Skip to main content
Top
Published in: Critical Care 4/2003

Open Access 01-08-2003 | Research

Acid–base status of critically ill patients with acute renal failure: analysis based on Stewart–Figge methodology

Authors: Jens Rocktaeschel, Hiroshi Morimatsu, Shigehiko Uchino, Donna Goldsmith, Stephanie Poustie, David Story, Geoffrey Gutteridge, Rinaldo Bellomo

Published in: Critical Care | Issue 4/2003

Login to get access

Abstract

Introduction

The aim of the present study is to understand the nature of acid–base disorders in critically ill patients with acute renal failure (ARF) using the biophysical principles described by Stewart and Figge. A retrospective controlled study was carried out in the intensive care unit of a tertiary hospital.

Materials and methods

Forty patients with ARF, 40 patients matched for Acute Physiology and Chronic Health Evaluation II score (matched control group), and 60 consecutive critically ill patients without ARF (intensive care unit control group) participated. The study involved the retrieval of biochemical data from computerized records, quantitative biophysical analysis using the Stewart–Figge methodology, and statistical comparison between the three groups. We measured serum sodium, potassium, magnesium, chloride, bicarbonate, phosphate, ionized calcium, albumin, lactate and arterial blood gases.

Results

Intensive care unit patients with ARF had a mild acidemia (mean pH 7.30 ± 0.13) secondary to metabolic acidosis with a mean base excess of -7.5 ± 7.2 mEq/l. However, one-half of these patients had a normal anion gap. Quantitative acid–base assessment (Stewart–Figge methodology) revealed unique multiple metabolic acid–base processes compared with controls, which contributed to the overall acidosis. The processes included the acidifying effect of high levels of unmeasured anions (13.4 ± 5.5 mEq/l) and hyperphosphatemia (2.08 ± 0.92 mEq/l), and the alkalinizing effect of hypoalbuminemia (22.6 ± 6.3 g/l).

Conclusions

The typical acid–base picture of ARF of critical illness is metabolic acidosis. This acidosis is the result of the balance between the acidifying effect of increased unmeasured anions and hyperphosphatemia and the lesser alkalinizing effect of hypoalbuminemia.
Literature
1.
go back to reference De Mendonca A, Vincent JL, Suter PM, Moreno R, Dearden NM, Antonelli M, Takala J, Sprung C, Cantraine F: Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA score. Intensive Care Med 2000, 26: 915-921. 10.1007/s001340051281CrossRefPubMed De Mendonca A, Vincent JL, Suter PM, Moreno R, Dearden NM, Antonelli M, Takala J, Sprung C, Cantraine F: Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA score. Intensive Care Med 2000, 26: 915-921. 10.1007/s001340051281CrossRefPubMed
2.
go back to reference Chertow GM, Levy EM, Hammermeister KE, Grover F, Daley J: Independent association between acute renal failure and mortality following cardiac surgery. Am J Med 1998, 104: 343-348. 10.1016/S0002-9343(98)00058-8CrossRefPubMed Chertow GM, Levy EM, Hammermeister KE, Grover F, Daley J: Independent association between acute renal failure and mortality following cardiac surgery. Am J Med 1998, 104: 343-348. 10.1016/S0002-9343(98)00058-8CrossRefPubMed
3.
go back to reference Liskaser FJ, Bellomo R, Hayhoe M, Story D, Poustie S, Smith B, Letis A, Bennett N: Role of pump prime in the etiology and pathogenesis of cardiopulmonary bybass-associated acidosis. Anesthesiology 2000, 93: 1170-1173. 10.1097/00000542-200011000-00006CrossRefPubMed Liskaser FJ, Bellomo R, Hayhoe M, Story D, Poustie S, Smith B, Letis A, Bennett N: Role of pump prime in the etiology and pathogenesis of cardiopulmonary bybass-associated acidosis. Anesthesiology 2000, 93: 1170-1173. 10.1097/00000542-200011000-00006CrossRefPubMed
4.
go back to reference Story D, Poustie S, Bellomo R: Quantitative physical chemistry analysis of acid–base disorders in critically ill patients. Anaesthesia 2001, 56: 530-533. 10.1046/j.1365-2044.2001.01983.xCrossRefPubMed Story D, Poustie S, Bellomo R: Quantitative physical chemistry analysis of acid–base disorders in critically ill patients. Anaesthesia 2001, 56: 530-533. 10.1046/j.1365-2044.2001.01983.xCrossRefPubMed
5.
go back to reference Wilkes P: Hypoproteinemia strong-ion difference, and acid–base status in critically ill patients. J Appl Physiol 1998, 84: 1740-1748.PubMed Wilkes P: Hypoproteinemia strong-ion difference, and acid–base status in critically ill patients. J Appl Physiol 1998, 84: 1740-1748.PubMed
6.
go back to reference Scheingraber S, Rehm M: Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 1999, 90: 1265-1270. 10.1097/00000542-199905000-00007CrossRefPubMed Scheingraber S, Rehm M: Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 1999, 90: 1265-1270. 10.1097/00000542-199905000-00007CrossRefPubMed
7.
go back to reference Figge J, Mydosh T, Fencl V: Serum proteins and acid–base equilibria: a follow-up. J Lab Clin Med 1992, 120: 713-719.PubMed Figge J, Mydosh T, Fencl V: Serum proteins and acid–base equilibria: a follow-up. J Lab Clin Med 1992, 120: 713-719.PubMed
8.
go back to reference Stewart PA: Modern quantitative acid–base chemistry. Can J Physiol Pharmacol 1983, 61: 1444-1461.CrossRefPubMed Stewart PA: Modern quantitative acid–base chemistry. Can J Physiol Pharmacol 1983, 61: 1444-1461.CrossRefPubMed
9.
go back to reference Knaus WA, Draper EA, Wagner DP, Zimmerman FE: APACHE II: a severity of disease classification system. Crit Care Med 1985, 13: 818-829.CrossRefPubMed Knaus WA, Draper EA, Wagner DP, Zimmerman FE: APACHE II: a severity of disease classification system. Crit Care Med 1985, 13: 818-829.CrossRefPubMed
10.
go back to reference Shapiro BA, Peruzzi WT: Interpretation of blood gases. In Textbook of Critical Care 3 Edition (Edited by: Shoemaker WC, Ayres SM, Grenrik A, Holbrook P). Philadelphia, PA: WB Saunders Company 1995, 274-294. Shapiro BA, Peruzzi WT: Interpretation of blood gases. In Textbook of Critical Care 3 Edition (Edited by: Shoemaker WC, Ayres SM, Grenrik A, Holbrook P). Philadelphia, PA: WB Saunders Company 1995, 274-294.
11.
go back to reference DuBose TD: Acidosis and alkalosis. In Harrison's Principles of Internal Medicine 14 Edition (Edited by: Fauci AS). New York: McGraw Hill 1998, 277-286. DuBose TD: Acidosis and alkalosis. In Harrison's Principles of Internal Medicine 14 Edition (Edited by: Fauci AS). New York: McGraw Hill 1998, 277-286.
12.
go back to reference Chertow GM, Lazarus JM, Paganini EP, Allgren RL, Lafayette RA, Sayegh MH: Predictors of mortality and the provision of dialysis in patients with acute tubular necrosis. J Am Soc Nephrol 1998, 9: 692-698.PubMed Chertow GM, Lazarus JM, Paganini EP, Allgren RL, Lafayette RA, Sayegh MH: Predictors of mortality and the provision of dialysis in patients with acute tubular necrosis. J Am Soc Nephrol 1998, 9: 692-698.PubMed
13.
go back to reference Salem MM, Mujais SM: Gaps in the anion gap. Arch Intern Med 1992, 152: 1625-1629. 10.1001/archinte.152.8.1625CrossRefPubMed Salem MM, Mujais SM: Gaps in the anion gap. Arch Intern Med 1992, 152: 1625-1629. 10.1001/archinte.152.8.1625CrossRefPubMed
14.
go back to reference Niwa T: Organic acids and the uremic syndrome: protein metabolite hypothesis in the progression of chronic renal failure. Semin Nephrol 1996, 16: 167-182.PubMed Niwa T: Organic acids and the uremic syndrome: protein metabolite hypothesis in the progression of chronic renal failure. Semin Nephrol 1996, 16: 167-182.PubMed
15.
go back to reference Kirschbaum B: Sulfate regulation: native kidney vs dialysis. Int J Artif Organs 1999, 22: 591-592.PubMed Kirschbaum B: Sulfate regulation: native kidney vs dialysis. Int J Artif Organs 1999, 22: 591-592.PubMed
16.
go back to reference Balasubramanian N, Havens PL, Hoffman GM: Unmeasured anions identified by the Fencl–Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit. Crit Care Med 1999, 21: 1577-1581. 10.1097/00003246-199908000-00030CrossRef Balasubramanian N, Havens PL, Hoffman GM: Unmeasured anions identified by the Fencl–Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit. Crit Care Med 1999, 21: 1577-1581. 10.1097/00003246-199908000-00030CrossRef
17.
go back to reference Fencl V, Jabor A, Kazda A, Figge J: Diagnostic of metabolic acid–base disturbances in critically ill patients. Am J Respir Crit Care Med 2000, 162: 2246-2251.CrossRefPubMed Fencl V, Jabor A, Kazda A, Figge J: Diagnostic of metabolic acid–base disturbances in critically ill patients. Am J Respir Crit Care Med 2000, 162: 2246-2251.CrossRefPubMed
18.
go back to reference Cusack RJ, Rhodes A, Lochhead P, Jordan B, Perry S, Ball JAS, Grounds RM, Bennett ED: The strong ion gap does not have prognostic value in critically ill patients in a mixed medical/surgical adult ICU. Intensive Care Med 2002, 28: 864-869. 10.1007/s00134-002-1318-2CrossRefPubMed Cusack RJ, Rhodes A, Lochhead P, Jordan B, Perry S, Ball JAS, Grounds RM, Bennett ED: The strong ion gap does not have prognostic value in critically ill patients in a mixed medical/surgical adult ICU. Intensive Care Med 2002, 28: 864-869. 10.1007/s00134-002-1318-2CrossRefPubMed
19.
go back to reference Tan HK, Bellomo R, M'Pisi DA, Ronco C: Phosphatemic control during acute renal failure: intermittent hemodialysis versus continuous hemodiafiltration. Int J Artif Organs 2001, 24: 186-191.PubMed Tan HK, Bellomo R, M'Pisi DA, Ronco C: Phosphatemic control during acute renal failure: intermittent hemodialysis versus continuous hemodiafiltration. Int J Artif Organs 2001, 24: 186-191.PubMed
20.
go back to reference Figge J, Jabor A, Kazda A, Fencl V: Anion gap and hypoalbuminemia. Crit Care Med 1998, 26: 1807-1810.CrossRefPubMed Figge J, Jabor A, Kazda A, Fencl V: Anion gap and hypoalbuminemia. Crit Care Med 1998, 26: 1807-1810.CrossRefPubMed
21.
go back to reference Kellum JA, Kramer DJ, Pinsky MR: Strong ion gap: a methodology for exploring unexplained anions. J Crit Care 1995, 10: 51-55.CrossRefPubMed Kellum JA, Kramer DJ, Pinsky MR: Strong ion gap: a methodology for exploring unexplained anions. J Crit Care 1995, 10: 51-55.CrossRefPubMed
22.
go back to reference Ronco C, Bellomo R, Homel P, Brendolan A, Dan M, Piccinni P, La Greca G: Effects of different doses in continuous venovenous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet 2000, 355: 26-30. 10.1016/S0140-6736(00)02430-2CrossRef Ronco C, Bellomo R, Homel P, Brendolan A, Dan M, Piccinni P, La Greca G: Effects of different doses in continuous venovenous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet 2000, 355: 26-30. 10.1016/S0140-6736(00)02430-2CrossRef
Metadata
Title
Acid–base status of critically ill patients with acute renal failure: analysis based on Stewart–Figge methodology
Authors
Jens Rocktaeschel
Hiroshi Morimatsu
Shigehiko Uchino
Donna Goldsmith
Stephanie Poustie
David Story
Geoffrey Gutteridge
Rinaldo Bellomo
Publication date
01-08-2003
Publisher
BioMed Central
Published in
Critical Care / Issue 4/2003
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/cc2333

Other articles of this Issue 4/2003

Critical Care 4/2003 Go to the issue