Skip to main content
Top
Published in: Respiratory Research 1/2017

Open Access 01-12-2017 | Research

ABCB1 and ABCG2 drug transporters are differentially expressed in non-small cell lung cancers (NSCLC) and expression is modified by cisplatin treatment via altered Wnt signaling

Authors: M. Vesel, J. Rapp, D. Feller, E. Kiss, L. Jaromi, M. Meggyes, G. Miskei, B. Duga, G. Smuk, T. Laszlo, I. Karner, J.E. Pongracz

Published in: Respiratory Research | Issue 1/2017

Login to get access

Abstract

Background

Lung cancer (LC) is still the most common cause of cancer related deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for 85% of all LC cases but is not a single entity. It is now accepted that, apart from the characteristic driver mutations, the unique molecular signatures of adeno- (AC) and squamous cell carcinomas (SCC), the two most common NSCLC subtypes should be taken into consideration for their management. Therapeutic interventions, however, frequently lead to chemotherapy resistance highlighting the need for in-depth analysis of regulatory mechanisms of multidrug resistance to increase therapeutic efficiency.

Methods

Non-canonical Wnt5a and canonical Wnt7b and ABC transporter expressions were tested in primary human LC (n = 90) resections of AC and SCC. To investigate drug transporter activity, a three dimensional (3D) human lung aggregate tissue model was set up using differentiated primary human lung cell types. Following modification of the canonical, beta-catenin dependent Wnt pathway or treatment with cisplatin, drug transporter analysis was performed at mRNA, protein and functional level using qRT-PCR, immunohistochemistry, immune-fluorescent staining and transport function analysis.

Results

Non-canonical Wnt5a is significantly up-regulated in SCC samples making the microenvironment different from AC, where the beta-catenin dependent Wnt7b is more prominent. In primary cancer tissues ABCB1 and ABCG2 expression levels were different in the two NSCLC subtypes. Non-canonical rhWnt5a induced down-regulation of both ABCB1 and ABCG2 transporters in the primary human lung aggregate tissue model recreating the SCC-like transporter pattern. Inhibition of the beta-catenin or canonical Wnt pathway resulted in similar down-regulation of both ABC transporter expression and function. In contrast, cisplatin, the frequently used adjuvant chemotherapeutic agent, activated beta-catenin dependent signaling that lead to up-regulation of both ABCB1 and ABCG2 transporter expression and activity.

Conclusions

The difference in the Wnt microenvironment in AC and SCC leads to variations in ABC transporter expression. Cisplatin via induction of canonical Wnt signaling up-regulates ABCB1 and ABCG2 drug transporters that are not transporters for cisplatin itself but are transporters for drugs that are frequently used in combination therapy with cisplatin modulating drug response.
Appendix
Available only for authorised users
Literature
3.
4.
go back to reference Vansteenkiste J, Crinò L, Dooms C, Douillard JY, Faivre-Finn C, Lim E, et al. 2nd ESMO Consensus Conference on Lung Cancer: early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up. Ann. Oncol.2014 [cited 19 Sep 2016];25:1462–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24562446 Vansteenkiste J, Crinò L, Dooms C, Douillard JY, Faivre-Finn C, Lim E, et al. 2nd ESMO Consensus Conference on Lung Cancer: early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up. Ann. Oncol.2014 [cited 19 Sep 2016];25:1462–74. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​24562446
11.
go back to reference Yin J-Y, Huang Q, Yang Y, Zhang J-T, Zhong M-Z, Zhou H-H, et al. Characterization and analyses of multidrug resistance-associated protein 1 (MRP1/ABCC1) polymorphisms in Chinese population. Pharmacogenet. Genomics. NIH Public Access; 2009 [cited 8 Feb 2017];19:206–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19214144 Yin J-Y, Huang Q, Yang Y, Zhang J-T, Zhong M-Z, Zhou H-H, et al. Characterization and analyses of multidrug resistance-associated protein 1 (MRP1/ABCC1) polymorphisms in Chinese population. Pharmacogenet. Genomics. NIH Public Access; 2009 [cited 8 Feb 2017];19:206–16. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​19214144
12.
13.
go back to reference Yoh K, Ishii G, Yokose T, Minegishi Y, Tsuta K, Goto K, et al. Breast cancer resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer. Clin. Cancer Res. 2004 [cited 19 Sep 2016];10:1691–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15014021 Yoh K, Ishii G, Yokose T, Minegishi Y, Tsuta K, Goto K, et al. Breast cancer resistance protein impacts clinical outcome in platinum-based chemotherapy for advanced non-small cell lung cancer. Clin. Cancer Res. 2004 [cited 19 Sep 2016];10:1691–7. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​15014021
15.
go back to reference Merk J, Rolff J, Dorn C, Leschber G, Fichtner I. Chemoresistance in non-small-cell lung cancer: can multidrug resistance markers predict the response of xenograft lung cancer models to chemotherapy? Eur. J. Cardiothorac. Surg. 2011 [cited 19 Sep 2016];40:e29–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21420313 Merk J, Rolff J, Dorn C, Leschber G, Fichtner I. Chemoresistance in non-small-cell lung cancer: can multidrug resistance markers predict the response of xenograft lung cancer models to chemotherapy? Eur. J. Cardiothorac. Surg. 2011 [cited 19 Sep 2016];40:e29–33. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​21420313
16.
go back to reference Chiou JF, Liang JA, Hsu WH, Wang JJ, Ho ST, Kao A. Comparing the relationship of Taxol-based chemotherapy response with P-glycoprotein and lung resistance-related protein expression in non-small cell lung cancer. Lung. 2003 [cited 19 Sep 2016];181:267–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14705770 Chiou JF, Liang JA, Hsu WH, Wang JJ, Ho ST, Kao A. Comparing the relationship of Taxol-based chemotherapy response with P-glycoprotein and lung resistance-related protein expression in non-small cell lung cancer. Lung. 2003 [cited 19 Sep 2016];181:267–73. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​14705770
21.
go back to reference Lim JC, Kania KD, Wijesuriya H, Chawla S, Sethi JK, Pulaski L, et al. Activation of beta-catenin signalling by GSK-3 inhibition increases p-glycoprotein expression in brain endothelial cells. J. Neurochem. 2008 [cited 19 Sep 2016];106:1855–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18624906 Lim JC, Kania KD, Wijesuriya H, Chawla S, Sethi JK, Pulaski L, et al. Activation of beta-catenin signalling by GSK-3 inhibition increases p-glycoprotein expression in brain endothelial cells. J. Neurochem. 2008 [cited 19 Sep 2016];106:1855–65. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​18624906
22.
25.
go back to reference Barr MP, Gray SG, Hoffmann AC, Hilger RA, Thomale J, O’Flaherty JD, et al. Generation and Characterisation of Cisplatin-Resistant Non-Small Cell Lung Cancer Cell Lines Displaying a Stem-Like Signature. Yang P-C, editor. PLoS One. Public Library of Science; 2013 [cited 19 Sep 2016];8:e54193. Available from: http://dx.plos.org/10.1371/journal.pone.0054193 Barr MP, Gray SG, Hoffmann AC, Hilger RA, Thomale J, O’Flaherty JD, et al. Generation and Characterisation of Cisplatin-Resistant Non-Small Cell Lung Cancer Cell Lines Displaying a Stem-Like Signature. Yang P-C, editor. PLoS One. Public Library of Science; 2013 [cited 19 Sep 2016];8:e54193. Available from: http://​dx.​plos.​org/​10.​1371/​journal.​pone.​0054193
29.
31.
go back to reference Haq S, Michael A, Andreucci M, Bhattacharya K, Dotto P, Walters B, et al. Stabilization of beta-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth. Proc. Natl. Acad. Sci. U. S. A. National Academy of Sciences; 2003 [cited 7 Sep 2016];100:4610–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12668767 Haq S, Michael A, Andreucci M, Bhattacharya K, Dotto P, Walters B, et al. Stabilization of beta-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth. Proc. Natl. Acad. Sci. U. S. A. National Academy of Sciences; 2003 [cited 7 Sep 2016];100:4610–5. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​12668767
32.
go back to reference Florea A-M, Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel). Multidisciplinary Digital Publishing Institute (MDPI); 2011 [cited 19 Sep 2016];3:1351–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24212665 Florea A-M, Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel). Multidisciplinary Digital Publishing Institute (MDPI); 2011 [cited 19 Sep 2016];3:1351–71. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​24212665
34.
37.
go back to reference Yamada T, Takaoka AS, Naishiro Y, Hayashi R, Maruyama K, Maesawa C, et al. Transactivation of the multidrug resistance 1 gene by T-cell factor 4/beta-catenin complex in early colorectal carcinogenesis. Cancer Res. 2000 [cited 19 Sep 2016];60:4761–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10987283 Yamada T, Takaoka AS, Naishiro Y, Hayashi R, Maruyama K, Maesawa C, et al. Transactivation of the multidrug resistance 1 gene by T-cell factor 4/beta-catenin complex in early colorectal carcinogenesis. Cancer Res. 2000 [cited 19 Sep 2016];60:4761–6. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​10987283
39.
go back to reference Bourguignon LYW, Xia W, Wong G. Hyaluronan-mediated CD44 interaction with p300 and SIRT1 regulates beta-catenin signaling and NFkappaB-specific transcription activity leading to MDR1 and Bcl-xL gene expression and chemoresistance in breast tumor cells. J. Biol. Chem. 2009 [cited 19 Sep 2016];284:2657–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19047049 Bourguignon LYW, Xia W, Wong G. Hyaluronan-mediated CD44 interaction with p300 and SIRT1 regulates beta-catenin signaling and NFkappaB-specific transcription activity leading to MDR1 and Bcl-xL gene expression and chemoresistance in breast tumor cells. J. Biol. Chem. 2009 [cited 19 Sep 2016];284:2657–71. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​19047049
40.
go back to reference Liu Y-Y, Gupta V, Patwardhan GA, Bhinge K, Zhao Y, Bao J, et al. Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and beta-catenin signaling. Mol. Cancer. 2010 [cited 19 Sep 2016];9:145. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20540746 Liu Y-Y, Gupta V, Patwardhan GA, Bhinge K, Zhao Y, Bao J, et al. Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and beta-catenin signaling. Mol. Cancer. 2010 [cited 19 Sep 2016];9:145. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​20540746
41.
42.
go back to reference Dezi M, Fribourg P-F, Di Cicco A, Arnaud O, Marco S, Falson P, et al. The multidrug resistance half-transporter ABCG2 is purified as a tetramer upon selective extraction from membranes. Biochim. Biophys. Acta. 2010 [cited 19 Sep 2016];1798:2094–101. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20691149 Dezi M, Fribourg P-F, Di Cicco A, Arnaud O, Marco S, Falson P, et al. The multidrug resistance half-transporter ABCG2 is purified as a tetramer upon selective extraction from membranes. Biochim. Biophys. Acta. 2010 [cited 19 Sep 2016];1798:2094–101. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​20691149
48.
go back to reference Su H-Y, Lai H-C, Lin Y-W, Liu C-Y, Chen C-K, Chou Y-C, et al. Epigenetic silencing of SFRP5 is related to malignant phenotype and chemoresistance of ovarian cancer through Wnt signaling pathway. Int. J. Cancer. 2010 [cited 8 Feb 2017];127:555–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19957335 Su H-Y, Lai H-C, Lin Y-W, Liu C-Y, Chen C-K, Chou Y-C, et al. Epigenetic silencing of SFRP5 is related to malignant phenotype and chemoresistance of ovarian cancer through Wnt signaling pathway. Int. J. Cancer. 2010 [cited 8 Feb 2017];127:555–67. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​19957335
50.
go back to reference Sanchez AM, Giorgione V, Vigano P, Papaleo E, Candiani M, Mangili G, et al. Treatment With Anticancer Agents Induces Dysregulation of Specific Wnt Signaling Pathways in Human Ovarian Luteinized Granulosa Cells In Vitro. Toxicol. Sci. 2013 [cited 8 Feb 2017];136:183–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23956100 Sanchez AM, Giorgione V, Vigano P, Papaleo E, Candiani M, Mangili G, et al. Treatment With Anticancer Agents Induces Dysregulation of Specific Wnt Signaling Pathways in Human Ovarian Luteinized Granulosa Cells In Vitro. Toxicol. Sci. 2013 [cited 8 Feb 2017];136:183–92. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​23956100
51.
Metadata
Title
ABCB1 and ABCG2 drug transporters are differentially expressed in non-small cell lung cancers (NSCLC) and expression is modified by cisplatin treatment via altered Wnt signaling
Authors
M. Vesel
J. Rapp
D. Feller
E. Kiss
L. Jaromi
M. Meggyes
G. Miskei
B. Duga
G. Smuk
T. Laszlo
I. Karner
J.E. Pongracz
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2017
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-017-0537-6

Other articles of this Issue 1/2017

Respiratory Research 1/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.