Skip to main content
Top
Published in: Clinical Oral Investigations 6/2013

01-07-2013 | Original Article

A novel three-dimensional bone chip organ culture

Authors: Johannes Kuttenberger, Elzbieta Polska, Birgit M. Schaefer

Published in: Clinical Oral Investigations | Issue 6/2013

Login to get access

Abstract

Objectives

The objective of this study was to develop a 3D bone chip organ culture model. We aimed to collect in vitro evidence of the ability of vital bone chips to promote new bone formation.

Materials and methods

We developed a 3D in vitro hypoxic bone chip organ culture model. Histology of the bone chips was performed before and after culture and immunohistochemistry after 3-week culture. The 3D culture supernatants were tested for the presence of pro-angiogenic growth factors, TGFβ1, GADPH, bone alkaline phosphatase, osteocalcin, osteonectin, osteopontin, bone sialoprotein and collagen type I.

Results

Histology after culture revealed bone chips in a matrix of fibrin remnants and a fibrous-appearing matter. Collagen type I- and IV-positive structures were also identified. Cells could be seen on the surface of the bone chips, with spindle-shaped cells bridging the bone chip particles. Pro-angiogenic growth factors and TGFβ1were detected in the 3D cell culture supernatants. The transcripts for osteocalcin, bone sialoprotein and collagen type I were revealed only via PCR.

Conclusions

Our results indicate that bone chips in our 3D organ culture remain vital and may stimulate the growth of a bone-forming matrix.

Clinical relevance

The use of autogenous bone chips for oral and maxillofacial bone augmentation procedures is widespread in clinical practice. The rationale for this is that if bone chips remain vital in vivo, they could provide an environment promoting new bone formation through growth factors and cells. This 3D culture method is an essential tool for investigating the behaviour of bone chips.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Horch HH, Pautke C (2006) Regeneration instead of reparation: a critical review of the autogenous bone transplant as “golden standard” of reconstructive oral surgery. Mund Kiefer Gesichtschir 10(4):213–220PubMedCrossRef Horch HH, Pautke C (2006) Regeneration instead of reparation: a critical review of the autogenous bone transplant as “golden standard” of reconstructive oral surgery. Mund Kiefer Gesichtschir 10(4):213–220PubMedCrossRef
3.
go back to reference Simion M, Fontana F (2004) Autogenous and xenogeneic bone grafts for the bone regeneration. A literature review. Minerva Stomatol 53(5):191–206PubMed Simion M, Fontana F (2004) Autogenous and xenogeneic bone grafts for the bone regeneration. A literature review. Minerva Stomatol 53(5):191–206PubMed
4.
go back to reference Eicker LA, Tomakidi P, Haessler D, Neugebauer J, Zöller JE (2002) Die Vitalität von gefilterten Knochenspänen zum präimplantologischen Knochenaufbau—Histochemische Untersuchungen und klinische Erfahrung. Z Zahnärztl Implantol 18(2):93–100 Eicker LA, Tomakidi P, Haessler D, Neugebauer J, Zöller JE (2002) Die Vitalität von gefilterten Knochenspänen zum präimplantologischen Knochenaufbau—Histochemische Untersuchungen und klinische Erfahrung. Z Zahnärztl Implantol 18(2):93–100
5.
go back to reference Kainulainen VT, Kainulainen TJ, Oikarinen KS, Carmichael RP, Sandor GK (2006) Performance of six bone collectors designed for dental implant surgery. Clin Oral Implants Res 17(3):282–287PubMedCrossRef Kainulainen VT, Kainulainen TJ, Oikarinen KS, Carmichael RP, Sandor GK (2006) Performance of six bone collectors designed for dental implant surgery. Clin Oral Implants Res 17(3):282–287PubMedCrossRef
6.
go back to reference Becktor JP, Hallstrom H, Isaksson S, Sennerby L (2008) The use of particulate bone grafts from the mandible for maxillary sinus floor augmentation before placement of surface-modified implants: results from bone grafting to delivery of the final fixed prosthesis. J Oral Maxillofac Surg 66(4):780–786PubMedCrossRef Becktor JP, Hallstrom H, Isaksson S, Sennerby L (2008) The use of particulate bone grafts from the mandible for maxillary sinus floor augmentation before placement of surface-modified implants: results from bone grafting to delivery of the final fixed prosthesis. J Oral Maxillofac Surg 66(4):780–786PubMedCrossRef
7.
go back to reference Zins JE, Whitaker LA (1983) Membranous versus endochondral bone: implications for craniofacial reconstruction. Plast Reconstr Surg 72(6):778–785PubMedCrossRef Zins JE, Whitaker LA (1983) Membranous versus endochondral bone: implications for craniofacial reconstruction. Plast Reconstr Surg 72(6):778–785PubMedCrossRef
8.
go back to reference Wong RW, Rabie AB (1999) A quantitative assessment of the healing of intramembranous and endochondral autogenous bone grafts. Eur J Orthod 21(2):119–126PubMedCrossRef Wong RW, Rabie AB (1999) A quantitative assessment of the healing of intramembranous and endochondral autogenous bone grafts. Eur J Orthod 21(2):119–126PubMedCrossRef
9.
go back to reference Ozaki W, Buchman SR (1998) Volume maintenance of onlay bone grafts in the craniofacial skeleton: micro-architecture versus embryologic origin. Plast Reconstr Surg 102(2):291–299PubMedCrossRef Ozaki W, Buchman SR (1998) Volume maintenance of onlay bone grafts in the craniofacial skeleton: micro-architecture versus embryologic origin. Plast Reconstr Surg 102(2):291–299PubMedCrossRef
10.
go back to reference Clausen C, Hermund NU, Donatsky O, Nielsen H (2006) Characterization of human bone cells derived from the maxillary alveolar ridge. Clin Oral Implants Res 17(5):533–540PubMedCrossRef Clausen C, Hermund NU, Donatsky O, Nielsen H (2006) Characterization of human bone cells derived from the maxillary alveolar ridge. Clin Oral Implants Res 17(5):533–540PubMedCrossRef
11.
go back to reference van Hinsbergh VW, Collen A, Koolwijk P (2001) Role of fibrin matrix in angiogenesis. Ann N Y Acad Sci 936:426–437PubMedCrossRef van Hinsbergh VW, Collen A, Koolwijk P (2001) Role of fibrin matrix in angiogenesis. Ann N Y Acad Sci 936:426–437PubMedCrossRef
12.
go back to reference Unger RE, Sartoris A, Peters K, Motta A, Migliaresi C, Kunkel M, Bulnheim U, Rychly J, Kirkpatrick CJ (2007) Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structure on three-dimensional porous biomaterials. Biomaterials 28(27):3965–3976PubMedCrossRef Unger RE, Sartoris A, Peters K, Motta A, Migliaresi C, Kunkel M, Bulnheim U, Rychly J, Kirkpatrick CJ (2007) Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structure on three-dimensional porous biomaterials. Biomaterials 28(27):3965–3976PubMedCrossRef
13.
go back to reference Schenk RK, Olah AJ, Hermann W, Dickson GR (1984) Preparation of calcified tissues for light microscopy. In: Dickson GR (ed) Methods of calcified tissue preparation, 1st edn. Elsevier, Amsterdam, pp 1–56 Schenk RK, Olah AJ, Hermann W, Dickson GR (1984) Preparation of calcified tissues for light microscopy. In: Dickson GR (ed) Methods of calcified tissue preparation, 1st edn. Elsevier, Amsterdam, pp 1–56
14.
go back to reference Mailhot JM, Borke JL (1998) An isolation and in vitro culturing method for human intraoral bone cells derived from dental implant preparation sites. Clin Oral Implants Res 9(1):43–50PubMedCrossRef Mailhot JM, Borke JL (1998) An isolation and in vitro culturing method for human intraoral bone cells derived from dental implant preparation sites. Clin Oral Implants Res 9(1):43–50PubMedCrossRef
16.
go back to reference Declercq H, Van den Vreken N, De ME, Verbeeck R, Schacht E, De RL, Cornelissen M (2004) Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials 25(5):757–768PubMedCrossRef Declercq H, Van den Vreken N, De ME, Verbeeck R, Schacht E, De RL, Cornelissen M (2004) Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials 25(5):757–768PubMedCrossRef
17.
go back to reference Richards RG, Simpson AE, Jaehn K, Furlong PI, Stoddart MJ (2007) Establishing a 3D ex vivo culture system for investigations of bone metabolism and biomaterial interactions. ALTEX 24 Spec No. 56-59 Richards RG, Simpson AE, Jaehn K, Furlong PI, Stoddart MJ (2007) Establishing a 3D ex vivo culture system for investigations of bone metabolism and biomaterial interactions. ALTEX 24 Spec No. 56-59
18.
go back to reference Deckers M, van der Pluijm G, Dooijewaard S, Kroon M, van Hinsbergh V, Papapoulos S, Löwik C (2001) Effect of angiogenic and antiangiogenic compounds on the outgrowth of capillary structures from fetal mouse bone explants. Lab Invest 81(1):5–15PubMedCrossRef Deckers M, van der Pluijm G, Dooijewaard S, Kroon M, van Hinsbergh V, Papapoulos S, Löwik C (2001) Effect of angiogenic and antiangiogenic compounds on the outgrowth of capillary structures from fetal mouse bone explants. Lab Invest 81(1):5–15PubMedCrossRef
19.
go back to reference Mariotti AJ, Rumpf DA (1999) Chlorhexidine-induced changes to human gingival fibroblast collagen and non-collagen protein production. J Periodontol 70(12):1443–1448PubMedCrossRef Mariotti AJ, Rumpf DA (1999) Chlorhexidine-induced changes to human gingival fibroblast collagen and non-collagen protein production. J Periodontol 70(12):1443–1448PubMedCrossRef
20.
go back to reference Kuttenberger JJ, Hardt N, Rutz T, Pfyffer GE (2005) Bone collected with a bone collector during dental implant surgery. Mund Kiefer Gesichtschir 9(1):18–23PubMedCrossRef Kuttenberger JJ, Hardt N, Rutz T, Pfyffer GE (2005) Bone collected with a bone collector during dental implant surgery. Mund Kiefer Gesichtschir 9(1):18–23PubMedCrossRef
21.
go back to reference Pradel W, Tenbieg P, Lauer G (2005) Influence of harvesting technique and donor site location on in vitro growth of osteoblastlike cells from facial bone. Int J Oral Maxillofac Implants 20(6):860–866PubMed Pradel W, Tenbieg P, Lauer G (2005) Influence of harvesting technique and donor site location on in vitro growth of osteoblastlike cells from facial bone. Int J Oral Maxillofac Implants 20(6):860–866PubMed
22.
go back to reference Chiriac G, Herten M, Schwarz F, Rothamel D, Becker J (2005) Autogenous bone chips: influence of a new piezoelectric device (Piezosurgery) on chip morphology, cell viability and differentiation. J Clin Periodontol 32(9):994–999PubMedCrossRef Chiriac G, Herten M, Schwarz F, Rothamel D, Becker J (2005) Autogenous bone chips: influence of a new piezoelectric device (Piezosurgery) on chip morphology, cell viability and differentiation. J Clin Periodontol 32(9):994–999PubMedCrossRef
23.
go back to reference Hoegel F, Mueller CA, Peter R, Pfister U, Suedkamp NP (2004) Bone debris: dead matter or vital osteoblasts. J Trauma 56(2):363–367PubMedCrossRef Hoegel F, Mueller CA, Peter R, Pfister U, Suedkamp NP (2004) Bone debris: dead matter or vital osteoblasts. J Trauma 56(2):363–367PubMedCrossRef
24.
go back to reference Davies CM, Jones DB, Stoddart MJ, Koller K, Smith E, Archer CW, Richards RG (2006) Mechanically loaded ex vivo bone culture system ‘Zetos’: systems and culture preparation. Eur Cell Mater 11:57–75PubMed Davies CM, Jones DB, Stoddart MJ, Koller K, Smith E, Archer CW, Richards RG (2006) Mechanically loaded ex vivo bone culture system ‘Zetos’: systems and culture preparation. Eur Cell Mater 11:57–75PubMed
25.
go back to reference Belperio JA, Keane MP, Arenberg DA, Addison CL, Ehlert JE, Burdick MD, Strieter RM (2000) CXC chemokines in angiogenesis. J LeukocBiol 68(1):1–8 Belperio JA, Keane MP, Arenberg DA, Addison CL, Ehlert JE, Burdick MD, Strieter RM (2000) CXC chemokines in angiogenesis. J LeukocBiol 68(1):1–8
26.
go back to reference You WK, McDonald DM (2008) The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis. BMB Rep 41(12):833–839PubMedCrossRef You WK, McDonald DM (2008) The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis. BMB Rep 41(12):833–839PubMedCrossRef
27.
go back to reference Ito C, Akimoto T, Ioka T, Kobayashi T, Kusano E (2009) TGF-beta inhibits vascular sprouting through TGF-beta type I receptor in the mouse embryonic aorta. Tohoku J Exp Med 218(1):63–71PubMedCrossRef Ito C, Akimoto T, Ioka T, Kobayashi T, Kusano E (2009) TGF-beta inhibits vascular sprouting through TGF-beta type I receptor in the mouse embryonic aorta. Tohoku J Exp Med 218(1):63–71PubMedCrossRef
28.
go back to reference Cheung WH, Lee KM, Fung KP, Lui PY, Leung KS (2001) TGF-beta1 is the factor secreted by proliferative chondrocytes to inhibit neo-angiogenesis. J Cell Biochem Suppl Suppl 36:79–88 Cheung WH, Lee KM, Fung KP, Lui PY, Leung KS (2001) TGF-beta1 is the factor secreted by proliferative chondrocytes to inhibit neo-angiogenesis. J Cell Biochem Suppl Suppl 36:79–88
29.
go back to reference Pepper MS (1997) Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8(1):21–43PubMedCrossRef Pepper MS (1997) Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8(1):21–43PubMedCrossRef
30.
go back to reference Rattner A, Sabido O, Massoubre C, Rascle F, Frey J (1997) Characterization of human osteoblastic cells: influence of the culture conditions. Vitro Cell Dev Biol Anim 33(10):757–762CrossRef Rattner A, Sabido O, Massoubre C, Rascle F, Frey J (1997) Characterization of human osteoblastic cells: influence of the culture conditions. Vitro Cell Dev Biol Anim 33(10):757–762CrossRef
31.
go back to reference Kanczler JM, Oreffo RO (2008) Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater 15:100–114PubMed Kanczler JM, Oreffo RO (2008) Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater 15:100–114PubMed
32.
go back to reference Guillotin B, Bareille R, Bourget C, Bordenave L, Amedee J (2008) Interaction between human umbilical vein endothelial cells and human osteoprogenitors triggers pleiotropic effect that may support osteoblastic function. Bone 42(6):1080–1091PubMedCrossRef Guillotin B, Bareille R, Bourget C, Bordenave L, Amedee J (2008) Interaction between human umbilical vein endothelial cells and human osteoprogenitors triggers pleiotropic effect that may support osteoblastic function. Bone 42(6):1080–1091PubMedCrossRef
33.
go back to reference Guillotin B, Bourget C, Remy-Zolgadri M, Bareille R, Fernandez P, Conrad V, Medee-Vilamitjana J (2004) Human primary endothelial cells stimulate human osteoprogenitor cell differentiation. Cell Physiol Biochem 14(4–6):325–332PubMedCrossRef Guillotin B, Bourget C, Remy-Zolgadri M, Bareille R, Fernandez P, Conrad V, Medee-Vilamitjana J (2004) Human primary endothelial cells stimulate human osteoprogenitor cell differentiation. Cell Physiol Biochem 14(4–6):325–332PubMedCrossRef
34.
go back to reference Fuchs S, Hofmann A, Kirkpatrick CJ (2007) Microvessel-like structures from outgrowth endothelial cells from human peripheral blood in 2-dimensional and 3-dimensional co-cultures with osteoblastic lineage cells. Tissue Eng 13(10):2577–2588PubMedCrossRef Fuchs S, Hofmann A, Kirkpatrick CJ (2007) Microvessel-like structures from outgrowth endothelial cells from human peripheral blood in 2-dimensional and 3-dimensional co-cultures with osteoblastic lineage cells. Tissue Eng 13(10):2577–2588PubMedCrossRef
35.
go back to reference Hofmann A, Ritz U, Verrier S, Eglin D, Alini M, Fuchs S, Kirkpatrick CJ, Rommens PM (2008) The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds. Biomaterials 29(31):4217–4226PubMedCrossRef Hofmann A, Ritz U, Verrier S, Eglin D, Alini M, Fuchs S, Kirkpatrick CJ, Rommens PM (2008) The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds. Biomaterials 29(31):4217–4226PubMedCrossRef
Metadata
Title
A novel three-dimensional bone chip organ culture
Authors
Johannes Kuttenberger
Elzbieta Polska
Birgit M. Schaefer
Publication date
01-07-2013
Publisher
Springer-Verlag
Published in
Clinical Oral Investigations / Issue 6/2013
Print ISSN: 1432-6981
Electronic ISSN: 1436-3771
DOI
https://doi.org/10.1007/s00784-012-0833-y

Other articles of this Issue 6/2013

Clinical Oral Investigations 6/2013 Go to the issue