to reference Erbas B, Provenzano E, Armes J, Gertig D. The natural history of ductal carcinoma in situ of the breast: a review. Breast Cancer Res Treat. 2006;97:135–44.CrossRefPubMed Erbas B, Provenzano E, Armes J, Gertig D. The natural history of ductal carcinoma in situ of the breast: a review. Breast Cancer Res Treat. 2006;97:135–44.CrossRefPubMed
8.
go back to reference Baeuerle P, Baltimore D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science (80-). 1988;242:540–6.CrossRef Baeuerle P, Baltimore D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science (80-). 1988;242:540–6.CrossRef
10.
go back to reference Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol. 2009;27:693–733.CrossRefPubMed Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol. 2009;27:693–733.CrossRefPubMed
11.
12.
go back to reference Connelly L, Barham W, Pigg R, Saint-Jean L, Sherrill T, Cheng D-S, et al. Activation of nuclear factor kappa B in mammary epithelium promotes milk loss during mammary development and infection. J Cell Physiol. 2010;222:73–81.CrossRefPubMedPubMedCentral Connelly L, Barham W, Pigg R, Saint-Jean L, Sherrill T, Cheng D-S, et al. Activation of nuclear factor kappa B in mammary epithelium promotes milk loss during mammary development and infection. J Cell Physiol. 2010;222:73–81.CrossRefPubMedPubMedCentral
13.
go back to reference Howe LR, Subbaramaiah K, Hudis CA, Dannenberg AJ. Molecular pathways: adipose inflammation as a mediator of obesity-associated cancer. Clin Cancer Res. 2013;19:6074–83.CrossRefPubMedPubMedCentral Howe LR, Subbaramaiah K, Hudis CA, Dannenberg AJ. Molecular pathways: adipose inflammation as a mediator of obesity-associated cancer. Clin Cancer Res. 2013;19:6074–83.CrossRefPubMedPubMedCentral
14.
go back to reference McGregor BA, Antoni MH. Psychological intervention and health outcomes among women treated for breast cancer: a review of stress pathways and biological mediators. Brain Behav Immun. 2009;23:159–66.CrossRefPubMed McGregor BA, Antoni MH. Psychological intervention and health outcomes among women treated for breast cancer: a review of stress pathways and biological mediators. Brain Behav Immun. 2009;23:159–66.CrossRefPubMed
15.
go back to reference Brantley DM, Chen CL, Muraoka RS, Bushdid PB, Bradberry JL, Kittrell F, et al. Nuclear factor-kappaB (NF-kappaB) regulates proliferation and branching in mouse mammary epithelium. Mol Biol Cell. 2001;12:1445–55.CrossRefPubMedPubMedCentral Brantley DM, Chen CL, Muraoka RS, Bushdid PB, Bradberry JL, Kittrell F, et al. Nuclear factor-kappaB (NF-kappaB) regulates proliferation and branching in mouse mammary epithelium. Mol Biol Cell. 2001;12:1445–55.CrossRefPubMedPubMedCentral
16.
go back to reference Connelly L, Barham W, Onishko HM, Sherrill T, Chodosh LA, Blackwell TS, et al. Inhibition of NF-kappa B activity in mammary epithelium increases tumor latency and decreases tumor burden. Oncogene. 2011;30:1402–12.CrossRefPubMed Connelly L, Barham W, Onishko HM, Sherrill T, Chodosh LA, Blackwell TS, et al. Inhibition of NF-kappa B activity in mammary epithelium increases tumor latency and decreases tumor burden. Oncogene. 2011;30:1402–12.CrossRefPubMed
17.
go back to reference Pratt M, Tibbo E, Robertson SJ, Jansson D, Hurst K, Perez-Iratxeta C, et al. The canonical NF-kappaB pathway is required for formation of luminal mammary neoplasias and is activated in the mammary progenitor population. Oncogene. 2009;28:2710–22.CrossRefPubMed Pratt M, Tibbo E, Robertson SJ, Jansson D, Hurst K, Perez-Iratxeta C, et al. The canonical NF-kappaB pathway is required for formation of luminal mammary neoplasias and is activated in the mammary progenitor population. Oncogene. 2009;28:2710–22.CrossRefPubMed
18.
go back to reference Liu M, Sakamaki T, Casimiro MC, Willmarth NE, Quong AA, Ju X, et al. The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer Res. 2010;70:10464–73.CrossRefPubMedPubMedCentral Liu M, Sakamaki T, Casimiro MC, Willmarth NE, Quong AA, Ju X, et al. The canonical NF-kappaB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion. Cancer Res. 2010;70:10464–73.CrossRefPubMedPubMedCentral
19.
go back to reference Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R, et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature. 2010;468:103–7.CrossRefPubMed Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R, et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature. 2010;468:103–7.CrossRefPubMed
20.
go back to reference Cheng DS, Han W, Chen SM, Sherrill TP, Chont M, Park G-Y, et al. Airway Epithelium Controls Lung Inflammation and Injury through the NF-kappaB Pathway. J Immunol. 2007;178:6504–13.CrossRefPubMed Cheng DS, Han W, Chen SM, Sherrill TP, Chont M, Park G-Y, et al. Airway Epithelium Controls Lung Inflammation and Injury through the NF-kappaB Pathway. J Immunol. 2007;178:6504–13.CrossRefPubMed
21.
go back to reference Gunther E, Belka G, Wertheim G, Wang J, Hartman J, Boxer R, et al. A novel doxycycline-inducible system for the transgenic analysis of mammary gland biology. FASEB J. 2002;16:283–92.CrossRefPubMed Gunther E, Belka G, Wertheim G, Wang J, Hartman J, Boxer R, et al. A novel doxycycline-inducible system for the transgenic analysis of mammary gland biology. FASEB J. 2002;16:283–92.CrossRefPubMed
22.
go back to reference Connelly L, Robinson-Benion C, Chont M, Saint-Jean L, Li H, Polosukhin VV, et al. A transgenic model reveals important roles for the NF-kappa B alternative pathway (p100/p52) in mammary development and links to tumorigenesis. J Biol Chem. 2007;282:10028–35.CrossRefPubMed Connelly L, Robinson-Benion C, Chont M, Saint-Jean L, Li H, Polosukhin VV, et al. A transgenic model reveals important roles for the NF-kappa B alternative pathway (p100/p52) in mammary development and links to tumorigenesis. J Biol Chem. 2007;282:10028–35.CrossRefPubMed
24.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods. 2001;25:402–8.CrossRefPubMed
25.
go back to reference Chen C-L, Singh N, Yull FE, Strayhorn D, Van Kaer L, Kerr LD. Lymphocytes Lacking I kappaB-alpha Develop Normally, But Have Selective Defects in Proliferation and Function. J Immunol. 2000;165:5418–27.CrossRefPubMed Chen C-L, Singh N, Yull FE, Strayhorn D, Van Kaer L, Kerr LD. Lymphocytes Lacking I kappaB-alpha Develop Normally, But Have Selective Defects in Proliferation and Function. J Immunol. 2000;165:5418–27.CrossRefPubMed
26.
go back to reference Reginato MJ, Muthuswamy SK. Illuminating the center: mechanisms regulating lumen formation and maintenance in mammary morphogenesis. J Mammary Gland Biol Neoplasia. 2006;11:205–11.CrossRefPubMed Reginato MJ, Muthuswamy SK. Illuminating the center: mechanisms regulating lumen formation and maintenance in mammary morphogenesis. J Mammary Gland Biol Neoplasia. 2006;11:205–11.CrossRefPubMed
27.
go back to reference Kawamoto H, Koizumi H, Uchikoshi T. Expression of the G2-M Checkpoint Regulators Cyclin B1 and cdc2 in Nonmalignant and Malignant Human Breast Lesions. Am J Pathol. 1997;150:15–23.PubMedPubMedCentral Kawamoto H, Koizumi H, Uchikoshi T. Expression of the G2-M Checkpoint Regulators Cyclin B1 and cdc2 in Nonmalignant and Malignant Human Breast Lesions. Am J Pathol. 1997;150:15–23.PubMedPubMedCentral
28.
go back to reference Pei X, Bai F, Smith M, Usary J, Fan C, Pai S, et al. CDK Inhibitor p18 INK4c Is a Downstream Target of GATA3 and Restrains Mammary Luminal Progenitor Cell Proliferation and Tumorigenesis. Cancer Cell. 2009;15:389–401.CrossRefPubMedPubMedCentral Pei X, Bai F, Smith M, Usary J, Fan C, Pai S, et al. CDK Inhibitor p18 INK4c Is a Downstream Target of GATA3 and Restrains Mammary Luminal Progenitor Cell Proliferation and Tumorigenesis. Cancer Cell. 2009;15:389–401.CrossRefPubMedPubMedCentral
29.
go back to reference Reed JR, Leon RP, Hall MK, Schwertfeger KL. Interleukin-1beta and fibroblast growth factor receptor 1 cooperate to induce cyclooxygenase-2 during early mammary tumourigenesis. Breast Cancer Res. 2009;11:R21.CrossRefPubMedPubMedCentral Reed JR, Leon RP, Hall MK, Schwertfeger KL. Interleukin-1beta and fibroblast growth factor receptor 1 cooperate to induce cyclooxygenase-2 during early mammary tumourigenesis. Breast Cancer Res. 2009;11:R21.CrossRefPubMedPubMedCentral
30.
go back to reference Montesano R, Soulié P, Eble JA, Carrozzino F. Tumour necrosis factor alpha confers an invasive, transformed phenotype on mammary epithelial cells. J Cell Sci. 2005;118(Pt 15):3487–500.CrossRefPubMed Montesano R, Soulié P, Eble JA, Carrozzino F. Tumour necrosis factor alpha confers an invasive, transformed phenotype on mammary epithelial cells. J Cell Sci. 2005;118(Pt 15):3487–500.CrossRefPubMed
31.
go back to reference Liu CH, Chang SH, Narko K, Trifan OC, Wu MT, Smith E, et al. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem. 2001;276:18563–9.CrossRefPubMed Liu CH, Chang SH, Narko K, Trifan OC, Wu MT, Smith E, et al. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem. 2001;276:18563–9.CrossRefPubMed
32.
go back to reference Choi YS, Chakrabarti R, Escamilla-Hernandez R, Sinha S. Elf5 conditional knockout mice reveal its role as a master regulator in mammary alveolar development: failure of Stat5 activation and functional differentiation in the absence of Elf5. Dev Biol. 2009;329:227–41.CrossRefPubMed Choi YS, Chakrabarti R, Escamilla-Hernandez R, Sinha S. Elf5 conditional knockout mice reveal its role as a master regulator in mammary alveolar development: failure of Stat5 activation and functional differentiation in the absence of Elf5. Dev Biol. 2009;329:227–41.CrossRefPubMed
33.
go back to reference Kufe DW. MUC1-C oncoprotein as a target in breast cancer: activation of signaling pathways and therapeutic approaches. Oncogene. 2013;32:1073–81.CrossRefPubMed Kufe DW. MUC1-C oncoprotein as a target in breast cancer: activation of signaling pathways and therapeutic approaches. Oncogene. 2013;32:1073–81.CrossRefPubMed
34.
go back to reference Mommers EC, Leonhart AM, von Mensdorff-Pouilly S, Schol DJ, Hilgers J, Meijer CJ, et al. Aberrant expression of MUC1 mucin in ductal hyperplasia and ductal carcinoma In situ of the breast. Int J Cancer. 1999;84:466–9.CrossRefPubMed Mommers EC, Leonhart AM, von Mensdorff-Pouilly S, Schol DJ, Hilgers J, Meijer CJ, et al. Aberrant expression of MUC1 mucin in ductal hyperplasia and ductal carcinoma In situ of the breast. Int J Cancer. 1999;84:466–9.CrossRefPubMed
36.
go back to reference Holloway RW, Bogachev O, Bharadwaj AG, McCluskey GD, Majdalawieh AF, Zhang L, et al. Stromal adipocyte enhancer-binding protein (AEBP1) promotes mammary epithelial cell hyperplasia via proinflammatory and hedgehog signaling. J Biol Chem. 2012;287:39171–81.CrossRefPubMedPubMedCentral Holloway RW, Bogachev O, Bharadwaj AG, McCluskey GD, Majdalawieh AF, Zhang L, et al. Stromal adipocyte enhancer-binding protein (AEBP1) promotes mammary epithelial cell hyperplasia via proinflammatory and hedgehog signaling. J Biol Chem. 2012;287:39171–81.CrossRefPubMedPubMedCentral
37.
go back to reference Welm BE, Freeman KW, Chen M, Contreras A, Spencer DM, Rosen JM. Inducible dimerization of FGFR1: development of a mouse model to analyze progressive transformation of the mammary gland. J Cell Biol. 2002;157:703–14.CrossRefPubMedPubMedCentral Welm BE, Freeman KW, Chen M, Contreras A, Spencer DM, Rosen JM. Inducible dimerization of FGFR1: development of a mouse model to analyze progressive transformation of the mammary gland. J Cell Biol. 2002;157:703–14.CrossRefPubMedPubMedCentral
38.
go back to reference Witzel I-I, Koh LF, Perkins ND. Regulation of cyclin D1 gene expression. Biochem Soc Trans. 2010;38(Pt 1):217–22.CrossRefPubMed Witzel I-I, Koh LF, Perkins ND. Regulation of cyclin D1 gene expression. Biochem Soc Trans. 2010;38(Pt 1):217–22.CrossRefPubMed
39.
go back to reference Antonaki A, Demetriades C, Polyzos A, Banos A, Vatsellas G, Lavigne MD, et al. Genomic analysis reveals a novel nuclear factor-κB (NF-κB)-binding site in Alu-repetitive elements. J Biol Chem. 2011;286:38768–82.CrossRefPubMedPubMedCentral Antonaki A, Demetriades C, Polyzos A, Banos A, Vatsellas G, Lavigne MD, et al. Genomic analysis reveals a novel nuclear factor-κB (NF-κB)-binding site in Alu-repetitive elements. J Biol Chem. 2011;286:38768–82.CrossRefPubMedPubMedCentral
40.
go back to reference Pellegrini P, Pasquale P, Cordero A, Alex C, Gallego MI, Marta Ines G, et al. Constitutive activation of RANK disrupts mammary cell fate leading to tumorigenesis. Stem Cells. 2013;31:1954–65.CrossRefPubMed Pellegrini P, Pasquale P, Cordero A, Alex C, Gallego MI, Marta Ines G, et al. Constitutive activation of RANK disrupts mammary cell fate leading to tumorigenesis. Stem Cells. 2013;31:1954–65.CrossRefPubMed
41.
go back to reference Chua HL, Bhat-Nakshatri P, Clare SE, Morimiya A, Badve S, Nakshatri H. NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene. 2007;26:711–24.CrossRefPubMed Chua HL, Bhat-Nakshatri P, Clare SE, Morimiya A, Badve S, Nakshatri H. NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene. 2007;26:711–24.CrossRefPubMed
42.
go back to reference Ueno T, Toi M, Saji H. Significance of Macrophage Chemoattractant Protein-1 in Macrophage Recruitment, Angiogenesis, and Survival in Human Breast Cancer. Clin Cancer Res. 2000;6:3282–9.PubMed Ueno T, Toi M, Saji H. Significance of Macrophage Chemoattractant Protein-1 in Macrophage Recruitment, Angiogenesis, and Survival in Human Breast Cancer. Clin Cancer Res. 2000;6:3282–9.PubMed
43.
go back to reference Valković T, Lucin K, Krstulja M, Dobi-Babić R, Jonjić N. Expression of monocyte chemotactic protein-1 in human invasive ductal breast cancer. Pathol Res Pract. 1998;194:335–40.CrossRefPubMed Valković T, Lucin K, Krstulja M, Dobi-Babić R, Jonjić N. Expression of monocyte chemotactic protein-1 in human invasive ductal breast cancer. Pathol Res Pract. 1998;194:335–40.CrossRefPubMed
44.
go back to reference Li H, Chen K, Su F, Song E, Gong C. Preoperative CA 15–3 levels predict the prognosis of nonmetastatic luminal A breast cancer. J Surg Res. 2014;189:48–56.CrossRefPubMed Li H, Chen K, Su F, Song E, Gong C. Preoperative CA 15–3 levels predict the prognosis of nonmetastatic luminal A breast cancer. J Surg Res. 2014;189:48–56.CrossRefPubMed
45.
go back to reference Li Y, Yi H, Yao Y, Liao X, Xie Y, Yang J, et al. The cytoplasmic domain of MUC1 induces hyperplasia in the mammary gland and correlates with nuclear accumulation of β-catenin. PLoS One. 2011;6:e19102.CrossRefPubMedPubMedCentral Li Y, Yi H, Yao Y, Liao X, Xie Y, Yang J, et al. The cytoplasmic domain of MUC1 induces hyperplasia in the mammary gland and correlates with nuclear accumulation of β-catenin. PLoS One. 2011;6:e19102.CrossRefPubMedPubMedCentral
46.
go back to reference Bitler BG, Goverdhan A, Schroeder J. MUC1 regulates nuclear localization and function of the epidermal growth factor receptor. J Cell Sci. 2010;123(Pt 10):1716–23.CrossRefPubMedPubMedCentral Bitler BG, Goverdhan A, Schroeder J. MUC1 regulates nuclear localization and function of the epidermal growth factor receptor. J Cell Sci. 2010;123(Pt 10):1716–23.CrossRefPubMedPubMedCentral
47.
go back to reference Raina D, Ahmad R, Joshi MD, Yin L, Wu Z, Kawano T, et al. Direct targeting of the mucin 1 oncoprotein blocks survival and tumorigenicity of human breast carcinoma cells. Cancer Res. 2009;69:5133–41.CrossRefPubMedPubMedCentral Raina D, Ahmad R, Joshi MD, Yin L, Wu Z, Kawano T, et al. Direct targeting of the mucin 1 oncoprotein blocks survival and tumorigenicity of human breast carcinoma cells. Cancer Res. 2009;69:5133–41.CrossRefPubMedPubMedCentral
48.
go back to reference Uchida Y, Raina D, Kharbanda S, Kufe D. Inhibition of the MUC1-C oncoprotein is synergistic with cytotoxic agents in the treatment of breast cancer cells. Cancer Biol Ther. 2013;14:127–34.CrossRefPubMedPubMedCentral Uchida Y, Raina D, Kharbanda S, Kufe D. Inhibition of the MUC1-C oncoprotein is synergistic with cytotoxic agents in the treatment of breast cancer cells. Cancer Biol Ther. 2013;14:127–34.CrossRefPubMedPubMedCentral
50.
go back to reference Welch H, Black W. Using Autopsy Series To Estimate the Disease “Reservoir” for Ductal Carcinoma in Situ of the Breast: How Much More Breast Cancer Can We Find? Ann Intern Med. 1997;127:1023–8.CrossRefPubMed Welch H, Black W. Using Autopsy Series To Estimate the Disease “Reservoir” for Ductal Carcinoma in Situ of the Breast: How Much More Breast Cancer Can We Find? Ann Intern Med. 1997;127:1023–8.CrossRefPubMed
51.
go back to reference Page D, Dupont W, Rogers L, Landenberger M. Intraductal carcinoma of the breast: follow-up after biopsy only. Cancer. 1982;49:751–8.CrossRefPubMed Page D, Dupont W, Rogers L, Landenberger M. Intraductal carcinoma of the breast: follow-up after biopsy only. Cancer. 1982;49:751–8.CrossRefPubMed
Metadata
Title
Aberrant activation of NF-κB signaling in mammary epithelium leads to abnormal growth and ductal carcinoma in situ
Authors
Whitney Barham
Lianyi Chen
Oleg Tikhomirov
Halina Onishko
Linda Gleaves
Thomas P. Stricker
Timothy S. Blackwell
Fiona E. Yull
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2015
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-015-1652-8

Other articles of this Issue 1/2015

BMC Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine