Skip to main content
Top
Published in: BMC Cancer 1/2006

Open Access 01-12-2006 | Research article

A transcriptome anatomy of human colorectal cancers

Authors: Bingjian Lü, Jing Xu, Maode Lai, Hao Zhang, Jian Chen

Published in: BMC Cancer | Issue 1/2006

Login to get access

Abstract

Background

Accumulating databases in human genome research have enabled integrated genome-wide study on complicated diseases such as cancers. A practical approach is to mine a global transcriptome profile of disease from public database. New concepts of these diseases might emerge by landscaping this profile.

Methods

In this study, we clustered human colorectal normal mucosa (N), inflammatory bowel disease (IBD), adenoma (A) and cancer (T) related expression sequence tags (EST) into UniGenes via an in-house GetUni software package and analyzed the transcriptome overview of these libraries by GOTree Machine (GOTM). Additionally, we downloaded UniGene based cDNA libraries of colon and analyzed them by Xprofiler to cross validate the efficiency of GetUni. Semi-quantitative RT-PCR was used to validate the expression of β-catenin and. 7 novel genes in colorectal cancers.

Results

The efficiency of GetUni was successfully validated by Xprofiler and RT-PCR. Genes in library N, IBD and A were all found in library T. A total of 14,879 genes were identified with 2,355 of them having at least 2 transcripts. Differences in gene enrichment among these libraries were statistically significant in 50 signal transduction pathways and Pfam protein domains by GOTM analysis P < 0.01 Hypergeometric Test). Genes in two metabolic pathways, ribosome and glycolysis, were more enriched in the expression profiles of A and IBD than in N and T. Seven transmembrane receptor superfamily genes were typically abundant in cancers.

Conclusion

Colorectal cancers are genetically heterogeneous. Transcription variants are common in them. Aberrations of ribosome and glycolysis pathway might be early indicators of precursor lesions in colon cancers. The electronic gene expression profile could be used to highlight the integral molecular events in colorectal cancers.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hamilton SR, Altonin LA: Pathology and Genetics: tumours of the Digestive System. WHO classifications Third Series. 2001, RIAS, Ryon, France Hamilton SR, Altonin LA: Pathology and Genetics: tumours of the Digestive System. WHO classifications Third Series. 2001, RIAS, Ryon, France
2.
go back to reference Fearon ER, Vogelstein B: A genetic model for colorectal tumorigenesis. Cell. 1990, 61: 759-767. 10.1016/0092-8674(90)90186-I.CrossRefPubMed Fearon ER, Vogelstein B: A genetic model for colorectal tumorigenesis. Cell. 1990, 61: 759-767. 10.1016/0092-8674(90)90186-I.CrossRefPubMed
3.
go back to reference Thibodeau SN, Bren G, Schaid D: Microsatellite instability in cancer of the proximal colon. Science. 1993, 260: 816-819.CrossRefPubMed Thibodeau SN, Bren G, Schaid D: Microsatellite instability in cancer of the proximal colon. Science. 1993, 260: 816-819.CrossRefPubMed
4.
go back to reference Radtke F, Clevers H: Self-renewal and cancer of the gut: two sides of a coin. Science. 2005, 307: 1904-1909. 10.1126/science.1104815.CrossRefPubMed Radtke F, Clevers H: Self-renewal and cancer of the gut: two sides of a coin. Science. 2005, 307: 1904-1909. 10.1126/science.1104815.CrossRefPubMed
5.
go back to reference International Human Genome Sequencing Consortium: Finishing the euchromatic sequence of the human genome. Nature. 2004, 431: 931-945. 10.1038/nature03001.CrossRef International Human Genome Sequencing Consortium: Finishing the euchromatic sequence of the human genome. Nature. 2004, 431: 931-945. 10.1038/nature03001.CrossRef
6.
go back to reference Hanash S: Integrated global profiling of cancer. Nat Rev Cancer. 2004, 4: 638-644. 10.1038/nrc1414.CrossRefPubMed Hanash S: Integrated global profiling of cancer. Nat Rev Cancer. 2004, 4: 638-644. 10.1038/nrc1414.CrossRefPubMed
7.
go back to reference Dennis JL, Vass JK, Wit EC, Keith WN, Oien KA: Identification from public data of molecular markers of adenocarcinoma characteristic of the site of origin. Cancer Res. 2002, 62: 5999-6005.PubMed Dennis JL, Vass JK, Wit EC, Keith WN, Oien KA: Identification from public data of molecular markers of adenocarcinoma characteristic of the site of origin. Cancer Res. 2002, 62: 5999-6005.PubMed
8.
go back to reference Scheurle D, DeYoung MP, Binninger DM, Page H, Jahanzeb M, Narayanan R: Cancer gene discovery using digital differential display. Cancer Res. 2000, 60: 4037-4043.PubMed Scheurle D, DeYoung MP, Binninger DM, Page H, Jahanzeb M, Narayanan R: Cancer gene discovery using digital differential display. Cancer Res. 2000, 60: 4037-4043.PubMed
9.
go back to reference Lal A, Lash AE, Altschul SF, Velculescu V, Zhang L, McLendon RE, Marra MA, Prange C, Morin PJ, Polyak K, Papadopoulos N, Vogelstein B, Kinzler KW, Strausberg RL, Riggins GJ: A public database for gene expression in human cancers. Cancer Res. 1999, 59: 5403-5407.PubMed Lal A, Lash AE, Altschul SF, Velculescu V, Zhang L, McLendon RE, Marra MA, Prange C, Morin PJ, Polyak K, Papadopoulos N, Vogelstein B, Kinzler KW, Strausberg RL, Riggins GJ: A public database for gene expression in human cancers. Cancer Res. 1999, 59: 5403-5407.PubMed
10.
go back to reference Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF, Kerlavage AR, McCombie WR, Venter JC: Complementary DNA sequencing: expressed sequence tags and human genome project. Science. 1991, 252: 1651-1656.CrossRefPubMed Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF, Kerlavage AR, McCombie WR, Venter JC: Complementary DNA sequencing: expressed sequence tags and human genome project. Science. 1991, 252: 1651-1656.CrossRefPubMed
11.
go back to reference Zhuo D, Zhao WD, Wright FA, Yang HY, Wang JP, Sears R, Baer T, Kwon DH, Gordon D, Gibbs S, Dai D, Yang Q, Spitzner J, Krahe R, Stredney D, Stutz A, Yuan B: Assembly, annotation, and integration of UNIGENE clusters into the human genome draft. Genome Res. 2001, 11: 904-918. 10.1101/gr.GR-1645R.CrossRefPubMedPubMedCentral Zhuo D, Zhao WD, Wright FA, Yang HY, Wang JP, Sears R, Baer T, Kwon DH, Gordon D, Gibbs S, Dai D, Yang Q, Spitzner J, Krahe R, Stredney D, Stutz A, Yuan B: Assembly, annotation, and integration of UNIGENE clusters into the human genome draft. Genome Res. 2001, 11: 904-918. 10.1101/gr.GR-1645R.CrossRefPubMedPubMedCentral
17.
18.
go back to reference Yamashita T, Honda M, Takatori H, Nishino R, Hoshino N, Kaneko S: Genome-wide transcriptome mapping analysis identifies organ-specific gene expression patterns along human chromosomes. Genomics. 2004, 84: 867-875. 10.1016/j.ygeno.2004.08.008.CrossRefPubMed Yamashita T, Honda M, Takatori H, Nishino R, Hoshino N, Kaneko S: Genome-wide transcriptome mapping analysis identifies organ-specific gene expression patterns along human chromosomes. Genomics. 2004, 84: 867-875. 10.1016/j.ygeno.2004.08.008.CrossRefPubMed
19.
go back to reference Schmitt AO, Specht T, Beckmann G, Dahl E, Pilarsky CP, Hinzmann B, Rosenthal A: Exhaustive mining of EST libraries for genes differentially expressed in normal and tumour tissues. Nucleic Acids Res. 1999, 27: 4251-4260. 10.1093/nar/27.21.4251.CrossRefPubMedPubMedCentral Schmitt AO, Specht T, Beckmann G, Dahl E, Pilarsky CP, Hinzmann B, Rosenthal A: Exhaustive mining of EST libraries for genes differentially expressed in normal and tumour tissues. Nucleic Acids Res. 1999, 27: 4251-4260. 10.1093/nar/27.21.4251.CrossRefPubMedPubMedCentral
20.
go back to reference Beachy PA, Karhadkar SS, Berman DM: Tissue repair and stem cell renewal in carcinogenesis. Nature. 2004, 432: 324-31. 10.1038/nature03100.CrossRefPubMed Beachy PA, Karhadkar SS, Berman DM: Tissue repair and stem cell renewal in carcinogenesis. Nature. 2004, 432: 324-31. 10.1038/nature03100.CrossRefPubMed
21.
go back to reference Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD, Santos R, Schadt EE, Stoughton R, Shoemaker DD: Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science. 2003, 302: 2141-2144. 10.1126/science.1090100.CrossRefPubMed Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD, Santos R, Schadt EE, Stoughton R, Shoemaker DD: Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science. 2003, 302: 2141-2144. 10.1126/science.1090100.CrossRefPubMed
22.
go back to reference Kasai H, Nadano D, Hidaka E, Higuchi K, Kawakubo M, Sato TA, Nakayama J: Differential expression of ribosomal proteins in human normal and neoplastic colorectum. J Histochem Cytochem. 2003, 51: 567-574.CrossRefPubMed Kasai H, Nadano D, Hidaka E, Higuchi K, Kawakubo M, Sato TA, Nakayama J: Differential expression of ribosomal proteins in human normal and neoplastic colorectum. J Histochem Cytochem. 2003, 51: 567-574.CrossRefPubMed
23.
go back to reference Luo MJ, Lai M: Identification of differentially expressed genes in normal mucosa, adenoma and adenocarcinoma of colon by SSH. World J Gastroenterol. 2001, 7: 726-731.PubMedPubMedCentral Luo MJ, Lai M: Identification of differentially expressed genes in normal mucosa, adenoma and adenocarcinoma of colon by SSH. World J Gastroenterol. 2001, 7: 726-731.PubMedPubMedCentral
24.
go back to reference Notterman DA, Alon U, Sierk AJ, Levine AJ: Transcriptional Gene Expression Profiles of Colorectal Adenoma, Adenocarcinoma, and Normal Tissue Examined by Oligonucleotide Arrays. Cancer Res. 2001, 61: 3124-3130.PubMed Notterman DA, Alon U, Sierk AJ, Levine AJ: Transcriptional Gene Expression Profiles of Colorectal Adenoma, Adenocarcinoma, and Normal Tissue Examined by Oligonucleotide Arrays. Cancer Res. 2001, 61: 3124-3130.PubMed
25.
go back to reference Pogue-Geile K, Geiser JR, Shu M, Miller C, Wool IG, Meisler AI, Pipas JM: Ribosomal protein genes are overexpressed in colorectal cancer: isolation of a cDNA clone encoding the human S3 ribosomal protein. Mol Cell Biol. 1991, 11: 3842-3849.CrossRefPubMedPubMedCentral Pogue-Geile K, Geiser JR, Shu M, Miller C, Wool IG, Meisler AI, Pipas JM: Ribosomal protein genes are overexpressed in colorectal cancer: isolation of a cDNA clone encoding the human S3 ribosomal protein. Mol Cell Biol. 1991, 11: 3842-3849.CrossRefPubMedPubMedCentral
26.
go back to reference Leclerc D, Deng L, Trasler J, Rozen R: ApcMin/+ mouse model of colon cancer: gene expression profiling in tumors. J Cell Biochem. 2004, 93: 1242-1254. 10.1002/jcb.20236.CrossRefPubMed Leclerc D, Deng L, Trasler J, Rozen R: ApcMin/+ mouse model of colon cancer: gene expression profiling in tumors. J Cell Biochem. 2004, 93: 1242-1254. 10.1002/jcb.20236.CrossRefPubMed
27.
go back to reference Sullivan DC, Huminiecki L, Moore JW, Boyle JJ, Poulsom R, Creamer D, Barker J, Bicknell R: EndoPDI, a novel protein-disulfide isomerase-like protein that is preferentially expressed in endothelial cells acts as a stress survival factor. J Biol Chem. 2003, 278: 47079-47088. 10.1074/jbc.M308124200.CrossRefPubMed Sullivan DC, Huminiecki L, Moore JW, Boyle JJ, Poulsom R, Creamer D, Barker J, Bicknell R: EndoPDI, a novel protein-disulfide isomerase-like protein that is preferentially expressed in endothelial cells acts as a stress survival factor. J Biol Chem. 2003, 278: 47079-47088. 10.1074/jbc.M308124200.CrossRefPubMed
28.
go back to reference Coppock DL, Kopman C, Scandalis S, Gilleran S: Preferential gene expression in quiescent human lung fibroblasts. Cell Growth Differ. 1993, 4: 483-493.PubMed Coppock DL, Kopman C, Scandalis S, Gilleran S: Preferential gene expression in quiescent human lung fibroblasts. Cell Growth Differ. 1993, 4: 483-493.PubMed
29.
go back to reference Yang M, Zhong WW, Srivastava N, Slavin A, Yang J, Hoey T, An S: G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the β-catenin pathway. Proc Natl Acad Sci U S A. 2005, 102: 6027-6032. 10.1073/pnas.0501535102.CrossRefPubMedPubMedCentral Yang M, Zhong WW, Srivastava N, Slavin A, Yang J, Hoey T, An S: G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the β-catenin pathway. Proc Natl Acad Sci U S A. 2005, 102: 6027-6032. 10.1073/pnas.0501535102.CrossRefPubMedPubMedCentral
30.
go back to reference Li A, Varney ML, Singh RK: Expression of interleukin 8 and its receptors in human colon carcinoma cells with different metastatic potentials. Clin Cancer Res. 2001, 7: 3298-3304.PubMed Li A, Varney ML, Singh RK: Expression of interleukin 8 and its receptors in human colon carcinoma cells with different metastatic potentials. Clin Cancer Res. 2001, 7: 3298-3304.PubMed
31.
go back to reference Blache P, van de Wetering M, Duluc I, Domon C, Berta P, Freund JN, Clevers H, Jay P: SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J Cell Biol. 2004, 166: 37-47. 10.1083/jcb.200311021.CrossRefPubMedPubMedCentral Blache P, van de Wetering M, Duluc I, Domon C, Berta P, Freund JN, Clevers H, Jay P: SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J Cell Biol. 2004, 166: 37-47. 10.1083/jcb.200311021.CrossRefPubMedPubMedCentral
Metadata
Title
A transcriptome anatomy of human colorectal cancers
Authors
Bingjian Lü
Jing Xu
Maode Lai
Hao Zhang
Jian Chen
Publication date
01-12-2006
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2006
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-6-40

Other articles of this Issue 1/2006

BMC Cancer 1/2006 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine