Skip to main content
Top
Published in: BMC Immunology 1/2012

Open Access 01-12-2012 | Research article

A novel splice variant of folate receptor 4 predominantly expressed in regulatory T cells

Authors: Yi Tian, Guoqiang Wu, Jun-Chao Xing, Jun Tang, Yi Zhang, Ze-Min Huang, Zheng-Cai Jia, Ren Zhao, Zhi-Qiang Tian, Shu-Feng Wang, Xiao-Ling Chen, Li Wang, Yu-Zhang Wu, Bing Ni

Published in: BMC Immunology | Issue 1/2012

Login to get access

Abstract

Background

Regulatory T cells (Tregs) are required for proper maintenance of immunological self-tolerance and immune homeostasis. Folate receptor 4 (FR4) is expressed at high levels in transforming growth factor-beta (TGF-β)-induced Tregs and natural Tregs. Moreover, antibody-mediated targeting of FR4 is sufficient to mediate Treg depletion.

Results

In this study, we describe a novel FR4 transcript variant, FR4D3, in which exon 3 is deleted. The mRNA of FR4D3 encodes a FR4 variant truncated by 189 bp. FR4D3 was found to be predominantly expressed in CD4+CD25+ Treg cells. Overexpression of FR4D3 in CD4+CD25+ Treg cells in vitro stimulated proliferation, which may modulate the ability of these cells to bind and incorporate folic acid.

Conclusions

Our results suggested that high levels of FR4D3 may be critical to support the substantial proliferative capacity of Treg cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shen F, Ross JF, Wang X, Ratnam M: Identification of a novel folate receptor, a truncated receptor, and receptor type beta in hematopoietic cells: cDNA cloning, expression, immunoreactivity, and tissue specificity. Biochemistry. 1994, 33 (5): 1209-1215. 10.1021/bi00171a021.PubMedCrossRef Shen F, Ross JF, Wang X, Ratnam M: Identification of a novel folate receptor, a truncated receptor, and receptor type beta in hematopoietic cells: cDNA cloning, expression, immunoreactivity, and tissue specificity. Biochemistry. 1994, 33 (5): 1209-1215. 10.1021/bi00171a021.PubMedCrossRef
2.
go back to reference Antony AC: Folate receptors. Annu Rev Nutr. 1996, 16: 501-521. 10.1146/annurev.nu.16.070196.002441.PubMedCrossRef Antony AC: Folate receptors. Annu Rev Nutr. 1996, 16: 501-521. 10.1146/annurev.nu.16.070196.002441.PubMedCrossRef
3.
go back to reference Weitman SD, Weinberg AG, Coney LR, Zurawski VR, Jennings DS, Kamen BA: Cellular localization of the folate receptor: potential role in drug toxicity and folate homeostasis. Cancer Res. 1992, 52 (23): 6708-6711.PubMed Weitman SD, Weinberg AG, Coney LR, Zurawski VR, Jennings DS, Kamen BA: Cellular localization of the folate receptor: potential role in drug toxicity and folate homeostasis. Cancer Res. 1992, 52 (23): 6708-6711.PubMed
4.
go back to reference Kamen BA, Smith AK: A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. Adv Drug Deliv Rev. 2004, 56 (8): 1085-1097. 10.1016/j.addr.2004.01.002.PubMedCrossRef Kamen BA, Smith AK: A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. Adv Drug Deliv Rev. 2004, 56 (8): 1085-1097. 10.1016/j.addr.2004.01.002.PubMedCrossRef
5.
go back to reference Xia W, Hilgenbrink AR, Matteson EL, Lockwood MB, Cheng JX, Low PS: A functional folate receptor is induced during macrophage activation and can be used to target drugs to activated macrophages. Blood. 2009, 113 (2): 438-446.PubMedCrossRef Xia W, Hilgenbrink AR, Matteson EL, Lockwood MB, Cheng JX, Low PS: A functional folate receptor is induced during macrophage activation and can be used to target drugs to activated macrophages. Blood. 2009, 113 (2): 438-446.PubMedCrossRef
6.
go back to reference Shen F, Wu M, Ross JF, Miller D, Ratnam M: Folate receptor type gamma is primarily a secretory protein due to lack of an efficient signal for glycosylphosphatidylinositol modification: protein characterization and cell type specificity. Biochemistry. 1995, 34 (16): 5660-5665. 10.1021/bi00016a042.PubMedCrossRef Shen F, Wu M, Ross JF, Miller D, Ratnam M: Folate receptor type gamma is primarily a secretory protein due to lack of an efficient signal for glycosylphosphatidylinositol modification: protein characterization and cell type specificity. Biochemistry. 1995, 34 (16): 5660-5665. 10.1021/bi00016a042.PubMedCrossRef
7.
go back to reference Blom HJ: Folic acid, methylation and neural tube closure in humans. Birth Defects Res A Clin Mol Teratol. 2009, 85 (4): 295-302. 10.1002/bdra.20581.PubMedCrossRef Blom HJ: Folic acid, methylation and neural tube closure in humans. Birth Defects Res A Clin Mol Teratol. 2009, 85 (4): 295-302. 10.1002/bdra.20581.PubMedCrossRef
8.
go back to reference Spiegelstein O, Eudy JD, Finnell RH: Identification of two putative novel folate receptor genes in humans and mouse. Gene. 2000, 258 (1–2): 117-125.PubMedCrossRef Spiegelstein O, Eudy JD, Finnell RH: Identification of two putative novel folate receptor genes in humans and mouse. Gene. 2000, 258 (1–2): 117-125.PubMedCrossRef
9.
go back to reference Low PS, Kularatne SA: Folate-targeted therapeutic and imaging agents for cancer. Curr Opin Chem Biol. 2009, 13 (3): 256-262. 10.1016/j.cbpa.2009.03.022.PubMedCrossRef Low PS, Kularatne SA: Folate-targeted therapeutic and imaging agents for cancer. Curr Opin Chem Biol. 2009, 13 (3): 256-262. 10.1016/j.cbpa.2009.03.022.PubMedCrossRef
10.
go back to reference Barber RC, Bennett GD, Greer KA, Finnell RH: Expression patterns of folate binding proteins one and two in the developing mouse embryo. Mol Genet Metab. 1999, 66 (1): 31-39. 10.1006/mgme.1998.2772.PubMedCrossRef Barber RC, Bennett GD, Greer KA, Finnell RH: Expression patterns of folate binding proteins one and two in the developing mouse embryo. Mol Genet Metab. 1999, 66 (1): 31-39. 10.1006/mgme.1998.2772.PubMedCrossRef
11.
go back to reference Elnakat H, Ratnam M: Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv Drug Deliv Rev. 2004, 56 (8): 1067-1084. 10.1016/j.addr.2004.01.001.PubMedCrossRef Elnakat H, Ratnam M: Distribution, functionality and gene regulation of folate receptor isoforms: implications in targeted therapy. Adv Drug Deliv Rev. 2004, 56 (8): 1067-1084. 10.1016/j.addr.2004.01.001.PubMedCrossRef
13.
go back to reference Yamaguchi T, Hirota K, Nagahama K, Ohkawa K, Takahashi T, Nomura T, Sakaguchi S: Control of immune responses by antigen-specific regulatory T cells expressing the folate receptor. Immunity. 2007, 27 (1): 145-159. 10.1016/j.immuni.2007.04.017.PubMedCrossRef Yamaguchi T, Hirota K, Nagahama K, Ohkawa K, Takahashi T, Nomura T, Sakaguchi S: Control of immune responses by antigen-specific regulatory T cells expressing the folate receptor. Immunity. 2007, 27 (1): 145-159. 10.1016/j.immuni.2007.04.017.PubMedCrossRef
14.
go back to reference Jia Z, Zhao R, Tian Y, Huang Z, Tian Z, Shen Z, Wang Q, Wang J, Fu X, Wu Y: A novel splice variant of FR4 predominantly expressed in CD4 + CD25+ regulatory T cells. Immunol Invest. 2009, 38 (8): 718-729. 10.3109/08820130903171003.PubMedCrossRef Jia Z, Zhao R, Tian Y, Huang Z, Tian Z, Shen Z, Wang Q, Wang J, Fu X, Wu Y: A novel splice variant of FR4 predominantly expressed in CD4 + CD25+ regulatory T cells. Immunol Invest. 2009, 38 (8): 718-729. 10.3109/08820130903171003.PubMedCrossRef
15.
go back to reference Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S: Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol. 2002, 3 (2): 135-142. 10.1038/ni759.PubMedCrossRef Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S: Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol. 2002, 3 (2): 135-142. 10.1038/ni759.PubMedCrossRef
16.
go back to reference Sega EI, Low PS: Tumor detection using folate receptor-targeted imaging agents. Cancer Metastasis Rev. 2008, 27 (4): 655-664. 10.1007/s10555-008-9155-6.PubMedCrossRef Sega EI, Low PS: Tumor detection using folate receptor-targeted imaging agents. Cancer Metastasis Rev. 2008, 27 (4): 655-664. 10.1007/s10555-008-9155-6.PubMedCrossRef
17.
go back to reference Fox-Walsh KL, Hertel KJ: Splice-site pairing is an intrinsically high fidelity process. Proc Natl Acad Sci USA. 2009, 106 (6): 1766-1771. 10.1073/pnas.0813128106.PubMedPubMedCentralCrossRef Fox-Walsh KL, Hertel KJ: Splice-site pairing is an intrinsically high fidelity process. Proc Natl Acad Sci USA. 2009, 106 (6): 1766-1771. 10.1073/pnas.0813128106.PubMedPubMedCentralCrossRef
18.
go back to reference Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ: Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008, 40 (12): 1413-1415. 10.1038/ng.259.PubMedCrossRef Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ: Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008, 40 (12): 1413-1415. 10.1038/ng.259.PubMedCrossRef
19.
go back to reference Hsu SN, Hertel KJ: Spliceosomes walk the line: splicing errors and their impact on cellular function. RNA Biol. 2009, 6 (5): 526-530. 10.4161/rna.6.5.9860.PubMedPubMedCentralCrossRef Hsu SN, Hertel KJ: Spliceosomes walk the line: splicing errors and their impact on cellular function. RNA Biol. 2009, 6 (5): 526-530. 10.4161/rna.6.5.9860.PubMedPubMedCentralCrossRef
20.
go back to reference Sestili P, Barbieri E, Martinelli C, Battistelli M, Guescini M, Vallorani L, Casadei L, D'Emilio A, Falcieri E, Piccoli G: Creatine supplementation prevents the inhibition of myogenic differentiation in oxidatively injured C2C12 murine myoblasts. Mol Nutr Food Res. 2009, 53 (9): 1187-1204. 10.1002/mnfr.200800504.PubMedCrossRef Sestili P, Barbieri E, Martinelli C, Battistelli M, Guescini M, Vallorani L, Casadei L, D'Emilio A, Falcieri E, Piccoli G: Creatine supplementation prevents the inhibition of myogenic differentiation in oxidatively injured C2C12 murine myoblasts. Mol Nutr Food Res. 2009, 53 (9): 1187-1204. 10.1002/mnfr.200800504.PubMedCrossRef
21.
go back to reference Annibalini G, Guescini M, Agostini D, Matteis RD, Sestili P, Tibollo P, Mantuano M, Martinelli C, Stocchi V: The expression analysis of mouse interleukin-6 splice variants argued against their biological relevance. BMB Rep. 2012, 45 (1): 32-37. 10.5483/BMBRep.2012.45.1.32.PubMedCrossRef Annibalini G, Guescini M, Agostini D, Matteis RD, Sestili P, Tibollo P, Mantuano M, Martinelli C, Stocchi V: The expression analysis of mouse interleukin-6 splice variants argued against their biological relevance. BMB Rep. 2012, 45 (1): 32-37. 10.5483/BMBRep.2012.45.1.32.PubMedCrossRef
22.
go back to reference Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY: A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol. 2005, 6 (11): 1142-1151. 10.1038/ni1263.PubMedCrossRef Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY: A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol. 2005, 6 (11): 1142-1151. 10.1038/ni1263.PubMedCrossRef
23.
go back to reference Hori S, Nomura T, Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003, 299 (5609): 1057-1061. 10.1126/science.1079490.PubMedCrossRef Hori S, Nomura T, Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003, 299 (5609): 1057-1061. 10.1126/science.1079490.PubMedCrossRef
24.
go back to reference Hoffmann P, Eder R, Kunz-Schughart LA, Andreesen R, Edinger M: Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood. 2004, 104 (3): 895-903. 10.1182/blood-2004-01-0086.PubMedCrossRef Hoffmann P, Eder R, Kunz-Schughart LA, Andreesen R, Edinger M: Large-scale in vitro expansion of polyclonal human CD4(+)CD25high regulatory T cells. Blood. 2004, 104 (3): 895-903. 10.1182/blood-2004-01-0086.PubMedCrossRef
25.
go back to reference Fantini MC, Dominitzki S, Rizzo A, Neurath MF, Becker C: In vitro generation of CD4+ CD25+ regulatory cells from murine naive T cells. Nat Protoc. 2007, 2 (7): 1789-1794. 10.1038/nprot.2007.258.PubMedCrossRef Fantini MC, Dominitzki S, Rizzo A, Neurath MF, Becker C: In vitro generation of CD4+ CD25+ regulatory cells from murine naive T cells. Nat Protoc. 2007, 2 (7): 1789-1794. 10.1038/nprot.2007.258.PubMedCrossRef
Metadata
Title
A novel splice variant of folate receptor 4 predominantly expressed in regulatory T cells
Authors
Yi Tian
Guoqiang Wu
Jun-Chao Xing
Jun Tang
Yi Zhang
Ze-Min Huang
Zheng-Cai Jia
Ren Zhao
Zhi-Qiang Tian
Shu-Feng Wang
Xiao-Ling Chen
Li Wang
Yu-Zhang Wu
Bing Ni
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Immunology / Issue 1/2012
Electronic ISSN: 1471-2172
DOI
https://doi.org/10.1186/1471-2172-13-30

Other articles of this Issue 1/2012

BMC Immunology 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine