Skip to main content
Top
Published in: BMC Oral Health 1/2023

Open Access 01-12-2023 | Research

A novel technique to harvest bone autografts with mild local hyperthermia and enhanced osteogenic bone quality: a preclinical study in dogs

Authors: Tengfei Zhou, Zekun Gan, Hanfei Zhang, Ziyi Liu, Yiping Pu, Mingdeng Rong

Published in: BMC Oral Health | Issue 1/2023

Login to get access

Abstract

Background

Guided bone regeneration (GBR) involves collecting bone autografts with high bio-quality and efficiency. The current non-irrigated low-speed drilling has been limited for broader application in bone autograft harvest due to its low efficiency, inability to conduct buccal cortical perforation, and dependence on simultaneous implant placement. Increasing the drilling speed helps improve the efficiency but may incur thermal-mechanical bone damage. Most studies have addressed thermal reactions during bone drilling on non-vital models, which is irrelevant to clinical scenarios. Little has been known about bone’s in vivo thermal profiles under non-irrigated higher-speed drilling and its influences on the resulting bone chips.

Aim

A novel technique for bone harvest and cortical perforation via in-situ non-irrigated higher-speed drilling was proposed and investigated for the first time.

Methods

The third mandible premolars of eight beagles were extracted and healed for three months. Sixteen partial edentulous sites (left and right) were randomized into four groups for bone autograft harvest without irrigation: chisel, 50 rpm drilling, 500 rpm drilling, and 1000 rpm drilling. Bone chips were harvested on the buccal plates of the missing tooth. An infrared camera and an implantable thermocouple collaboratively monitored in vivo real-time bone temperature at the drilling sites. In vitro performances of cells from bone chips, including cell number, viability, proliferation, migration, ALP activity, in vitro mineralization, mRNA transcriptional level of osteogenic genes and heat shock protein 70 (HSP-70), and HSP-70 expression at the protein level were also studied.

Results

500 rpm produced mild local hyperthermia with a 2–6 °C temperature rise both on the cortical surface and inside the cortical bone. It also held comparable or enhanced cell performances such as cell number, viability, proliferation, migration, ALP activity, in vitro mineralization, and osteogenic genes expression.

Conclusions

In-situ non-irrigated higher-speed drilling at 500 rpm using a screw drill is versatile, efficient, and thermal friendly and improves the bio-quality of bone chips. Our novel technique holds clinical translational potential in GBR application.
Appendix
Available only for authorised users
Literature
2.
go back to reference Doonquah L, Holmes PJ, Ranganathan LK, Robertson H. Bone grafting for Implant Surgery. Oral Maxillofac Surg Clin North Am. 2021;33(2):211–29.PubMedCrossRef Doonquah L, Holmes PJ, Ranganathan LK, Robertson H. Bone grafting for Implant Surgery. Oral Maxillofac Surg Clin North Am. 2021;33(2):211–29.PubMedCrossRef
3.
go back to reference Broggini N, Bosshardt DD, Jensen SS, Bornstein MM, Wang CC, Buser D. Bone healing around nanocrystalline hydroxyapatite, deproteinized bovine bone mineral, biphasic calcium phosphate, and autogenous bone in mandibular bone defects. J Biomed Mater Res B Appl Biomater. 2015;103(7):1478–87.PubMedCrossRef Broggini N, Bosshardt DD, Jensen SS, Bornstein MM, Wang CC, Buser D. Bone healing around nanocrystalline hydroxyapatite, deproteinized bovine bone mineral, biphasic calcium phosphate, and autogenous bone in mandibular bone defects. J Biomed Mater Res B Appl Biomater. 2015;103(7):1478–87.PubMedCrossRef
4.
go back to reference Anitua E. Biological Drilling: Implant Site Preparation in a Conservative manner and obtaining Autogenous Bone grafts. Balk J Dent Med. 2018;22(2):98–101.CrossRef Anitua E. Biological Drilling: Implant Site Preparation in a Conservative manner and obtaining Autogenous Bone grafts. Balk J Dent Med. 2018;22(2):98–101.CrossRef
5.
go back to reference Alvira-González J, De Stavola L. The role of cortical perforations in bone regeneration: a systematic review. Int J Oral Maxillofac Surg. 2020;49(7):945–51.PubMedCrossRef Alvira-González J, De Stavola L. The role of cortical perforations in bone regeneration: a systematic review. Int J Oral Maxillofac Surg. 2020;49(7):945–51.PubMedCrossRef
6.
go back to reference Akhbar MFA, Sulong AW. Surgical Drill bit design and thermomechanical damage in Bone Drilling: a review. Ann Biomed Eng. 2021;49(1):29–56.PubMedCrossRef Akhbar MFA, Sulong AW. Surgical Drill bit design and thermomechanical damage in Bone Drilling: a review. Ann Biomed Eng. 2021;49(1):29–56.PubMedCrossRef
8.
go back to reference Zhang Y, Xu L, Wang C, Chen Z, Han S, Chen B, et al. Mechanical and thermal damage in cortical bone drilling in vivo. Proc Inst Mech Eng H. 2019;233(6):621–35.PubMedCrossRef Zhang Y, Xu L, Wang C, Chen Z, Han S, Chen B, et al. Mechanical and thermal damage in cortical bone drilling in vivo. Proc Inst Mech Eng H. 2019;233(6):621–35.PubMedCrossRef
9.
go back to reference Augustin G, Zigman T, Davila S, Udilljak T, Staroveski T, Brezak D, et al. Cortical bone drilling and thermal osteonecrosis. Clin Biomech (Bristol Avon). 2012;27(4):313–25.PubMedCrossRef Augustin G, Zigman T, Davila S, Udilljak T, Staroveski T, Brezak D, et al. Cortical bone drilling and thermal osteonecrosis. Clin Biomech (Bristol Avon). 2012;27(4):313–25.PubMedCrossRef
10.
go back to reference Eriksson RA, Albrektsson T. The effect of heat on bone regeneration: an experimental study in the rabbit using the bone growth chamber. J Oral Maxillofac Surg. 1984;42(11):705–11.PubMedCrossRef Eriksson RA, Albrektsson T. The effect of heat on bone regeneration: an experimental study in the rabbit using the bone growth chamber. J Oral Maxillofac Surg. 1984;42(11):705–11.PubMedCrossRef
11.
go back to reference Shui C, Scutt A. Mild heat shock induces proliferation, alkaline phosphatase activity, and mineralization in human bone marrow stromal cells and Mg-63 cells in vitro. J Bone Miner Res. 2001;16(4):731–41.PubMedCrossRef Shui C, Scutt A. Mild heat shock induces proliferation, alkaline phosphatase activity, and mineralization in human bone marrow stromal cells and Mg-63 cells in vitro. J Bone Miner Res. 2001;16(4):731–41.PubMedCrossRef
12.
go back to reference Zhang X, Cheng G, Xing X, Liu J, Cheng Y, Ye T, et al. Near-Infrared Light-Triggered Porous AuPd Alloy nanoparticles to produce mild localized heat to accelerate bone regeneration. J Phys Chem Lett. 2019;10(15):4185–91.PubMedCrossRef Zhang X, Cheng G, Xing X, Liu J, Cheng Y, Ye T, et al. Near-Infrared Light-Triggered Porous AuPd Alloy nanoparticles to produce mild localized heat to accelerate bone regeneration. J Phys Chem Lett. 2019;10(15):4185–91.PubMedCrossRef
13.
go back to reference Wang L, Hu P, Jiang H, Zhao J, Tang J, Jiang D, et al. Mild hyperthermia-mediated osteogenesis and angiogenesis play a critical role in magnetothermal composite-induced bone regeneration. Nano Today. 2022;43:101401.CrossRef Wang L, Hu P, Jiang H, Zhao J, Tang J, Jiang D, et al. Mild hyperthermia-mediated osteogenesis and angiogenesis play a critical role in magnetothermal composite-induced bone regeneration. Nano Today. 2022;43:101401.CrossRef
14.
15.
go back to reference Sayed S, Faruq O, Hossain M, Im SB, Kim YS, Lee BT. Thermal cycling effect on osteogenic differentiation of MC3T3-E1 cells loaded on 3D-porous biphasic calcium phosphate (BCP) scaffolds for early osteogenesis. Mater Sci Eng C Mater Biol Appl. 2019;105:110027.PubMedCrossRef Sayed S, Faruq O, Hossain M, Im SB, Kim YS, Lee BT. Thermal cycling effect on osteogenic differentiation of MC3T3-E1 cells loaded on 3D-porous biphasic calcium phosphate (BCP) scaffolds for early osteogenesis. Mater Sci Eng C Mater Biol Appl. 2019;105:110027.PubMedCrossRef
16.
go back to reference Hu Y, Ding H, Shi Y, Zhang H, Zheng Q. A predictive model for cortical bone temperature distribution during drilling. Phys Eng Sci Med. 2021;44(1):147–56.PubMedCrossRef Hu Y, Ding H, Shi Y, Zhang H, Zheng Q. A predictive model for cortical bone temperature distribution during drilling. Phys Eng Sci Med. 2021;44(1):147–56.PubMedCrossRef
17.
go back to reference Chen YC, Hsiao CK, Tu YK, Tsai YJ, Hsiao AC, Lu CW, et al. Assessment of heat generation and risk of thermal necrosis during bone burring by means of three-dimensional dynamic elastoplastic finite element modelling. Med Eng Phys. 2020;81:1–12.PubMedCrossRef Chen YC, Hsiao CK, Tu YK, Tsai YJ, Hsiao AC, Lu CW, et al. Assessment of heat generation and risk of thermal necrosis during bone burring by means of three-dimensional dynamic elastoplastic finite element modelling. Med Eng Phys. 2020;81:1–12.PubMedCrossRef
18.
go back to reference Benca E, Ferrante B, Zalaudek M, Hirtler L, Synek A, Kainberger FM, et al. Thermal effects during Bone Preparation and insertion of Osseointegrated Transfemoral implants. Sens (Basel). 2021;21(18):6267.CrossRef Benca E, Ferrante B, Zalaudek M, Hirtler L, Synek A, Kainberger FM, et al. Thermal effects during Bone Preparation and insertion of Osseointegrated Transfemoral implants. Sens (Basel). 2021;21(18):6267.CrossRef
19.
go back to reference Gargallo-Albiol J, Salomó-Coll O, Lozano-Carrascal N, Wang HL, Hernández-Alfaro F. Intra-osseous heat generation during implant bed preparation with static navigation: multi-factor in vitro study. Clin Oral Implants Res. 2021;32(5):590–7.PubMedCrossRef Gargallo-Albiol J, Salomó-Coll O, Lozano-Carrascal N, Wang HL, Hernández-Alfaro F. Intra-osseous heat generation during implant bed preparation with static navigation: multi-factor in vitro study. Clin Oral Implants Res. 2021;32(5):590–7.PubMedCrossRef
20.
go back to reference Salimov F, Ozcan M, Ucak Turer O, Haytac CM. The effects of repeated usage of implant drills on cortical bone temperature, primary/secondary stability and bone healing: a preclinical in vivo micro-CT study. Clin Oral Implants Res. 2020;31(8):687–93.PubMedCrossRef Salimov F, Ozcan M, Ucak Turer O, Haytac CM. The effects of repeated usage of implant drills on cortical bone temperature, primary/secondary stability and bone healing: a preclinical in vivo micro-CT study. Clin Oral Implants Res. 2020;31(8):687–93.PubMedCrossRef
21.
go back to reference Bernabeu-Mira JC, Soto-Peñaloza D, Peñarrocha-Diago M, Camacho-Alonso F, Rivas-Ballester R, Peñarrocha-Oltra D. Low-speed drilling without irrigation versus conventional drilling for dental implant osteotomy preparation: a systematic review. Clin Oral Investig. 2021;25(7):4251–67.PubMedCrossRef Bernabeu-Mira JC, Soto-Peñaloza D, Peñarrocha-Diago M, Camacho-Alonso F, Rivas-Ballester R, Peñarrocha-Oltra D. Low-speed drilling without irrigation versus conventional drilling for dental implant osteotomy preparation: a systematic review. Clin Oral Investig. 2021;25(7):4251–67.PubMedCrossRef
22.
go back to reference Zimmermann M, Caballé-Serrano J, Bosshardt DD, Ankersmit HJ, Buser D, Gruber R. Bone-conditioned medium changes gene expression in bone-derived fibroblasts. Int J Oral Maxillofac Implants. 2015;30(4):953–8.PubMedCrossRef Zimmermann M, Caballé-Serrano J, Bosshardt DD, Ankersmit HJ, Buser D, Gruber R. Bone-conditioned medium changes gene expression in bone-derived fibroblasts. Int J Oral Maxillofac Implants. 2015;30(4):953–8.PubMedCrossRef
23.
go back to reference Miron RJ, Gruber R, Hedbom E, Saulacic N, Zhang Y, Zhang Y, et al. Impact of bone harvesting techniques on cell viability and the release of growth factors of autografts. Clin Implant Dent Relat Res. 2013;15(4):481–9.PubMedCrossRef Miron RJ, Gruber R, Hedbom E, Saulacic N, Zhang Y, Zhang Y, et al. Impact of bone harvesting techniques on cell viability and the release of growth factors of autografts. Clin Implant Dent Relat Res. 2013;15(4):481–9.PubMedCrossRef
24.
go back to reference Manzano-Moreno FJ, Herrera-Briones FJ, Linares-Recatala M, Ocana-Peinado FM, Reyes-Botella C, Vallecillo-Capilla MF. Bacterial contamination levels of autogenous bone particles collected by 3 different techniques for harvesting intraoral bone grafts. J Oral Maxillofac Surg. 2015;73(3):424–9.PubMedCrossRef Manzano-Moreno FJ, Herrera-Briones FJ, Linares-Recatala M, Ocana-Peinado FM, Reyes-Botella C, Vallecillo-Capilla MF. Bacterial contamination levels of autogenous bone particles collected by 3 different techniques for harvesting intraoral bone grafts. J Oral Maxillofac Surg. 2015;73(3):424–9.PubMedCrossRef
25.
go back to reference Liang C, Lin X, Wang SL, Guo LH, Wang XY, Li J. Osteogenic potential of three different autogenous bone particles harvested during implant Surgery. Oral Dis. 2017;23(8):1099–108.PubMedCrossRef Liang C, Lin X, Wang SL, Guo LH, Wang XY, Li J. Osteogenic potential of three different autogenous bone particles harvested during implant Surgery. Oral Dis. 2017;23(8):1099–108.PubMedCrossRef
26.
go back to reference Tabassum A, Wismeijer D, Hogervorst J, Tahmaseb A. Comparison of proliferation and differentiation of human osteoblast-like cells harvested during Implant Osteotomy Preparation using two different drilling protocols. Int J Oral Maxillofac Implants. 2020;35(1):141–9.PubMedCrossRef Tabassum A, Wismeijer D, Hogervorst J, Tahmaseb A. Comparison of proliferation and differentiation of human osteoblast-like cells harvested during Implant Osteotomy Preparation using two different drilling protocols. Int J Oral Maxillofac Implants. 2020;35(1):141–9.PubMedCrossRef
27.
go back to reference Miron RJ, Hedbom E, Saulacic N, Zhang Y, Sculean A, Bosshardt DD, et al. Osteogenic potential of autogenous bone grafts harvested with four different surgical techniques. J Dent Res. 2011;90(12):1428–33.PubMedCrossRef Miron RJ, Hedbom E, Saulacic N, Zhang Y, Sculean A, Bosshardt DD, et al. Osteogenic potential of autogenous bone grafts harvested with four different surgical techniques. J Dent Res. 2011;90(12):1428–33.PubMedCrossRef
28.
go back to reference Bacci C, Lucchiari N, Frigo AC, Stecco C, Zanette G, Dotto V, et al. Temperatures generated during implant site preparation with conventional drilling versus single-drill method: an ex-vivo human mandible study. Minerva Stomatol. 2019;68(6):277–84.PubMed Bacci C, Lucchiari N, Frigo AC, Stecco C, Zanette G, Dotto V, et al. Temperatures generated during implant site preparation with conventional drilling versus single-drill method: an ex-vivo human mandible study. Minerva Stomatol. 2019;68(6):277–84.PubMed
29.
go back to reference Salomó-Coll O, Auriol-Muerza B, Lozano-Carrascal N, Hernández-Alfaro F, Wang HL, Gargallo-Albiol J. Influence of bone density, drill diameter, drilling speed, and irrigation on temperature changes during implant osteotomies: an in vitro study. Clin Oral Investig. 2021;25(3):1047–53.PubMedCrossRef Salomó-Coll O, Auriol-Muerza B, Lozano-Carrascal N, Hernández-Alfaro F, Wang HL, Gargallo-Albiol J. Influence of bone density, drill diameter, drilling speed, and irrigation on temperature changes during implant osteotomies: an in vitro study. Clin Oral Investig. 2021;25(3):1047–53.PubMedCrossRef
30.
go back to reference Karaca F, Aksakal B, Kom M. Influence of orthopaedic drilling parameters on temperature and histopathology of bovine tibia: an in vitro study. Med Eng Phys. 2011;33(10):1221–7.PubMedCrossRef Karaca F, Aksakal B, Kom M. Influence of orthopaedic drilling parameters on temperature and histopathology of bovine tibia: an in vitro study. Med Eng Phys. 2011;33(10):1221–7.PubMedCrossRef
31.
go back to reference Tahmasbi V, Ghoreishi M, Zolfaghari M. Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone. Proc Inst Mech Eng H. 2017;231(11):1012–24.PubMedCrossRef Tahmasbi V, Ghoreishi M, Zolfaghari M. Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone. Proc Inst Mech Eng H. 2017;231(11):1012–24.PubMedCrossRef
32.
go back to reference Augustin G, Davila S, Mihoci K, Udiljak T, Vedrina DS, Antabak A. Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg. 2008;128(1):71–7.PubMedCrossRef Augustin G, Davila S, Mihoci K, Udiljak T, Vedrina DS, Antabak A. Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg. 2008;128(1):71–7.PubMedCrossRef
33.
go back to reference Shu L, Bai W, Shimada T, Ying Z, Li S, Sugita N. Thermographic assessment of heat-induced cellular damage during orthopedic Surgery. Med Eng Phys. 2020;83:100–5.PubMedCrossRef Shu L, Bai W, Shimada T, Ying Z, Li S, Sugita N. Thermographic assessment of heat-induced cellular damage during orthopedic Surgery. Med Eng Phys. 2020;83:100–5.PubMedCrossRef
34.
go back to reference Gholampour S, Deh HHH. The effect of spatial distances between holes and time delays between bone drillings based on examination of heat accumulation and risk of bone thermal necrosis. Biomed Eng Online. 2019;18(1):65.PubMedPubMedCentralCrossRef Gholampour S, Deh HHH. The effect of spatial distances between holes and time delays between bone drillings based on examination of heat accumulation and risk of bone thermal necrosis. Biomed Eng Online. 2019;18(1):65.PubMedPubMedCentralCrossRef
35.
go back to reference Marković A, Lazić Z, Mišić T, Šćepanović M, Todorović A, Thakare K, et al. Effect of surgical drill guide and irrigans temperature on thermal bone changes during drilling implant sites - thermographic analysis on bovine ribs. Vojnosanit Pregl. 2016;73(8):744–50.PubMedCrossRef Marković A, Lazić Z, Mišić T, Šćepanović M, Todorović A, Thakare K, et al. Effect of surgical drill guide and irrigans temperature on thermal bone changes during drilling implant sites - thermographic analysis on bovine ribs. Vojnosanit Pregl. 2016;73(8):744–50.PubMedCrossRef
36.
go back to reference Chen E, Xue D, Zhang W, Lin F, Pan Z. Extracellular heat shock protein 70 promotes osteogenesis of human mesenchymal stem cells through activation of the ERK signaling pathway. FEBS Lett. 2015;589:4088–96. (24 Pt B).PubMedCrossRef Chen E, Xue D, Zhang W, Lin F, Pan Z. Extracellular heat shock protein 70 promotes osteogenesis of human mesenchymal stem cells through activation of the ERK signaling pathway. FEBS Lett. 2015;589:4088–96. (24 Pt B).PubMedCrossRef
37.
go back to reference Zhang W, Xue D, Yin H, Wang S, Li C, Chen E, et al. Overexpression of HSPA1A enhances the osteogenic differentiation of bone marrow mesenchymal stem cells via activation of the Wnt/β-catenin signaling pathway. Sci Rep. 2016;6:27622.PubMedPubMedCentralCrossRef Zhang W, Xue D, Yin H, Wang S, Li C, Chen E, et al. Overexpression of HSPA1A enhances the osteogenic differentiation of bone marrow mesenchymal stem cells via activation of the Wnt/β-catenin signaling pathway. Sci Rep. 2016;6:27622.PubMedPubMedCentralCrossRef
38.
go back to reference Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys. 1984;10(6):787–800.PubMedCrossRef Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys. 1984;10(6):787–800.PubMedCrossRef
39.
go back to reference Snyder CJ, Soukup JW, Drees R, Tabone TJ. Caudal mandibular bone height and buccal cortical bone thickness measured by computed tomography in healthy dogs. Vet Surg. 2016;45(1):21–9.PubMedCrossRef Snyder CJ, Soukup JW, Drees R, Tabone TJ. Caudal mandibular bone height and buccal cortical bone thickness measured by computed tomography in healthy dogs. Vet Surg. 2016;45(1):21–9.PubMedCrossRef
40.
go back to reference Coyac BR, Sun Q, Leahy B, Salvi G, Yuan X, Brunski JB, et al. Optimizing autologous bone contribution to implant osseointegration. J Periodontol. 2020;91(12):1632–44.PubMedPubMedCentralCrossRef Coyac BR, Sun Q, Leahy B, Salvi G, Yuan X, Brunski JB, et al. Optimizing autologous bone contribution to implant osseointegration. J Periodontol. 2020;91(12):1632–44.PubMedPubMedCentralCrossRef
41.
go back to reference Barboza E, Caúla A, Machado F. Potential of recombinant human bone morphogenetic protein-2 in bone regeneration. Implant Dent. 1999;8(4):360–7.PubMedCrossRef Barboza E, Caúla A, Machado F. Potential of recombinant human bone morphogenetic protein-2 in bone regeneration. Implant Dent. 1999;8(4):360–7.PubMedCrossRef
42.
go back to reference Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8(4):114–24.PubMedPubMedCentralCrossRef Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics: the bridge between basic science and clinical advancements in fracture healing. Organogenesis. 2012;8(4):114–24.PubMedPubMedCentralCrossRef
43.
go back to reference Chiapasco M, Casentini P. Horizontal bone-augmentation procedures in implant dentistry: prosthetically guided regeneration. Periodontol 2000. 2018;77(1):213–40.PubMedCrossRef Chiapasco M, Casentini P. Horizontal bone-augmentation procedures in implant dentistry: prosthetically guided regeneration. Periodontol 2000. 2018;77(1):213–40.PubMedCrossRef
Metadata
Title
A novel technique to harvest bone autografts with mild local hyperthermia and enhanced osteogenic bone quality: a preclinical study in dogs
Authors
Tengfei Zhou
Zekun Gan
Hanfei Zhang
Ziyi Liu
Yiping Pu
Mingdeng Rong
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2023
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-03611-w

Other articles of this Issue 1/2023

BMC Oral Health 1/2023 Go to the issue