Skip to main content
Top
Published in: BMC Medical Genetics 1/2014

Open Access 01-12-2014 | Technical advance

A simple method for gene phasing using mate pair sequencing

Authors: Kendall W Cradic, Stephen J Murphy, Travis M Drucker, Robert A Sikkink, Norman L Eberhardt, Claudia Neuhauser, George Vasmatzis, Stefan KG Grebe

Published in: BMC Medical Genetics | Issue 1/2014

Login to get access

Abstract

Background

Recessive genes cause disease when both copies are affected by mutant loci. Resolving the cis/trans relationship of variations has been an important problem both for researchers, and increasingly, clinicians. Of particular concern are patients who have two heterozygous disease-causing mutations and could be diagnosed as affected (one mutation on each allele) or as phenotypically normal (both mutations on the same allele). Several methods are currently used to phase genes, however due to cost, complexity and/or low sensitivity they are not suitable for clinical purposes.

Methods

Long-range amplification was used to select and enrich the target gene (CYP21A2) followed by modified mate-pair sequencing. Fragments that mapped coincidently to two heterozygous sites were identified and used for statistical analysis.

Results

Probabilities for cis/trans relationships between heterozygous positions were calculated along with 99% confidence intervals over the entire length of our 10 kb amplicons. The quality of phasing was closely related to the depth of coverage and the number of erroneous reads. Most of the error was found to have been introduced by recombination in the PCR reaction.

Conclusions

We have developed a simple method utilizing massively parallel sequencing that is capable of resolving two alleles containing multiple heterozygous positions. This method stands out among other phasing tools because it provides quantitative results allowing confident haplotype calls.
Appendix
Available only for authorised users
Literature
2.
go back to reference Salem R, Wessel J, Schork N: A comprehensive literature review of haplotyping software and methods for use with unrelated individuals. Hum Genomics. 2005, 2: 39-66. 10.1186/1479-7364-2-1-39.CrossRefPubMedPubMedCentral Salem R, Wessel J, Schork N: A comprehensive literature review of haplotyping software and methods for use with unrelated individuals. Hum Genomics. 2005, 2: 39-66. 10.1186/1479-7364-2-1-39.CrossRefPubMedPubMedCentral
3.
go back to reference Yan H, Papadopoulos N, Marra G, Perrera C, Jiricny J, Boland CR, Lynch HT, Chadwick RB, de la Chapelle A, Berg K, et al: Conversion of diploidy to haploidy - individuals susceptible to multigene disorders may now be spotted more easily. Nature. 2000, 403: 723-724. 10.1038/35001659.CrossRefPubMed Yan H, Papadopoulos N, Marra G, Perrera C, Jiricny J, Boland CR, Lynch HT, Chadwick RB, de la Chapelle A, Berg K, et al: Conversion of diploidy to haploidy - individuals susceptible to multigene disorders may now be spotted more easily. Nature. 2000, 403: 723-724. 10.1038/35001659.CrossRefPubMed
4.
go back to reference Douglas JA, Boehnke M, Gillanders E, Trent JM, Gruber SB: Experimentally-derived haplotypes substantially increase the efficiency of linkage disequilibrium studies. Nat Genet. 2001, 28: 361-364. 10.1038/ng582.CrossRefPubMed Douglas JA, Boehnke M, Gillanders E, Trent JM, Gruber SB: Experimentally-derived haplotypes substantially increase the efficiency of linkage disequilibrium studies. Nat Genet. 2001, 28: 361-364. 10.1038/ng582.CrossRefPubMed
5.
go back to reference Fan HC, Wang J, Potanina A, Quake SR: Whole-genome molecular haplotyping of single cells. Nat Biotechnol. 2011, 29: 51-57. 10.1038/nbt.1739.CrossRefPubMed Fan HC, Wang J, Potanina A, Quake SR: Whole-genome molecular haplotyping of single cells. Nat Biotechnol. 2011, 29: 51-57. 10.1038/nbt.1739.CrossRefPubMed
6.
go back to reference Kitzman JO, Mackenzie AP, Adey A, Hiatt JB, Patwardhan RP, Sudmant PH, Ng SB, Alkan C, Qiu R, Eichler EE, Shendure J: Haplotype-resolved genome sequencing of a Gujarati Indian individual. Nat Biotechnol. 2011, 29: 59-63. 10.1038/nbt.1740.CrossRefPubMed Kitzman JO, Mackenzie AP, Adey A, Hiatt JB, Patwardhan RP, Sudmant PH, Ng SB, Alkan C, Qiu R, Eichler EE, Shendure J: Haplotype-resolved genome sequencing of a Gujarati Indian individual. Nat Biotechnol. 2011, 29: 59-63. 10.1038/nbt.1740.CrossRefPubMed
7.
go back to reference Kaper F, Swamy S, Klotzle B, Munchel S, Cottrell J, Bibikova M, Chuang H-Y, Kruglyak S, Ronaghi M, Eberle MA, Fan J-B: Whole-genome haplotyping by dilution, amplification, and sequencing. Proc Natl Acad Sci. 2013, 110: 5552-5557-5557.CrossRefPubMedPubMedCentral Kaper F, Swamy S, Klotzle B, Munchel S, Cottrell J, Bibikova M, Chuang H-Y, Kruglyak S, Ronaghi M, Eberle MA, Fan J-B: Whole-genome haplotyping by dilution, amplification, and sequencing. Proc Natl Acad Sci. 2013, 110: 5552-5557-5557.CrossRefPubMedPubMedCentral
8.
go back to reference Tsai LP, Cheng CF, Chuang SH, Lee HH: Analysis of the CYP21A1P pseudogene: indication of mutational diversity and CYP21A2-like and duplicated CYP21A2 genes. Anal Biochem. 2011, 413: 133-141. 10.1016/j.ab.2011.02.016.CrossRefPubMed Tsai LP, Cheng CF, Chuang SH, Lee HH: Analysis of the CYP21A1P pseudogene: indication of mutational diversity and CYP21A2-like and duplicated CYP21A2 genes. Anal Biochem. 2011, 413: 133-141. 10.1016/j.ab.2011.02.016.CrossRefPubMed
9.
go back to reference Concolino P, Mello E, Zuppi C, Capoluongo E: Molecular diagnosis of congenital adrenal hyperplasia due to 21-hydroxylase deficiency: an update of new CYP21A2 mutations. Clin Chem Lab Med. 2010, 48: 1057-1062.CrossRefPubMed Concolino P, Mello E, Zuppi C, Capoluongo E: Molecular diagnosis of congenital adrenal hyperplasia due to 21-hydroxylase deficiency: an update of new CYP21A2 mutations. Clin Chem Lab Med. 2010, 48: 1057-1062.CrossRefPubMed
10.
go back to reference Murphy SJ, Cheville JC, Zarei S, Johnson SH, Sikkink RA, Kosari F, Feldman AL, Eckloff BW, Karnes RJ, Vasmatzis G: Mate pair sequencing of whole-genome-amplified DNA following laser capture microdissection of prostate cancer. DNA Res. 2012, 19: 395-406. 10.1093/dnares/dss021.CrossRefPubMedPubMedCentral Murphy SJ, Cheville JC, Zarei S, Johnson SH, Sikkink RA, Kosari F, Feldman AL, Eckloff BW, Karnes RJ, Vasmatzis G: Mate pair sequencing of whole-genome-amplified DNA following laser capture microdissection of prostate cancer. DNA Res. 2012, 19: 395-406. 10.1093/dnares/dss021.CrossRefPubMedPubMedCentral
11.
go back to reference Lander ES, Consortium IHGS, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, et al: Initial sequencing and analysis of the human genome. Nature. 2001, 409: 860-921. 10.1038/35057062.CrossRefPubMed Lander ES, Consortium IHGS, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, et al: Initial sequencing and analysis of the human genome. Nature. 2001, 409: 860-921. 10.1038/35057062.CrossRefPubMed
12.
go back to reference Vasmatzis G, Johnson SH, Knudson RA, Ketterling RP, Braggio E, Fonseca R, Viswanatha DS, Law ME, Kip NS, Ozsan N, et al: Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. Blood. 2012, 120: 2280-2289. 10.1182/blood-2012-03-419937.CrossRefPubMed Vasmatzis G, Johnson SH, Knudson RA, Ketterling RP, Braggio E, Fonseca R, Viswanatha DS, Law ME, Kip NS, Ozsan N, et al: Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. Blood. 2012, 120: 2280-2289. 10.1182/blood-2012-03-419937.CrossRefPubMed
13.
go back to reference Feldman AL, Dogan A, Smith DI, Law ME, Ansell SM, Johnson SH, Porcher JC, Ozsan N, Wieben ED, Eckloff BW, Vasmatzis G: Massively parallel mate pair DNA library sequencing for translocation discovery: recurrent t(6;7)(p25.3;q32.3) Translocations in ALK-negative anaplastic large cell lymphomas. Blood. 2010, 116: 278-278. Feldman AL, Dogan A, Smith DI, Law ME, Ansell SM, Johnson SH, Porcher JC, Ozsan N, Wieben ED, Eckloff BW, Vasmatzis G: Massively parallel mate pair DNA library sequencing for translocation discovery: recurrent t(6;7)(p25.3;q32.3) Translocations in ALK-negative anaplastic large cell lymphomas. Blood. 2010, 116: 278-278.
14.
go back to reference Kircher M, Stenzel U, Kelso J: Improved base calling for the illumina genome analyzer using machine learning strategies. Genome Biol. 2009, 10: Kircher M, Stenzel U, Kelso J: Improved base calling for the illumina genome analyzer using machine learning strategies. Genome Biol. 2009, 10:
15.
go back to reference Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, Shiwa Y, Ishikawa S, Linak MC, Hirai A, Takahashi H, et al: Sequence-specific error profile of Illumina sequencers. Nucleic acids research. 2011, 39: e90-10.1093/nar/gkr344.CrossRefPubMedPubMedCentral Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, Shiwa Y, Ishikawa S, Linak MC, Hirai A, Takahashi H, et al: Sequence-specific error profile of Illumina sequencers. Nucleic acids research. 2011, 39: e90-10.1093/nar/gkr344.CrossRefPubMedPubMedCentral
16.
go back to reference Luo CW, Tsementzi D, Kyrpides N, Read T, Konstantinidis KT: Direct comparisons of illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. Plos One. 2012, 7: Luo CW, Tsementzi D, Kyrpides N, Read T, Konstantinidis KT: Direct comparisons of illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. Plos One. 2012, 7:
17.
go back to reference Glenn TC: Field guide to next-generation DNA sequencers. Mol Ecol Resour. 2011, 11: 759-769. 10.1111/j.1755-0998.2011.03024.x.CrossRefPubMed Glenn TC: Field guide to next-generation DNA sequencers. Mol Ecol Resour. 2011, 11: 759-769. 10.1111/j.1755-0998.2011.03024.x.CrossRefPubMed
Metadata
Title
A simple method for gene phasing using mate pair sequencing
Authors
Kendall W Cradic
Stephen J Murphy
Travis M Drucker
Robert A Sikkink
Norman L Eberhardt
Claudia Neuhauser
George Vasmatzis
Stefan KG Grebe
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2014
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/1471-2350-15-19

Other articles of this Issue 1/2014

BMC Medical Genetics 1/2014 Go to the issue