Skip to main content
Top
Published in: Cancer Cell International 1/2019

Open Access 01-12-2019 | Primary research

A panel of Transcription factors identified by data mining can predict the prognosis of head and neck squamous cell carcinoma

Authors: Boxin Zhang, Haihui Wang, Ziyan Guo, Xinhai Zhang

Published in: Cancer Cell International | Issue 1/2019

Login to get access

Abstract

Background

Transcription factors (TFs) are responsible for the regulation of various activities related to cancer like cell proliferation, invasion, and migration. It is thought that, the measurement of TFs levels could assist in developing strategies for diagnosis and prognosis of cancer detection. However, due to lack of effective genome-wide tests, this cannot be carried out in clinical settings.

Methods

A complete assessment of RNA-seq data in samples of a head and neck squamous cell carcinoma (HNSCC) cohort in The Cancer Genome Atlas (TCGA) database was carried out. From the expression data of six TFs, a risk score model was developed and further validated in the GSE41613 and GSE65858 series. Potential functional roles were identified for the six TFs via gene set enrichment analysis.

Results

Based on our multi-TF signature, patients are stratified into high- and low-risk groups with significant variations in overall survival (OS) (median survival 2.416 vs. 5.934 years, log-rank test P < 0.001). The sensitivity and specificity evaluation of our multi-TF for 3-year OS in TCGA, GSE41613 and GSE65858 was 0.707, 0.679 and 0.605, respectively, demonstrating good reproducibility and robustness for predicting overall survival of HNSCC patients. Through multivariate Cox regression analyses (MCRA) and stratified analyses, we confirmed that the predictive capability of this risk score (RS) was not dependent on any of other factors like clinicopathological parameters.

Conclusions

With the help of a RS obtained from a panel of TFs expression signatures, effective OS prediction and stratification of HNSCC patients can be carried out.
Appendix
Available only for authorised users
Literature
1.
go back to reference Segal RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.CrossRef Segal RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.CrossRef
2.
go back to reference Bose P, Brockton NT, Dort JC. Head and neck cancer: from anatomy to biology. Int J Cancer. 2013;133:2013–23.CrossRef Bose P, Brockton NT, Dort JC. Head and neck cancer: from anatomy to biology. Int J Cancer. 2013;133:2013–23.CrossRef
3.
go back to reference Lydiatt WM, Patel SG, O’Sullivan B, Brandwein, Ridge JA, Migliacci JC, Loomis AM, Shah JP. Head and neck cancers-major changes in the American Joint Committee on cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67:122–37.CrossRef Lydiatt WM, Patel SG, O’Sullivan B, Brandwein, Ridge JA, Migliacci JC, Loomis AM, Shah JP. Head and neck cancers-major changes in the American Joint Committee on cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67:122–37.CrossRef
4.
go back to reference Bobdey S, Mair M, Nair S, Nair D, Balasubramaniam G, Chaturvedi P. A nomogram based prognostic score that is superior to conventional TNM staging in predicting outcome of surgically treated T4 buccal mucosa cancer: time to think beyond TNM. Oral Oncol. 2018;81:10–5.CrossRef Bobdey S, Mair M, Nair S, Nair D, Balasubramaniam G, Chaturvedi P. A nomogram based prognostic score that is superior to conventional TNM staging in predicting outcome of surgically treated T4 buccal mucosa cancer: time to think beyond TNM. Oral Oncol. 2018;81:10–5.CrossRef
5.
go back to reference Mroz EA, Tward AM, Hammon RJ, Ren Y, Rocco JW, Beck AH. Intra-tumor genetic heterogeneity and mortality in head and neck cancer: analysis of data from the Cancer Genome Atlas. PLoS Med. 2015;12:e1001786.CrossRef Mroz EA, Tward AM, Hammon RJ, Ren Y, Rocco JW, Beck AH. Intra-tumor genetic heterogeneity and mortality in head and neck cancer: analysis of data from the Cancer Genome Atlas. PLoS Med. 2015;12:e1001786.CrossRef
6.
go back to reference Almendro V, Marusyk A, Polyak K. Cellular heterogeneity and molecular evolution in cancer. Annu Rev Pathol. 2013;8:277–302.CrossRef Almendro V, Marusyk A, Polyak K. Cellular heterogeneity and molecular evolution in cancer. Annu Rev Pathol. 2013;8:277–302.CrossRef
7.
go back to reference Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 2007;8:93–103.CrossRef Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 2007;8:93–103.CrossRef
8.
go back to reference Wang X, Chen D, Gao J, Long H, Zha H, Zhang A, Wu W. Centromere protein U expression promotes non-small-cell lung cancer cell proliferation through FOXM1 and predicts poor survival. Cancer Manag Res. 2018;10:6971–84.CrossRef Wang X, Chen D, Gao J, Long H, Zha H, Zhang A, Wu W. Centromere protein U expression promotes non-small-cell lung cancer cell proliferation through FOXM1 and predicts poor survival. Cancer Manag Res. 2018;10:6971–84.CrossRef
9.
go back to reference Guo Q, He Y, Sun L, Kong C, Cheng Y, Wang P, Zhang G. Identification of potential prognostic TF-associated lncRNAs for predicting survival in ovarian cancer. J Cell Mol Med. 2019;23:1840–51.PubMed Guo Q, He Y, Sun L, Kong C, Cheng Y, Wang P, Zhang G. Identification of potential prognostic TF-associated lncRNAs for predicting survival in ovarian cancer. J Cell Mol Med. 2019;23:1840–51.PubMed
10.
go back to reference Khoo KH, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov. 2014;13:217–36.CrossRef Khoo KH, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov. 2014;13:217–36.CrossRef
11.
go back to reference Pattabiraman DR, McGirr C, Shakhbazov K, Barbier V, Krishnan K, Mukhopadhyay P, Papathanasiou P. Interaction of c-Myb with p300 is required for the induction of acute myeloid leukemia (AML) by human AML oncogenes. Blood. 2014;123:2682–90.CrossRef Pattabiraman DR, McGirr C, Shakhbazov K, Barbier V, Krishnan K, Mukhopadhyay P, Papathanasiou P. Interaction of c-Myb with p300 is required for the induction of acute myeloid leukemia (AML) by human AML oncogenes. Blood. 2014;123:2682–90.CrossRef
12.
go back to reference Li J, Chen Z, Tian L, Zhou C, He MY, Gao Y, Sun N. LncRNA profile study reveals a three-lncRNA signature associated with the survival of patients with oesophageal squamous cell carcinoma. Gut. 2014;63:1700–10.CrossRef Li J, Chen Z, Tian L, Zhou C, He MY, Gao Y, Sun N. LncRNA profile study reveals a three-lncRNA signature associated with the survival of patients with oesophageal squamous cell carcinoma. Gut. 2014;63:1700–10.CrossRef
13.
go back to reference Zhou M, Guo M, He D, Wang X, Cui Y, Yang H, Sun J. A potential signature of eight long non-coding RNAs predicts survival in patients with non-small cell lung cancer. J Transl Med. 2015;13:231.CrossRef Zhou M, Guo M, He D, Wang X, Cui Y, Yang H, Sun J. A potential signature of eight long non-coding RNAs predicts survival in patients with non-small cell lung cancer. J Transl Med. 2015;13:231.CrossRef
14.
go back to reference Leon X, Lopez M, Pineiro Z, Langendijk JA, Leemans CR, Quer M. External validation of a risk group defined by recursive partitioning analysis in patients with head and neck carcinoma treated with surgery and postoperative radiotherapy. Head Neck. 2007;29:815–21.CrossRef Leon X, Lopez M, Pineiro Z, Langendijk JA, Leemans CR, Quer M. External validation of a risk group defined by recursive partitioning analysis in patients with head and neck carcinoma treated with surgery and postoperative radiotherapy. Head Neck. 2007;29:815–21.CrossRef
15.
go back to reference Ell B, Kang Y. Transcriptional control of cancer metastasis. Trends Cell Biol. 2013;23:603–11.CrossRef Ell B, Kang Y. Transcriptional control of cancer metastasis. Trends Cell Biol. 2013;23:603–11.CrossRef
16.
go back to reference Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013;152:1237–51.CrossRef Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013;152:1237–51.CrossRef
17.
go back to reference Abrams ZB, Zucker M, Wang M, Taheri AA, Abruzzo LV, Coombes KR. Thirty biologically interpretable clusters of transcription factors distinguish cancer type. BMC Genomics. 2018;19:738.CrossRef Abrams ZB, Zucker M, Wang M, Taheri AA, Abruzzo LV, Coombes KR. Thirty biologically interpretable clusters of transcription factors distinguish cancer type. BMC Genomics. 2018;19:738.CrossRef
18.
go back to reference Xu T, Le TD, Liu L, Wang R, Sun B, Li J. Identifying cancer subtypes from miRNA-TF-mRNA regulatory networks and expression data. PLoS ONE. 2016;11:e0152792.CrossRef Xu T, Le TD, Liu L, Wang R, Sun B, Li J. Identifying cancer subtypes from miRNA-TF-mRNA regulatory networks and expression data. PLoS ONE. 2016;11:e0152792.CrossRef
19.
go back to reference Haibe-Kains B, Desmedt C, Sotiriou C, Bontempi G. A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all? Bioinformatics. 2008;24:2200–8.CrossRef Haibe-Kains B, Desmedt C, Sotiriou C, Bontempi G. A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all? Bioinformatics. 2008;24:2200–8.CrossRef
20.
go back to reference Lossos IS, Czerwinski DK, Alizadeh AA, Wechser MA, Tibshirani R, Botstein D, Levy R. Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. N Engl J Med. 2004;350:1828–37.CrossRef Lossos IS, Czerwinski DK, Alizadeh AA, Wechser MA, Tibshirani R, Botstein D, Levy R. Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. N Engl J Med. 2004;350:1828–37.CrossRef
21.
go back to reference Alizadeh AA, Gentles AJ, Alencar AJ, Alencar AJ, Liu CL, Kohrt HE, Houot R, Gascoyne RD. Prediction of survival in diffuse large B-cell lymphoma based on the expression of 2 genes reflecting tumor and microenvironment. Blood. 2011;118:1350–8.CrossRef Alizadeh AA, Gentles AJ, Alencar AJ, Alencar AJ, Liu CL, Kohrt HE, Houot R, Gascoyne RD. Prediction of survival in diffuse large B-cell lymphoma based on the expression of 2 genes reflecting tumor and microenvironment. Blood. 2011;118:1350–8.CrossRef
22.
go back to reference Kashani-Sabet M, Nosrati M, Miller JR, Sagebiel RW, Leong SP, Lesniak A, Kirkwood JM. Prospective validation of molecular prognostic markers in cutaneous melanoma: a correlative analysis of E1690. Clin Cancer Res. 2017;23:6888–92.CrossRef Kashani-Sabet M, Nosrati M, Miller JR, Sagebiel RW, Leong SP, Lesniak A, Kirkwood JM. Prospective validation of molecular prognostic markers in cutaneous melanoma: a correlative analysis of E1690. Clin Cancer Res. 2017;23:6888–92.CrossRef
23.
go back to reference Bitu CC, Destro MFDSS, Carrera M, da Silva SD, Graner E, Kowalski LP, Coletta RD. HOXA1 is overexpressed in oral squamous cell carcinomas and its expression is correlated with poor prognosis. BMC Cancer. 2012;12:146.CrossRef Bitu CC, Destro MFDSS, Carrera M, da Silva SD, Graner E, Kowalski LP, Coletta RD. HOXA1 is overexpressed in oral squamous cell carcinomas and its expression is correlated with poor prognosis. BMC Cancer. 2012;12:146.CrossRef
24.
go back to reference Wang T, Lin F, Sun X, Jiang L, Mao R, Zhou S, Li S. HOXB8 enhances the proliferation and metastasis of colorectal cancer cells by promoting EMT via STAT3 activation. Cancer Cell Int. 2019;19:3.CrossRef Wang T, Lin F, Sun X, Jiang L, Mao R, Zhou S, Li S. HOXB8 enhances the proliferation and metastasis of colorectal cancer cells by promoting EMT via STAT3 activation. Cancer Cell Int. 2019;19:3.CrossRef
25.
go back to reference Stavnes HT, Holth A, Don T, Kærn J, Vaksman O, Reich R, Davidson B. HOXB8 expression in ovarian serous carcinoma effusions is associated with shorter survival. Gynecol Oncol. 2013;129:2358–63.CrossRef Stavnes HT, Holth A, Don T, Kærn J, Vaksman O, Reich R, Davidson B. HOXB8 expression in ovarian serous carcinoma effusions is associated with shorter survival. Gynecol Oncol. 2013;129:2358–63.CrossRef
26.
go back to reference Sugimachi K, Matsumura T, Hirata H, Uchi R, Ueda M, Ueo H, Ochiya T. Identification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation. Br J Cancer. 2015;112:3532–8.CrossRef Sugimachi K, Matsumura T, Hirata H, Uchi R, Ueda M, Ueo H, Ochiya T. Identification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation. Br J Cancer. 2015;112:3532–8.CrossRef
27.
go back to reference Li ST, Lu XG, Chi P, Pan J. Identification of HOXB8 and KLK11 expression levels as potential biomarkers to predict the effects of FOLFOX4 chemotherapy. Future Oncol. 2013;9:5727–36. Li ST, Lu XG, Chi P, Pan J. Identification of HOXB8 and KLK11 expression levels as potential biomarkers to predict the effects of FOLFOX4 chemotherapy. Future Oncol. 2013;9:5727–36.
28.
go back to reference Zhao C, Zou H, Zhang J, Wang J, Liu H. An integrated methylation and gene expression microarray analysis reveals significant prognostic biomarkers in oral squamous cell carcinoma. Oncol Rep. 2018;40:52637–47. Zhao C, Zou H, Zhang J, Wang J, Liu H. An integrated methylation and gene expression microarray analysis reveals significant prognostic biomarkers in oral squamous cell carcinoma. Oncol Rep. 2018;40:52637–47.
29.
go back to reference Rosales-Avina JA, Torres-Flores J, Aguilar-Lemarroy A, Gurrola-Díaz C, Hernández-Flores G, Ortiz-Lazareno PC, Bravo-Cuellar A. MEIS1, PREP1, and PBX4 are differentially expressed in acute lymphoblastic leukemia: association of MEIS1 expression with higher proliferation and chemotherapy resistance. J Exp Clin Cancer Res. 2011;30:112.CrossRef Rosales-Avina JA, Torres-Flores J, Aguilar-Lemarroy A, Gurrola-Díaz C, Hernández-Flores G, Ortiz-Lazareno PC, Bravo-Cuellar A. MEIS1, PREP1, and PBX4 are differentially expressed in acute lymphoblastic leukemia: association of MEIS1 expression with higher proliferation and chemotherapy resistance. J Exp Clin Cancer Res. 2011;30:112.CrossRef
30.
go back to reference Hamaidi I, Coquard C, Danilin S, Dormoy V, Béraud C, Rothhut S, Massfelder T. The Lim1 oncogene as a new therapeutic target for metastatic human renal cell carcinoma. Oncogene. 2019;38:160–72.CrossRef Hamaidi I, Coquard C, Danilin S, Dormoy V, Béraud C, Rothhut S, Massfelder T. The Lim1 oncogene as a new therapeutic target for metastatic human renal cell carcinoma. Oncogene. 2019;38:160–72.CrossRef
31.
go back to reference Shahi P, Wang CY, Lawson DA, Slorach EM, Lu A, Yu Y, Werb Z. ZNF503/Zpo2 drives aggressive breast cancer progression by down-regulation of GATA3 expression. Proc Natl Acad Sci USA. 2017;114:123169–74.CrossRef Shahi P, Wang CY, Lawson DA, Slorach EM, Lu A, Yu Y, Werb Z. ZNF503/Zpo2 drives aggressive breast cancer progression by down-regulation of GATA3 expression. Proc Natl Acad Sci USA. 2017;114:123169–74.CrossRef
32.
go back to reference Subramanian J, Simon R. Gene expression-based prognostic signatures in lung cancer: ready for clinical use? J Natl Cancer Inst. 2010;102:464–74.CrossRef Subramanian J, Simon R. Gene expression-based prognostic signatures in lung cancer: ready for clinical use? J Natl Cancer Inst. 2010;102:464–74.CrossRef
33.
go back to reference Matsushita Y, Yanamoto S, Takahashi H, Yamada S, Naruse T, Sakamoto Y, Asahina I. A clinicopathological study of perineural invasion and vascular invasion in oral tongue squamous cell carcinoma. Int J Oral Maxillofac Surg. 2015;44:543–8.CrossRef Matsushita Y, Yanamoto S, Takahashi H, Yamada S, Naruse T, Sakamoto Y, Asahina I. A clinicopathological study of perineural invasion and vascular invasion in oral tongue squamous cell carcinoma. Int J Oral Maxillofac Surg. 2015;44:543–8.CrossRef
34.
go back to reference Mascitti M, Rubini C, De Michele F, Balercia P, Girotto R, Troiano G, Santarelli A, et al. American Joint Committee on Cancer staging system 7th edition versus 8th edition: any improvement for patients with squamous cell carcinoma of the tongue? Oral Surg Oral Med Oral Pathol Oral Radiol. 2018;126:415–23.CrossRef Mascitti M, Rubini C, De Michele F, Balercia P, Girotto R, Troiano G, Santarelli A, et al. American Joint Committee on Cancer staging system 7th edition versus 8th edition: any improvement for patients with squamous cell carcinoma of the tongue? Oral Surg Oral Med Oral Pathol Oral Radiol. 2018;126:415–23.CrossRef
Metadata
Title
A panel of Transcription factors identified by data mining can predict the prognosis of head and neck squamous cell carcinoma
Authors
Boxin Zhang
Haihui Wang
Ziyan Guo
Xinhai Zhang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2019
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-019-1024-6

Other articles of this Issue 1/2019

Cancer Cell International 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine