Skip to main content
Top
Published in: Cancer Cell International 1/2019

Open Access 01-12-2019 | Breast Cancer | Primary research

Long non-coding RNA UCA1 promotes breast cancer by upregulating PTP1B expression via inhibiting miR-206

Authors: Yi Li, Qingan Zeng, Jiliang Qiu, Ting Pang, Jianzhong Xian, Xuexia Zhang

Published in: Cancer Cell International | Issue 1/2019

Login to get access

Abstract

Background

The long non-coding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1) is involved in various cancers and often functions through microRNAs. The pro-survival protein PTP1B is known to play important roles in cancer development. However, the connection between UCA1 and PTP1B in breast cancer is not well studied.

Methods

In this study, we first evaluated the correlation between UCA1 level and PTP1B expression in breast tissues, which showed the expression of PTP1B were much higher in the breast tumor tissues than in the peritumor normal tissues. The UCA1 level was positively associated with PTP1B expression in breast tumor tissues.

Results

We observed that UCA1 could up-regulate PTP1B expression in breast cancer cells. We also found that miR-206 could inhibit the expression of PTP1B by directly binding to the 3′-UTR of its mRNA. Interestingly, UCA1 could increase the expression of PTP1B through sequestering miR-206 at post-transcriptional level. The results also suggested that UCA1-induced PTP1B expression facilitated the proliferation of breast cancer cells.

Conclusions

We conclude that UCA1 can up-regulates PTP1B to enhance cell proliferation through sequestering miR-206 in breast cancer. Our finding provides new insights into the mechanism of breast cancer regulation by UCA1, which could be a potential target for breast cancer treatment.
Trial registration 2012N5hSYSU48573. Registered at Oct 12, 2012
Appendix
Available only for authorised users
Literature
2.
go back to reference Akram M, Iqbal M, Daniyal M. Awareness and current knowledge of breast cancer. Biol Res. 2017;50:33–56.CrossRef Akram M, Iqbal M, Daniyal M. Awareness and current knowledge of breast cancer. Biol Res. 2017;50:33–56.CrossRef
3.
go back to reference Libson S, Lippman M. A review of clinical aspects of breast cancer. Int Rev Psychiatr. 2014;26:4–15.CrossRef Libson S, Lippman M. A review of clinical aspects of breast cancer. Int Rev Psychiatr. 2014;26:4–15.CrossRef
4.
go back to reference Benson JR, Jatoi I. The global breast cancer burden. Future Oncol. 2012;8:697–702.CrossRef Benson JR, Jatoi I. The global breast cancer burden. Future Oncol. 2012;8:697–702.CrossRef
5.
go back to reference Arriaga-Canon C. The use of long non-coding RNAs as prognostic biomarkers and therapeutic targets in prostate cancer. Oncotarget. 2018;9:20872–90.CrossRef Arriaga-Canon C. The use of long non-coding RNAs as prognostic biomarkers and therapeutic targets in prostate cancer. Oncotarget. 2018;9:20872–90.CrossRef
6.
go back to reference Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell. 2016;29:452–63.CrossRef Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell. 2016;29:452–63.CrossRef
7.
go back to reference Bach DH, Lee SK. Long noncoding RNAs in cancer cells. Cancer Lett. 2018;419:152–66.CrossRef Bach DH, Lee SK. Long noncoding RNAs in cancer cells. Cancer Lett. 2018;419:152–66.CrossRef
8.
go back to reference Wang F, Li X, Xie X, Zhao L, Chen W. UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett. 2008;582:1919–27.CrossRef Wang F, Li X, Xie X, Zhao L, Chen W. UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett. 2008;582:1919–27.CrossRef
9.
go back to reference Xue M, Chen W, Li X. Urothelial cancer associated 1: a long noncoding RNA with a crucial role in cancer. J Cancer Res Clin Oncol. 2016;142:1407–19.CrossRef Xue M, Chen W, Li X. Urothelial cancer associated 1: a long noncoding RNA with a crucial role in cancer. J Cancer Res Clin Oncol. 2016;142:1407–19.CrossRef
10.
go back to reference Wang H, Guan Z, He K, Qian J, Cao J, Teng L. LncRNA UCA1 in anti-cancer drug resistance. Oncotarget. 2017;8:64638–50.PubMedPubMedCentral Wang H, Guan Z, He K, Qian J, Cao J, Teng L. LncRNA UCA1 in anti-cancer drug resistance. Oncotarget. 2017;8:64638–50.PubMedPubMedCentral
11.
go back to reference Xu CG, Yang MF, Ren YQ. Exosomes mediated transfer of lncRNA UCA1 results in increased tamoxifen resistance in breast cancer cells. Eur Rev Med Pharmacol Sci. 2016;20:4362–8.PubMed Xu CG, Yang MF, Ren YQ. Exosomes mediated transfer of lncRNA UCA1 results in increased tamoxifen resistance in breast cancer cells. Eur Rev Med Pharmacol Sci. 2016;20:4362–8.PubMed
12.
go back to reference Campos-Parra A, López-Urrutia E, Orozco-Moreno L. Long non-coding RNAs as new master regulators of resistance to systemic treatments in breast cancer. Int J Mol Sci. 2018;19:2711.CrossRef Campos-Parra A, López-Urrutia E, Orozco-Moreno L. Long non-coding RNAs as new master regulators of resistance to systemic treatments in breast cancer. Int J Mol Sci. 2018;19:2711.CrossRef
13.
go back to reference Li X, Wu Y, Liu A. Long non-coding RNA UCA1 enhances tamoxifen resistance in breast cancer cells through a miR-18a-HIF1α feedback regulatory loop. Tumor Biol. 2016;37:14733–43.CrossRef Li X, Wu Y, Liu A. Long non-coding RNA UCA1 enhances tamoxifen resistance in breast cancer cells through a miR-18a-HIF1α feedback regulatory loop. Tumor Biol. 2016;37:14733–43.CrossRef
14.
go back to reference Nie W, Ge HJ, Yang XQ, Sun X. LncRNA-UCA1 exerts oncogenic functions in non-small cell lung cancer by targeting miR-193a-3p. Cancer Lett. 2016;371:99–106.CrossRef Nie W, Ge HJ, Yang XQ, Sun X. LncRNA-UCA1 exerts oncogenic functions in non-small cell lung cancer by targeting miR-193a-3p. Cancer Lett. 2016;371:99–106.CrossRef
15.
go back to reference Wang F, Ying HQ, He BS. Upregulated lncRNA-UCA1 contributes to progression of hepatocellular carcinoma through inhibition of miR-216b and activation of FGFR1/ERK signaling pathway. Oncotarget. 2015;6:7899–917.PubMedPubMedCentral Wang F, Ying HQ, He BS. Upregulated lncRNA-UCA1 contributes to progression of hepatocellular carcinoma through inhibition of miR-216b and activation of FGFR1/ERK signaling pathway. Oncotarget. 2015;6:7899–917.PubMedPubMedCentral
16.
go back to reference Li X, Wu Y, Liu A, Tang X. Long non-coding RNA UCA1 enhances tamoxifen resistance in breast cancer cells through a miR-18a-HIF1α feedback regulatory loop. Tumour Biol. 2016;37:14733–43.CrossRef Li X, Wu Y, Liu A, Tang X. Long non-coding RNA UCA1 enhances tamoxifen resistance in breast cancer cells through a miR-18a-HIF1α feedback regulatory loop. Tumour Biol. 2016;37:14733–43.CrossRef
17.
go back to reference Bian Z, Jin L, Zhang J, Yin Y, Quan C. LncRNA-UCA1 enhances cell proliferation and 5-fluorouracil resistance in colorectal cancer by inhibiting miR-204-5p. Sci Rep. 2016;6:23892–900.CrossRef Bian Z, Jin L, Zhang J, Yin Y, Quan C. LncRNA-UCA1 enhances cell proliferation and 5-fluorouracil resistance in colorectal cancer by inhibiting miR-204-5p. Sci Rep. 2016;6:23892–900.CrossRef
18.
go back to reference Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRef Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.CrossRef
19.
go back to reference Budhu A, Ji J, Wang XW. The clinical potential of microRNAs. J Hematol Oncol. 2010;3:37–45.CrossRef Budhu A, Ji J, Wang XW. The clinical potential of microRNAs. J Hematol Oncol. 2010;3:37–45.CrossRef
20.
go back to reference Yang J, Zeng Y. Identification of miRNA-mRNA crosstalk in pancreatic cancer by integrating transcriptome analysis. Eur Rev Med Pharmacol Sci. 2015;19:825–34.PubMed Yang J, Zeng Y. Identification of miRNA-mRNA crosstalk in pancreatic cancer by integrating transcriptome analysis. Eur Rev Med Pharmacol Sci. 2015;19:825–34.PubMed
21.
go back to reference O’Day E, Lal A. MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res. 2010;12:201.CrossRef O’Day E, Lal A. MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res. 2010;12:201.CrossRef
22.
go back to reference Zhang T, Liu M, Wang C, Lin C, Sun Y, Jin D. Downregulation of MiR-206 promotes proliferation and invasion of laryngeal cancer by regulating VEGF expression. Anticancer Res. 2011;31:3859–63.PubMed Zhang T, Liu M, Wang C, Lin C, Sun Y, Jin D. Downregulation of MiR-206 promotes proliferation and invasion of laryngeal cancer by regulating VEGF expression. Anticancer Res. 2011;31:3859–63.PubMed
23.
go back to reference Chen X, Yan Q, Li S. Expression of the tumor suppressor miR206 is associated with cellular proliferative inhibition and impairs invasion in ERalpha-positive endometrioid adenocarcinoma. Cancer Lett. 2012;314:41–53.CrossRef Chen X, Yan Q, Li S. Expression of the tumor suppressor miR206 is associated with cellular proliferative inhibition and impairs invasion in ERalpha-positive endometrioid adenocarcinoma. Cancer Lett. 2012;314:41–53.CrossRef
24.
go back to reference Adams BD, Furneaux H, White BA. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol. 2007;21:1132–47.CrossRef Adams BD, Furneaux H, White BA. The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-alpha (ERalpha) and represses ERalpha messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol. 2007;21:1132–47.CrossRef
25.
go back to reference Kondo N, Toyama T, Sugiura H, Fujii Y, Yamashita H. miR-206 expression is down-regulated in estrogen receptor alpha-positive human breast cancer. Cancer Res. 2008;68:5004–8.CrossRef Kondo N, Toyama T, Sugiura H, Fujii Y, Yamashita H. miR-206 expression is down-regulated in estrogen receptor alpha-positive human breast cancer. Cancer Res. 2008;68:5004–8.CrossRef
26.
go back to reference Ding W, Ren J, Ren H, Wang D. Long noncoding RNA HOTAIR modulates MiR-206-mediated Bcl-w signaling to facilitate cell proliferation in breast cancer. Sci Rep. 2017;7:17261–9.CrossRef Ding W, Ren J, Ren H, Wang D. Long noncoding RNA HOTAIR modulates MiR-206-mediated Bcl-w signaling to facilitate cell proliferation in breast cancer. Sci Rep. 2017;7:17261–9.CrossRef
27.
go back to reference Wang R, Zhang T, Yang Z, Jiang C, Seng J. Long non-coding RNA FTH1P3 activates paclitaxel resistance in breast cancer through miR-206/ABCB1. J Cell Mol Med. 2007;00:1–8. Wang R, Zhang T, Yang Z, Jiang C, Seng J. Long non-coding RNA FTH1P3 activates paclitaxel resistance in breast cancer through miR-206/ABCB1. J Cell Mol Med. 2007;00:1–8.
29.
go back to reference Hoekstra E, Das AM, Swets M, Cao W. Increased PTP1B expression and phosphatase activity in colorectal cancer results in a more invasive phenotype and worse patient outcome. Oncotarget. 2016;7:21922–38.PubMedPubMedCentral Hoekstra E, Das AM, Swets M, Cao W. Increased PTP1B expression and phosphatase activity in colorectal cancer results in a more invasive phenotype and worse patient outcome. Oncotarget. 2016;7:21922–38.PubMedPubMedCentral
30.
go back to reference Liu H, Wu Y, Zhu S, Liang W. PTP1B promotes cell proliferation and metastasis through activating src and ERK1/2 in non-small cell lung cancer. Cancer Lett. 2015;359:218–25.CrossRef Liu H, Wu Y, Zhu S, Liang W. PTP1B promotes cell proliferation and metastasis through activating src and ERK1/2 in non-small cell lung cancer. Cancer Lett. 2015;359:218–25.CrossRef
31.
go back to reference Tai WT, Chen YL, Chu PY. Protein tyrosine phosphatase 1B dephosphorylates PITX1 and regulates p120RasGAP in hepatocellular carcinoma. Hepatology. 2016;63:1528–43.CrossRef Tai WT, Chen YL, Chu PY. Protein tyrosine phosphatase 1B dephosphorylates PITX1 and regulates p120RasGAP in hepatocellular carcinoma. Hepatology. 2016;63:1528–43.CrossRef
32.
go back to reference Liao SC, Li JX, Yu L, Sun SR. Protein tyrosine phosphatase 1B expression contributes to the development of breast cancer. J Zhejiang Univ Sci B. 2017;18:334–42.CrossRef Liao SC, Li JX, Yu L, Sun SR. Protein tyrosine phosphatase 1B expression contributes to the development of breast cancer. J Zhejiang Univ Sci B. 2017;18:334–42.CrossRef
33.
go back to reference Bentires-Alj M, Neel BG. Protein-tyrosine phosphatase 1B is required for HER2/Neu-induced breast cancer. Cancer Res. 2007;67:2420–4.CrossRef Bentires-Alj M, Neel BG. Protein-tyrosine phosphatase 1B is required for HER2/Neu-induced breast cancer. Cancer Res. 2007;67:2420–4.CrossRef
34.
go back to reference Balavenkatraman KK, Aceto N. Epithelial protein-tyrosine phosphatase 1B contributes to the induction of mammary tumors by HER2/Neu but is not essential for tumor maintenance. Mol Cancer Res. 2011;9:1377–84.CrossRef Balavenkatraman KK, Aceto N. Epithelial protein-tyrosine phosphatase 1B contributes to the induction of mammary tumors by HER2/Neu but is not essential for tumor maintenance. Mol Cancer Res. 2011;9:1377–84.CrossRef
35.
go back to reference Sun F, Yu M, Yu J, Liu Z, Zhou X, Liu Y. miR-338-3p functions as a tumor suppressor in gastric cancer by targeting PTP1B. Cell Death Dis. 2018;9:522.CrossRef Sun F, Yu M, Yu J, Liu Z, Zhou X, Liu Y. miR-338-3p functions as a tumor suppressor in gastric cancer by targeting PTP1B. Cell Death Dis. 2018;9:522.CrossRef
36.
go back to reference Soysal S, Obermann EC, Gao F, Oertli D, Gillanders WE, Viehl CT, Muenst S. PTP1B expression is an independent positive prognostic factor in human breast cancer. Breast Cancer Res Treat. 2013;137(2):637–44.CrossRef Soysal S, Obermann EC, Gao F, Oertli D, Gillanders WE, Viehl CT, Muenst S. PTP1B expression is an independent positive prognostic factor in human breast cancer. Breast Cancer Res Treat. 2013;137(2):637–44.CrossRef
37.
go back to reference Tian S, Yuan Y, Li Z. LncRNA UCA1 sponges miR-26a to regulate the migration and proliferation of vascular smooth muscle cells. Gene. 2018;673:159–66.CrossRef Tian S, Yuan Y, Li Z. LncRNA UCA1 sponges miR-26a to regulate the migration and proliferation of vascular smooth muscle cells. Gene. 2018;673:159–66.CrossRef
38.
go back to reference Krishnan N. Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat Chem Biol. 2014;10:558–66.CrossRef Krishnan N. Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat Chem Biol. 2014;10:558–66.CrossRef
Metadata
Title
Long non-coding RNA UCA1 promotes breast cancer by upregulating PTP1B expression via inhibiting miR-206
Authors
Yi Li
Qingan Zeng
Jiliang Qiu
Ting Pang
Jianzhong Xian
Xuexia Zhang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2019
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-019-0958-z

Other articles of this Issue 1/2019

Cancer Cell International 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine