Skip to main content
Top
Published in: BMC Infectious Diseases 1/2015

Open Access 01-12-2015 | Research article

A retrospective study of the incidence, clinical characteristics, identification, and antimicrobial susceptibility of bacteremic isolates of Acinetobacter ursingii

Authors: Chun-Hsiang Chiu, Yi-Tzu Lee, Yung-Chih Wang, Ti Yin, Shu-Chen Kuo, Ya-Sung Yang, Te-Li Chen, Jung-Chung Lin, Fu-Der Wang, Chang-Phone Fung

Published in: BMC Infectious Diseases | Issue 1/2015

Login to get access

Abstract

Background

Acinetobacter ursingii bacteremia is rarely reported. We investigated the incidence and clinical features of A. ursingii bacteremia, performance of the identification system, and antimicrobial susceptibility of the isolates. Acinetobacter ursingii bacteremia patients were compared with A. baumannii bacteremia patients.

Methods

In this 9-year retrospective study, A. ursingii was identified using 16S rRNA and 16S–23S rRNA internal transcribed spacer sequence analysis. The performances of the Vitek 2, Phoenix, and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometer systems for identifying isolates were tested. Pulsed-field gel electrophoresis (PFGE) was used to determine the clonality of the isolates. The minimal inhibitory concentrations of the antimicrobials were determined using the Vitek 2 system.

Results

Nineteen patients were identified. Acinetobacter ursingii was noted in 1.5–5.2 % of all Acinetobacter bacteremia cases. For the PFGE analysis, two isolates had smeared DNA, two had 93 % similarity, and 15 had similarity <80 %. Among 16 patients with complete medical records, 10 (62.5 %) had no identifiable source of A. ursingii bacteremia. Most patients (n = 12) had underlying malignant disease. Patients with A. ursingii bacteremia had lower Acute Physiology and Chronic Health Evaluation II scores than those with A. baumannii bacteremia (median [interquartile range], 17.1 [10.0–24.7] vs. 24.9 [14.6–35.1]). Patients with A. ursingii bacteremia were also less likely admitted to the intensive care unit than patients with A. baumannii bacteremia (18.8 % vs 63.5 %, p value < 0.01). About half of the patients with A. ursingii (50.8 %) and A. baumannii bacteremia (62.5 %) had received inappropriate antimicrobial therapy within 48 h after bacteremia onset. However, patients with A. ursingii bacteremia had significantly lower 14-day (6.25 % vs 29.8 %, p value = 0.04) and 28-day mortality rates (6.25 % vs 37.3 %, p value = 0.02) than patients with A. baumannii bacteremia. Nine isolates (47.4 %) were correctly identified as A. ursingii and the other 10 isolates (52.6 %) were incorrectly identified as A. lwoffii by the Vitek 2 system. The Phoenix system incorrectly identified all 19 isolates. The MALDI-TOF mass spectrometer system correctly identified all 19 isolates. All the A. ursingii isolates were resistant or showed intermediate susceptibility to ceftriaxone and ceftazidime, but were susceptible to levofloxacin and imipenem.

Conclusions

Acinetobacter ursingii is a rare pathogen that mostly caused primary bacteremia in patients with malignancies. Patients with A. ursingii bacteremia had significantly lower disease severity and mortality rates than patients with A. baumannii bacteremia.
Literature
2.
go back to reference Schreckenberger PC, Daneshvar MI, Weyant RS, Hollis DG. Acinetobacter, Achromobacter, Chryseobacterium, Moraxella, and other nonfermentative gram-negative rods. Manual of clinical microbiology. 2003;8:749–79. Schreckenberger PC, Daneshvar MI, Weyant RS, Hollis DG. Acinetobacter, Achromobacter, Chryseobacterium, Moraxella, and other nonfermentative gram-negative rods. Manual of clinical microbiology. 2003;8:749–79.
3.
go back to reference Seifert H, Dijkshoorn L, Gerner-Smidt P, Pelzer N, Tjernberg I, Vaneechoutte M. Distribution of Acinetobacter species on human skin: comparison of phenotypic and genotypic identification methods. J Clin Microbiol. 1997;35:2819–25.PubMedPubMedCentral Seifert H, Dijkshoorn L, Gerner-Smidt P, Pelzer N, Tjernberg I, Vaneechoutte M. Distribution of Acinetobacter species on human skin: comparison of phenotypic and genotypic identification methods. J Clin Microbiol. 1997;35:2819–25.PubMedPubMedCentral
4.
go back to reference Humphreys H, Towner KJ. Impact of Acinetobacter spp. in intensive care units in Great Britain and Ireland. J Hosp Infect. 1997;37:281–6.CrossRefPubMed Humphreys H, Towner KJ. Impact of Acinetobacter spp. in intensive care units in Great Britain and Ireland. J Hosp Infect. 1997;37:281–6.CrossRefPubMed
6.
go back to reference Boo TW, Walsh F, Crowley B. Molecular characterization of carbapenem resistant Acinetobacter species in an Irish university hospital: predominance of Acinetobacter genomic species 3. J Med Microbiol. 2009;58:209–16.CrossRefPubMed Boo TW, Walsh F, Crowley B. Molecular characterization of carbapenem resistant Acinetobacter species in an Irish university hospital: predominance of Acinetobacter genomic species 3. J Med Microbiol. 2009;58:209–16.CrossRefPubMed
7.
go back to reference Karah N, Haldorsen B, Hegstad K, Simonsen GS, Sundsfjord A, Samuelsen O. Species identification and molecular characterization of Acinetobacter spp. blood culture isolates from Norway. J Antimicrob Chemother. 2011;66:738–44.CrossRefPubMed Karah N, Haldorsen B, Hegstad K, Simonsen GS, Sundsfjord A, Samuelsen O. Species identification and molecular characterization of Acinetobacter spp. blood culture isolates from Norway. J Antimicrob Chemother. 2011;66:738–44.CrossRefPubMed
8.
go back to reference Turton JF, Shah J, Ozongwu C, Pike R. Incidence of Acinetobacter species other than A. baumannii among clinical isolates of Acinetobacter: evidence for emerging species. J Clin Microbiol. 2010;48:1445–9.CrossRefPubMedPubMedCentral Turton JF, Shah J, Ozongwu C, Pike R. Incidence of Acinetobacter species other than A. baumannii among clinical isolates of Acinetobacter: evidence for emerging species. J Clin Microbiol. 2010;48:1445–9.CrossRefPubMedPubMedCentral
9.
go back to reference Chuang YC, Sheng WH, Li SY, Lin YC, Wang JT, Chen YC, et al. Influence of genospecies of Acinetobacter baumannii complex on clinical outcomes of patients with acinetobacter bacteremia. Clin Infect Dis. 2011;52:352–60.CrossRefPubMed Chuang YC, Sheng WH, Li SY, Lin YC, Wang JT, Chen YC, et al. Influence of genospecies of Acinetobacter baumannii complex on clinical outcomes of patients with acinetobacter bacteremia. Clin Infect Dis. 2011;52:352–60.CrossRefPubMed
10.
go back to reference Schleicher X, Higgins PG, Wisplinghoff H, Körber‐Irrgang B, Kresken M, Seifert H. Molecular epidemiology of Acinetobacter baumannii and Acinetobacter nosocomialis in Germany over a 5‐year period 2005–2009. Clin Microbiol Infect. 2013;19(8):737–42.CrossRefPubMed Schleicher X, Higgins PG, Wisplinghoff H, Körber‐Irrgang B, Kresken M, Seifert H. Molecular epidemiology of Acinetobacter baumannii and Acinetobacter nosocomialis in Germany over a 5‐year period 2005–2009. Clin Microbiol Infect. 2013;19(8):737–42.CrossRefPubMed
11.
go back to reference Wisplinghoff H, Paulus T, Lugenheim M, Stefanik D, Higgins PG, Edmond MB, et al. Nosocomial bloodstream infections due to Acinetobacter baumannii, Acinetobacter pittii and Acinetobacter nosocomialis in the United States. J Infect. 2012;64:282–90.CrossRefPubMed Wisplinghoff H, Paulus T, Lugenheim M, Stefanik D, Higgins PG, Edmond MB, et al. Nosocomial bloodstream infections due to Acinetobacter baumannii, Acinetobacter pittii and Acinetobacter nosocomialis in the United States. J Infect. 2012;64:282–90.CrossRefPubMed
12.
go back to reference Dortet L, Legrand P, Soussy CJ, Cattoir V. Bacterial identification, clinical significance, and antimicrobial susceptibilities of Acinetobacter ursingii and Acinetobacter schindleri, two frequently misidentified opportunistic pathogens. J Clin Microbiol. 2006;44:4471–8.CrossRefPubMedPubMedCentral Dortet L, Legrand P, Soussy CJ, Cattoir V. Bacterial identification, clinical significance, and antimicrobial susceptibilities of Acinetobacter ursingii and Acinetobacter schindleri, two frequently misidentified opportunistic pathogens. J Clin Microbiol. 2006;44:4471–8.CrossRefPubMedPubMedCentral
13.
go back to reference Nemec A, De Baere T, Tjernberg I, Vaneechoutte M, Van Der Reijden TJ, Dijkshoorn L. Acinetobacter ursingii sp. nov. and Acinetobacter schindleri sp. nov., isolated from human clinical specimens. Intl J Sys Evol Microbiol. 2001;51:1891–9.CrossRef Nemec A, De Baere T, Tjernberg I, Vaneechoutte M, Van Der Reijden TJ, Dijkshoorn L. Acinetobacter ursingii sp. nov. and Acinetobacter schindleri sp. nov., isolated from human clinical specimens. Intl J Sys Evol Microbiol. 2001;51:1891–9.CrossRef
14.
go back to reference Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections, 1988. Am J Infect Control. 1988;16:128–40.CrossRefPubMed Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM. CDC definitions for nosocomial infections, 1988. Am J Infect Control. 1988;16:128–40.CrossRefPubMed
15.
go back to reference Horan TC, Gaynes RP. Surveillance of nosocomial infections. In: Mayhall CG, editor. Hospital epidemiology and infection control. 3rd ed. Baltimore, MD: Lippincott Williams and Wilkins; 2004. p. 1659–702. Horan TC, Gaynes RP. Surveillance of nosocomial infections. In: Mayhall CG, editor. Hospital epidemiology and infection control. 3rd ed. Baltimore, MD: Lippincott Williams and Wilkins; 2004. p. 1659–702.
16.
go back to reference Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–29.CrossRefPubMed Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–29.CrossRefPubMed
17.
go back to reference Chen TL, Siu LK, Wu RC, Shaio MF, Huang LY, Fung CP, et al. Comparison of one-tube multiplex PCR, automated ribotyping and intergenic spacer (ITS) sequencing for rapid identification of Acinetobacter baumannii. Clin Microbiol Infect. 2007;13:801–6.CrossRefPubMed Chen TL, Siu LK, Wu RC, Shaio MF, Huang LY, Fung CP, et al. Comparison of one-tube multiplex PCR, automated ribotyping and intergenic spacer (ITS) sequencing for rapid identification of Acinetobacter baumannii. Clin Microbiol Infect. 2007;13:801–6.CrossRefPubMed
18.
go back to reference Kommedal Ø, Karlsen B, Sæbø Ø. Analysis of mixed sequencing chromatograms and its application in direct 16S rRNA gene sequencing of polymicrobial samples. J Clin Microbiol. 2008;46:3766–71.CrossRefPubMedPubMedCentral Kommedal Ø, Karlsen B, Sæbø Ø. Analysis of mixed sequencing chromatograms and its application in direct 16S rRNA gene sequencing of polymicrobial samples. J Clin Microbiol. 2008;46:3766–71.CrossRefPubMedPubMedCentral
19.
go back to reference Chang HC, Wei YF, Dijkshoorn L, Vaneechoutte M, Tang CT, Chang TC. Species-level identification of isolates of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex by sequence analysis of the 16S-23S rRNA gene spacer region. J Clin Microbiol. 2005;43:1632–9.CrossRefPubMedPubMedCentral Chang HC, Wei YF, Dijkshoorn L, Vaneechoutte M, Tang CT, Chang TC. Species-level identification of isolates of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex by sequence analysis of the 16S-23S rRNA gene spacer region. J Clin Microbiol. 2005;43:1632–9.CrossRefPubMedPubMedCentral
20.
go back to reference Chen TL, Siu LK, Lee YT, Chen CP, Huang LY, Wu RCC, et al. Acinetobacter baylyi as a pathogen for opportunistic infection. J Clin Microbiol. 2008;46:2938–44.CrossRefPubMedPubMedCentral Chen TL, Siu LK, Lee YT, Chen CP, Huang LY, Wu RCC, et al. Acinetobacter baylyi as a pathogen for opportunistic infection. J Clin Microbiol. 2008;46:2938–44.CrossRefPubMedPubMedCentral
21.
go back to reference Wayne PA. Clinical and Laboratory Standards Institute (CLSI): Performance standards for antimicrobial susceptibility testing: Twenty-first informational supplement. CLSI 2014;M100–S24. Wayne PA. Clinical and Laboratory Standards Institute (CLSI): Performance standards for antimicrobial susceptibility testing: Twenty-first informational supplement. CLSI 2014;M100–S24.
22.
go back to reference Nemec A, Dijkshoorn L, Ježek P. Recognition of two novel phenons of the genus Acinetobacter among non-glucose-acidifying isolates from human specimens. J Clin Microbiol. 2000;38:3937–41.PubMedPubMedCentral Nemec A, Dijkshoorn L, Ježek P. Recognition of two novel phenons of the genus Acinetobacter among non-glucose-acidifying isolates from human specimens. J Clin Microbiol. 2000;38:3937–41.PubMedPubMedCentral
23.
go back to reference Bergogne-Berezin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev. 1996;9:148–65.PubMedPubMedCentral Bergogne-Berezin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev. 1996;9:148–65.PubMedPubMedCentral
24.
go back to reference Gerner-Smidt P, Tjernberg I, Ursing J. Reliability of phenotypic tests for identification of Acinetobacter species. J Clin Microbiol. 1991;29:277–82.PubMedPubMedCentral Gerner-Smidt P, Tjernberg I, Ursing J. Reliability of phenotypic tests for identification of Acinetobacter species. J Clin Microbiol. 1991;29:277–82.PubMedPubMedCentral
25.
go back to reference Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol. 2007;5:939–51.CrossRefPubMed Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol. 2007;5:939–51.CrossRefPubMed
26.
go back to reference Bernards AT, van der Toorn J, van Boven CP, Dijkshoorn L. Evaluation of the ability of a commercial system to identify Acinetobacter genomic species. Eur J Clin Microbiol Infect Dis. 1996;15:303–8.CrossRefPubMed Bernards AT, van der Toorn J, van Boven CP, Dijkshoorn L. Evaluation of the ability of a commercial system to identify Acinetobacter genomic species. Eur J Clin Microbiol Infect Dis. 1996;15:303–8.CrossRefPubMed
27.
go back to reference Van Dessel H, Kamp-Hopmans TEM, Fluit AC, Brisse S, De Smet AMGA, Dijkshoorn L, et al. Outbreak of a susceptible strain of Acinetobacter species 13 (sensu Tjernberg and Ursing) in an adult neurosurgical intensive care unit. J Hosp Infect. 2002;51:89–95.CrossRefPubMed Van Dessel H, Kamp-Hopmans TEM, Fluit AC, Brisse S, De Smet AMGA, Dijkshoorn L, et al. Outbreak of a susceptible strain of Acinetobacter species 13 (sensu Tjernberg and Ursing) in an adult neurosurgical intensive care unit. J Hosp Infect. 2002;51:89–95.CrossRefPubMed
28.
go back to reference Kishii K, Kikuchi K, Matsuda N, Yoshida A, Okuzumi K, Uetera Y, et al. Evaluation of matrix‐assisted laser desorption ionization‐time of flight mass spectrometry for species identification of Acinetobacter strains isolated from blood cultures. Clin Microbiol Infect. 2014;20(5):424–30.CrossRefPubMed Kishii K, Kikuchi K, Matsuda N, Yoshida A, Okuzumi K, Uetera Y, et al. Evaluation of matrix‐assisted laser desorption ionization‐time of flight mass spectrometry for species identification of Acinetobacter strains isolated from blood cultures. Clin Microbiol Infect. 2014;20(5):424–30.CrossRefPubMed
Metadata
Title
A retrospective study of the incidence, clinical characteristics, identification, and antimicrobial susceptibility of bacteremic isolates of Acinetobacter ursingii
Authors
Chun-Hsiang Chiu
Yi-Tzu Lee
Yung-Chih Wang
Ti Yin
Shu-Chen Kuo
Ya-Sung Yang
Te-Li Chen
Jung-Chung Lin
Fu-Der Wang
Chang-Phone Fung
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2015
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-015-1145-z

Other articles of this Issue 1/2015

BMC Infectious Diseases 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.