Skip to main content
Top
Published in: Critical Care 4/2005

Open Access 01-08-2005 | Research

A quantitative analysis of the acidosis of cardiac arrest: a prospective observational study

Authors: Jun Makino, Shigehiko Uchino, Hiroshi Morimatsu, Rinaldo Bellomo

Published in: Critical Care | Issue 4/2005

Login to get access

Abstract

Introduction

Metabolic acidosis is common in patients with cardiac arrest and is conventionally considered to be essentially due to hyperlactatemia. However, hyperlactatemia alone fails to explain the cause of metabolic acidosis. Recently, the Stewart–Figge methodology has been found to be useful in explaining and quantifying acid–base changes in various clinical situations. This novel quantitative methodology might also provide useful insight into the factors responsible for the acidosis of cardiac arrest. We proposed that hyperlactatemia is not the sole cause of cardiac arrest acidosis and that other factors participate significantly in its development.

Methods

One hundred and five patients with out-of-hospital cardiac arrest and 28 patients with minor injuries (comparison group) who were admitted to the Emergency Department of a tertiary hospital in Tokyo were prospectively included in this study. Serum sodium, potassium, ionized calcium, magnesium, chloride, lactate, albumin, phosphate and blood gases were measured as soon as feasible upon arrival to the emergency department and were later analyzed using the Stewart–Figge methodology.

Results

Patients with cardiac arrest had a severe metabolic acidosis (standard base excess -19.1 versus -1.5; P < 0.0001) compared with the control patients. They were also hyperkalemic, hypochloremic, hyperlactatemic and hyperphosphatemic. Anion gap and strong ion gap were also higher in cardiac arrest patients. With the comparison group as a reference, lactate was found to be the strongest determinant of acidosis (-11.8 meq/l), followed by strong ion gap (-7.3 meq/l) and phosphate (-2.9 meq/l). This metabolic acidosis was attenuated by the alkalinizing effect of hypochloremia (+4.6 meq/l), hyperkalemia (+3.6 meq/l) and hypoalbuminemia (+3.5 meq/l).

Conclusion

The cause of metabolic acidosis in patients with out-of-hospital cardiac arrest is complex and is not due to hyperlactatemia alone. Furthermore, compensating changes occur spontaneously, attenuating its severity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tuchschmidt JA, Mecher CE: Predictors of outcome from critical illness. Shock and cardiopulmonary resuscitation. Crit Care Clin 1994, 10: 170-195. Tuchschmidt JA, Mecher CE: Predictors of outcome from critical illness. Shock and cardiopulmonary resuscitation. Crit Care Clin 1994, 10: 170-195.
2.
go back to reference Capparelli EV, Chow MS, Kluger J, Fieldman A: Differences in systemic and myocardial blood acid–base status during cardiopulmonary resuscitation. Crit Care Med 1989, 17: 442-446.CrossRefPubMed Capparelli EV, Chow MS, Kluger J, Fieldman A: Differences in systemic and myocardial blood acid–base status during cardiopulmonary resuscitation. Crit Care Med 1989, 17: 442-446.CrossRefPubMed
3.
go back to reference Prause G, Ratzenhofer-Comenda B, Pierer G, Smolle-Juttner F, Glanzer H, Smolle J: Comparison of lactate or BE during out-of-hospital cardiac arrest to determine metabolic acidosis. Resuscitation 2001, 51: 297-300. 10.1016/S0300-9572(01)00424-5CrossRefPubMed Prause G, Ratzenhofer-Comenda B, Pierer G, Smolle-Juttner F, Glanzer H, Smolle J: Comparison of lactate or BE during out-of-hospital cardiac arrest to determine metabolic acidosis. Resuscitation 2001, 51: 297-300. 10.1016/S0300-9572(01)00424-5CrossRefPubMed
4.
go back to reference Cairns CB, Niemann JT, Pelikan PC, Sharma J: Ionized hypocalcemia during prolonged cardiac arrest and closed-chest CPR in a canine model. Ann Emerg Med 1991, 20: 1178-1182.CrossRefPubMed Cairns CB, Niemann JT, Pelikan PC, Sharma J: Ionized hypocalcemia during prolonged cardiac arrest and closed-chest CPR in a canine model. Ann Emerg Med 1991, 20: 1178-1182.CrossRefPubMed
5.
go back to reference Leavy JA, Weil MH, Rackow EC: Lactate washout following circulatory arrest. J Am Med Assoc 1988, 260: 662-664. 10.1001/jama.260.5.662CrossRef Leavy JA, Weil MH, Rackow EC: Lactate washout following circulatory arrest. J Am Med Assoc 1988, 260: 662-664. 10.1001/jama.260.5.662CrossRef
6.
go back to reference Sato S, Kimura T, Okubo N, Naganuma T, Tanaka M: End-tidal CO 2 and plasma lactate level: a comparison of their use as parameters for evaluating successful CPR. Resuscitation 1993, 26: 133-139. 10.1016/0300-9572(93)90173-NCrossRefPubMed Sato S, Kimura T, Okubo N, Naganuma T, Tanaka M: End-tidal CO 2 and plasma lactate level: a comparison of their use as parameters for evaluating successful CPR. Resuscitation 1993, 26: 133-139. 10.1016/0300-9572(93)90173-NCrossRefPubMed
7.
go back to reference Astrup PJK, Jorgensen K, Andersen OS, Engel K: The acid–base metabolism – a new approach. Lancet 1960, 1: 1035-1039. 10.1016/S0140-6736(60)90930-2CrossRefPubMed Astrup PJK, Jorgensen K, Andersen OS, Engel K: The acid–base metabolism – a new approach. Lancet 1960, 1: 1035-1039. 10.1016/S0140-6736(60)90930-2CrossRefPubMed
8.
go back to reference Siggaard-Andersen O, Fogh-Andersen N: Base excess or buffer base (strong ion difference) as measure of a non-respiratory acid–base disturbance. Acta Anaesthesiol Scand Suppl 1995, 107: 123-128.CrossRefPubMed Siggaard-Andersen O, Fogh-Andersen N: Base excess or buffer base (strong ion difference) as measure of a non-respiratory acid–base disturbance. Acta Anaesthesiol Scand Suppl 1995, 107: 123-128.CrossRefPubMed
9.
go back to reference Figge J, Rossing TH, Fencl V: The role of serum proteins in acid–base equilibria. J Lab Clin Med 1991, 117: 453-467.PubMed Figge J, Rossing TH, Fencl V: The role of serum proteins in acid–base equilibria. J Lab Clin Med 1991, 117: 453-467.PubMed
10.
go back to reference McAuliffe JJ, Lind LJ, Leith DE, Fencl V: Hypoproteinemic alkalosis. Am J Med 1986, 81: 86-90. 10.1016/0002-9343(86)90187-7CrossRefPubMed McAuliffe JJ, Lind LJ, Leith DE, Fencl V: Hypoproteinemic alkalosis. Am J Med 1986, 81: 86-90. 10.1016/0002-9343(86)90187-7CrossRefPubMed
11.
go back to reference Rossing TH, Maffeo N, Fencl V: acid–base effects of altering plasma protein concentration in human blood in vitro. J Appl Physiol 1986, 61: 2260-2265.PubMed Rossing TH, Maffeo N, Fencl V: acid–base effects of altering plasma protein concentration in human blood in vitro. J Appl Physiol 1986, 61: 2260-2265.PubMed
12.
go back to reference Gilfix BM, Bique M, Magder S: A physical chemical approach to the analysis of acid–base balance in the clinical setting. J Crit Care 1993, 8: 187-197. 10.1016/0883-9441(93)90001-2CrossRefPubMed Gilfix BM, Bique M, Magder S: A physical chemical approach to the analysis of acid–base balance in the clinical setting. J Crit Care 1993, 8: 187-197. 10.1016/0883-9441(93)90001-2CrossRefPubMed
13.
go back to reference Stewart PA: Modern quantitative acid–base chemistry. Can J Physiol Pharmacol 1983, 61: 1444-1461.CrossRefPubMed Stewart PA: Modern quantitative acid–base chemistry. Can J Physiol Pharmacol 1983, 61: 1444-1461.CrossRefPubMed
14.
go back to reference Figge J, Mydosh T, Fencl V: Serum proteins and acid–base equilibria: a follow-up. J Lab Clin Med 1992, 120: 713-719.PubMed Figge J, Mydosh T, Fencl V: Serum proteins and acid–base equilibria: a follow-up. J Lab Clin Med 1992, 120: 713-719.PubMed
15.
go back to reference Liskaser FJ, Bellomo R, Hayhoe M, Story D, Poustie S, Smith B, Letis A, Bennett M: Role of pump prime in the etiology and pathogenesis of cardiopulmonary bypass-associated acidosis. Anesthesiology 2000, 93: 1170-1173. 10.1097/00000542-200011000-00006CrossRefPubMed Liskaser FJ, Bellomo R, Hayhoe M, Story D, Poustie S, Smith B, Letis A, Bennett M: Role of pump prime in the etiology and pathogenesis of cardiopulmonary bypass-associated acidosis. Anesthesiology 2000, 93: 1170-1173. 10.1097/00000542-200011000-00006CrossRefPubMed
16.
go back to reference Story D, Poustie S, Bellomo R: Quantitative physical chemistry analysis of acid–base disorders in critically ill patients. Anaesthesia 2001, 56: 530-533. 10.1046/j.1365-2044.2001.01983.xCrossRefPubMed Story D, Poustie S, Bellomo R: Quantitative physical chemistry analysis of acid–base disorders in critically ill patients. Anaesthesia 2001, 56: 530-533. 10.1046/j.1365-2044.2001.01983.xCrossRefPubMed
17.
go back to reference Wilkes P: Hypoproteinemia strong-ion difference, and acid–base status in critically ill patients. J Appl Physiol 1998, 84: 1740-1748.PubMed Wilkes P: Hypoproteinemia strong-ion difference, and acid–base status in critically ill patients. J Appl Physiol 1998, 84: 1740-1748.PubMed
18.
go back to reference Fencl V, Jabor A, Kazda A, Figge J: Diagnosis of metabolic acid–base disturbances in critically ill patients. Am J Respir Crit Care Med 2000, 162: 2246-2251.CrossRefPubMed Fencl V, Jabor A, Kazda A, Figge J: Diagnosis of metabolic acid–base disturbances in critically ill patients. Am J Respir Crit Care Med 2000, 162: 2246-2251.CrossRefPubMed
19.
go back to reference Anon: Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2000,102(Suppl I):I-1-I-370. Anon: Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2000,102(Suppl I):I-1-I-370.
20.
go back to reference Shapiro BA, Peruzzi WT: Interpretation of blood gasses. In Textbook of Critical Care. 3rd edition. Edited by: Shoemaker WC, Ayres SM, Grenik A, Holbrook P. Philadelphia: WB Saunders Company; 1995:274-290. Shapiro BA, Peruzzi WT: Interpretation of blood gasses. In Textbook of Critical Care. 3rd edition. Edited by: Shoemaker WC, Ayres SM, Grenik A, Holbrook P. Philadelphia: WB Saunders Company; 1995:274-290.
21.
go back to reference Stewart JS, Stewart WK, Gillies HG: Cardiac arrest and acidosis. Lancet 1962, ii: 964-967. 10.1016/S0140-6736(62)90729-8CrossRef Stewart JS, Stewart WK, Gillies HG: Cardiac arrest and acidosis. Lancet 1962, ii: 964-967. 10.1016/S0140-6736(62)90729-8CrossRef
22.
go back to reference Edmonds-Seal J: acid–base studies after cardiac arrest. A report on 64 cases. Acta Anaesthesiol Scand 1966, 235-241. Edmonds-Seal J: acid–base studies after cardiac arrest. A report on 64 cases. Acta Anaesthesiol Scand 1966, 235-241.
23.
24.
go back to reference Kaplan LJ, Kellum JA: Initial pH, base deficit, lactate, anion gap, strong ion difference, and strong ion gap predict outcome from major vascular injury. Crit Care Med 2004, 32: 1120-1124. 10.1097/01.CCM.0000125517.28517.74CrossRefPubMed Kaplan LJ, Kellum JA: Initial pH, base deficit, lactate, anion gap, strong ion difference, and strong ion gap predict outcome from major vascular injury. Crit Care Med 2004, 32: 1120-1124. 10.1097/01.CCM.0000125517.28517.74CrossRefPubMed
25.
go back to reference Oster JR, Alpert HC, Vaamonde CA: Effect of acid–base status on plasma phosphorus response to lactate. Can J Physiol Pharmacol 1984, 62: 939-942.CrossRefPubMed Oster JR, Alpert HC, Vaamonde CA: Effect of acid–base status on plasma phosphorus response to lactate. Can J Physiol Pharmacol 1984, 62: 939-942.CrossRefPubMed
26.
go back to reference Barsotti G, Lazzeri M, Cristofano C, Cerri M, Lupetti S, Giovannetti S: The role of metabolic acidosis in causing uremic hyperphosphatemia. Miner Electrolyte Metab 1986, 12: 103-106.PubMed Barsotti G, Lazzeri M, Cristofano C, Cerri M, Lupetti S, Giovannetti S: The role of metabolic acidosis in causing uremic hyperphosphatemia. Miner Electrolyte Metab 1986, 12: 103-106.PubMed
27.
go back to reference Wang F, Butler T, Rabbani GH, Jones PK: The acidosis of cholera. Contributions of hyperproteinemia, lactic acidemia, and hyperphosphatemia to an increased serum anion gap. N Engl J Med 1986, 315: 1591-1595.CrossRefPubMed Wang F, Butler T, Rabbani GH, Jones PK: The acidosis of cholera. Contributions of hyperproteinemia, lactic acidemia, and hyperphosphatemia to an increased serum anion gap. N Engl J Med 1986, 315: 1591-1595.CrossRefPubMed
28.
go back to reference Kirschbaum B: The acidosis of exogenous phosphate intoxication. Arch Intern Med 1998, 158: 405-408. 10.1001/archinte.158.4.405CrossRefPubMed Kirschbaum B: The acidosis of exogenous phosphate intoxication. Arch Intern Med 1998, 158: 405-408. 10.1001/archinte.158.4.405CrossRefPubMed
29.
go back to reference Rocktaeschel J, Morimatsu H, Uchino S, Goldsmith D, Poustie S, Story D, Gutteridge G, Bellomo R: acid–base status of critically ill patients with acute renal failure: analysis based on Stewart–Figge methodology. Crit Care 2003, 7: 60-66. 10.1186/cc2333CrossRef Rocktaeschel J, Morimatsu H, Uchino S, Goldsmith D, Poustie S, Story D, Gutteridge G, Bellomo R: acid–base status of critically ill patients with acute renal failure: analysis based on Stewart–Figge methodology. Crit Care 2003, 7: 60-66. 10.1186/cc2333CrossRef
Metadata
Title
A quantitative analysis of the acidosis of cardiac arrest: a prospective observational study
Authors
Jun Makino
Shigehiko Uchino
Hiroshi Morimatsu
Rinaldo Bellomo
Publication date
01-08-2005
Publisher
BioMed Central
Published in
Critical Care / Issue 4/2005
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/cc3714

Other articles of this Issue 4/2005

Critical Care 4/2005 Go to the issue