Skip to main content
Top
Published in: BMC Cancer 1/2012

Open Access 01-12-2012 | Research article

"A novel in vivo model for the study of human breast cancer metastasis using primary breast tumor-initiating cells from patient biopsies"

Authors: Carolyn G Marsden, Mary Jo Wright, Latonya Carrier, Krzysztof Moroz, Radhika Pochampally, Brian G Rowan

Published in: BMC Cancer | Issue 1/2012

Login to get access

Abstract

Background

The study of breast cancer metastasis depends on the use of established breast cancer cell lines that do not accurately represent the heterogeneity and complexity of human breast tumors. A tumor model was developed using primary breast tumor-initiating cells isolated from patient core biopsies that would more accurately reflect human breast cancer metastasis.

Methods

Tumorspheres were isolated under serum-free culture conditions from core biopsies collected from five patients with clinical diagnosis of invasive ductal carcinoma (IDC). Isolated tumorspheres were transplanted into the mammary fat pad of NUDE mice to establish tumorigenicity in vivo. Tumors and metastatic lesions were analyzed by hematoxylin and eosin (H+E) staining and immunohistochemistry (IHC).

Results

Tumorspheres were successfully isolated from all patient core biopsies, independent of the estrogen receptor α (ERα)/progesterone receptor (PR)/Her2/neu status or tumor grade. Each tumorsphere was estimated to contain 50-100 cells. Transplantation of 50 tumorspheres (1-5 × 103 cells) in combination with Matrigel into the mammary fat pad of NUDE mice resulted in small, palpable tumors that were sustained up to 12 months post-injection. Tumors were serially transplanted three times by re-isolation of tumorspheres from the tumors and injection into the mammary fat pad of NUDE mice. At 3 months post-injection, micrometastases to the lung, liver, kidneys, brain and femur were detected by measuring content of human chromosome 17. Visible macrometastases were detected in the lung, liver and kidneys by 6 months post-injection. Primary tumors variably expressed cytokeratins, Her2/neu, cytoplasmic E-cadherin, nuclear β catenin and fibronectin but were negative for ERα and vimentin. In lung and liver metastases, variable redistribution of E-cadherin and β catenin to the membrane of tumor cells was observed. ERα was re-expressed in lung metastatic cells in two of five samples.

Conclusions

Tumorspheres isolated under defined culture conditions from patient core biopsies were tumorigenic when transplanted into the mammary fat pad of NUDE mice, and metastasized to multiple mouse organs. Micrometastases in mouse organs demonstrated a dormancy period prior to outgrowth of macrometastases. The development of macrometastases with organ-specific phenotypic distinctions provides a superior model for the investigation of organ-specific effects on metastatic cancer cell survival and growth.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, et al: Tumor self-seeding by circulating cancer cells. Cell. 2009, 139 (7): 1315-1326. 10.1016/j.cell.2009.11.025.CrossRefPubMedPubMedCentral Kim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, et al: Tumor self-seeding by circulating cancer cells. Cell. 2009, 139 (7): 1315-1326. 10.1016/j.cell.2009.11.025.CrossRefPubMedPubMedCentral
2.
go back to reference Allan AL, Vantyghem SA, Tuck AB, Chambers AF: Tumor dormancy and cancer stem cells: implications for the biology and treatment of breast cancer metastasis. Breast Dis. 2006, 26: 87-98.CrossRefPubMed Allan AL, Vantyghem SA, Tuck AB, Chambers AF: Tumor dormancy and cancer stem cells: implications for the biology and treatment of breast cancer metastasis. Breast Dis. 2006, 26: 87-98.CrossRefPubMed
3.
go back to reference Giovanella BC, Vardeman DM, Williams LJ, Taylor DJ, De Ipolyi PD, Greeff PJ, et al: Heterotransplantation of human breast carcinomas in nude mice. Correlation between successful heterotransplants, poor prognosis and amplification of the HER-2/neu oncogene. Int J Cancer. 1991, 47 (1): 66-71. 10.1002/ijc.2910470113.CrossRefPubMed Giovanella BC, Vardeman DM, Williams LJ, Taylor DJ, De Ipolyi PD, Greeff PJ, et al: Heterotransplantation of human breast carcinomas in nude mice. Correlation between successful heterotransplants, poor prognosis and amplification of the HER-2/neu oncogene. Int J Cancer. 1991, 47 (1): 66-71. 10.1002/ijc.2910470113.CrossRefPubMed
4.
go back to reference Mattern J, Bak M, Hahn EW, Volm M: Human tumor xenografts as model for drug testing. Cancer Metastasis Rev. 1988, 7 (3): 263-284. 10.1007/BF00047755.CrossRefPubMed Mattern J, Bak M, Hahn EW, Volm M: Human tumor xenografts as model for drug testing. Cancer Metastasis Rev. 1988, 7 (3): 263-284. 10.1007/BF00047755.CrossRefPubMed
5.
go back to reference Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de CP: A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res. 2007, 13 (13): 3989-3998. 10.1158/1078-0432.CCR-07-0078.CrossRefPubMed Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de CP: A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res. 2007, 13 (13): 3989-3998. 10.1158/1078-0432.CCR-07-0078.CrossRefPubMed
6.
go back to reference Al Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003, 100 (7): 3983-3988. 10.1073/pnas.0530291100.CrossRefPubMedPubMedCentral Al Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003, 100 (7): 3983-3988. 10.1073/pnas.0530291100.CrossRefPubMedPubMedCentral
7.
go back to reference Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al: Cancer stem cells-perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res. 2006, 66 (19): 9339-9344. 10.1158/0008-5472.CAN-06-3126.CrossRefPubMed Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al: Cancer stem cells-perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res. 2006, 66 (19): 9339-9344. 10.1158/0008-5472.CAN-06-3126.CrossRefPubMed
8.
go back to reference Dalerba P, Cho RW, Clarke MF: Cancer stem cells: models and concepts. Annu Rev Med. 2007, 58: 267-284. 10.1146/annurev.med.58.062105.204854.CrossRefPubMed Dalerba P, Cho RW, Clarke MF: Cancer stem cells: models and concepts. Annu Rev Med. 2007, 58: 267-284. 10.1146/annurev.med.58.062105.204854.CrossRefPubMed
9.
go back to reference Wicha MS: Cancer stem cells and metastasis: lethal seeds. Clin Cancer Res. 2006, 12 (19): 5606-5607. 10.1158/1078-0432.CCR-06-1537.CrossRefPubMed Wicha MS: Cancer stem cells and metastasis: lethal seeds. Clin Cancer Res. 2006, 12 (19): 5606-5607. 10.1158/1078-0432.CCR-06-1537.CrossRefPubMed
10.
go back to reference Al Hajj M: Cancer stem cells and oncology therapeutics. Curr Opin Oncol. 2007, 19 (1): 61-64.PubMed Al Hajj M: Cancer stem cells and oncology therapeutics. Curr Opin Oncol. 2007, 19 (1): 61-64.PubMed
11.
go back to reference Wicha MS, Liu S, Dontu G: Cancer stem cells: an old idea-a paradigm shift. Cancer Res. 2006, 66 (4): 1883-1890. 10.1158/0008-5472.CAN-05-3153.CrossRefPubMed Wicha MS, Liu S, Dontu G: Cancer stem cells: an old idea-a paradigm shift. Cancer Res. 2006, 66 (4): 1883-1890. 10.1158/0008-5472.CAN-05-3153.CrossRefPubMed
12.
go back to reference Hadnagy A, Gaboury L, Beaulieu R, Balicki D: SP analysis may be used to identify cancer stem cell populations. Exp Cell Res. 2006, 312 (19): 3701-3710. 10.1016/j.yexcr.2006.08.030.CrossRefPubMed Hadnagy A, Gaboury L, Beaulieu R, Balicki D: SP analysis may be used to identify cancer stem cell populations. Exp Cell Res. 2006, 312 (19): 3701-3710. 10.1016/j.yexcr.2006.08.030.CrossRefPubMed
13.
go back to reference Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, et al: Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007, 131 (6): 1109-1123. 10.1016/j.cell.2007.10.054.CrossRefPubMed Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, et al: Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007, 131 (6): 1109-1123. 10.1016/j.cell.2007.10.054.CrossRefPubMed
14.
go back to reference Li HZ, Yi TB, Wu ZY: Suspension culture combined with chemotherapeutic agents for sorting of breast cancer stem cells. BMC Cancer. 2008, 8: 135-10.1186/1471-2407-8-135.CrossRefPubMedPubMedCentral Li HZ, Yi TB, Wu ZY: Suspension culture combined with chemotherapeutic agents for sorting of breast cancer stem cells. BMC Cancer. 2008, 8: 135-10.1186/1471-2407-8-135.CrossRefPubMedPubMedCentral
15.
go back to reference Phillips TM, McBride WH, Pajonk F: The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 2006, 98 (24): 1777-1785. 10.1093/jnci/djj495. %20CrossRefPubMed Phillips TM, McBride WH, Pajonk F: The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. 2006, 98 (24): 1777-1785. 10.1093/jnci/djj495. %20CrossRefPubMed
16.
go back to reference Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, et al: Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005, 65 (13): 5506-5511. 10.1158/0008-5472.CAN-05-0626.CrossRefPubMed Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, et al: Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 2005, 65 (13): 5506-5511. 10.1158/0008-5472.CAN-05-0626.CrossRefPubMed
17.
go back to reference Li F, Tiede B, Massague J, Kang Y: Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res. 2007, 17 (1): 3-14. 10.1038/sj.cr.7310118.CrossRefPubMed Li F, Tiede B, Massague J, Kang Y: Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res. 2007, 17 (1): 3-14. 10.1038/sj.cr.7310118.CrossRefPubMed
18.
go back to reference Nguyen DX, Bos PD, Massague J: Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009, 9 (4): 274-284. 10.1038/nrc2622.CrossRefPubMed Nguyen DX, Bos PD, Massague J: Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009, 9 (4): 274-284. 10.1038/nrc2622.CrossRefPubMed
19.
go back to reference Bidard FC, Vincent-Salomon A, Sigal-Zafrani B, Rodrigues M, Dieras V, Mignot L, et al: Time to metastatic relapse and breast cancer cells dissemination in bone marrow at metastatic relapse. Clin Exp Metastasis. 2008, 25 (8): 871-875. 10.1007/s10585-008-9203-1.CrossRefPubMed Bidard FC, Vincent-Salomon A, Sigal-Zafrani B, Rodrigues M, Dieras V, Mignot L, et al: Time to metastatic relapse and breast cancer cells dissemination in bone marrow at metastatic relapse. Clin Exp Metastasis. 2008, 25 (8): 871-875. 10.1007/s10585-008-9203-1.CrossRefPubMed
20.
go back to reference Fidler IJ: The organ microenvironment and cancer metastasis. Differentiation. 2002, 70 (9-10): 498-505. 10.1046/j.1432-0436.2002.700904.x.CrossRefPubMed Fidler IJ: The organ microenvironment and cancer metastasis. Differentiation. 2002, 70 (9-10): 498-505. 10.1046/j.1432-0436.2002.700904.x.CrossRefPubMed
21.
go back to reference Barkan D, Green JE, Chambers AF: Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer. 2010, 46 (7): 1181-1188. 10.1016/j.ejca.2010.02.027.CrossRefPubMedPubMedCentral Barkan D, Green JE, Chambers AF: Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer. 2010, 46 (7): 1181-1188. 10.1016/j.ejca.2010.02.027.CrossRefPubMedPubMedCentral
22.
go back to reference Marsden CG, Wright MJ, Pochampally R, Rowan BG: Breast tumor-initiating cells isolated from patient core biopsies for study of hormone action. Methods Mol Biol. 2009, 590: 363-375. 10.1007/978-1-60327-378-7_23.CrossRefPubMed Marsden CG, Wright MJ, Pochampally R, Rowan BG: Breast tumor-initiating cells isolated from patient core biopsies for study of hormone action. Methods Mol Biol. 2009, 590: 363-375. 10.1007/978-1-60327-378-7_23.CrossRefPubMed
23.
go back to reference Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, et al: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003, 17 (10): 1253-1270. 10.1101/gad.1061803.CrossRefPubMedPubMedCentral Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, et al: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003, 17 (10): 1253-1270. 10.1101/gad.1061803.CrossRefPubMedPubMedCentral
24.
go back to reference Becker M, Nitsche A, Neumann C, Aumann J, Junghahn I, Fichtner I: Sensitive PCR method for the detection and real-time quantification of human cells in xenotransplantation systems. Br J Cancer. 2002, 87 (11): 1328-1335. 10.1038/sj.bjc.6600573.CrossRefPubMedPubMedCentral Becker M, Nitsche A, Neumann C, Aumann J, Junghahn I, Fichtner I: Sensitive PCR method for the detection and real-time quantification of human cells in xenotransplantation systems. Br J Cancer. 2002, 87 (11): 1328-1335. 10.1038/sj.bjc.6600573.CrossRefPubMedPubMedCentral
25.
go back to reference Allred DC, Clark GM, Elledge R, Fuqua SA, Brown RW, Chamness GC, et al: Association of p53 protein expression with tumor cell proliferation rate and clinical outcome in node-negative breast cancer. J Natl Cancer Inst. 1993, 85 (3): 200-206. 10.1093/jnci/85.3.200.CrossRefPubMed Allred DC, Clark GM, Elledge R, Fuqua SA, Brown RW, Chamness GC, et al: Association of p53 protein expression with tumor cell proliferation rate and clinical outcome in node-negative breast cancer. J Natl Cancer Inst. 1993, 85 (3): 200-206. 10.1093/jnci/85.3.200.CrossRefPubMed
26.
go back to reference Maitra A, Ashfaq R, Gunn CR, Rahman A, Yeo CJ, Sohn TA, et al: Cyclooxygenase 2 expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia: an immunohistochemical analysis with automated cellular imaging. Am J Clin Pathol. 2002, 118 (2): 194-201. 10.1309/TPG4-CK1C-9V8V-8AWC.CrossRefPubMed Maitra A, Ashfaq R, Gunn CR, Rahman A, Yeo CJ, Sohn TA, et al: Cyclooxygenase 2 expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia: an immunohistochemical analysis with automated cellular imaging. Am J Clin Pathol. 2002, 118 (2): 194-201. 10.1309/TPG4-CK1C-9V8V-8AWC.CrossRefPubMed
27.
go back to reference Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003, 100 (7): 3983-3988. 10.1073/pnas.0530291100.CrossRefPubMedPubMedCentral Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003, 100 (7): 3983-3988. 10.1073/pnas.0530291100.CrossRefPubMedPubMedCentral
28.
go back to reference Prochazka M, Gaskins HR, Shultz LD, Leiter EH: The nonobese diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency. Proc Natl Acad Sci USA. 1992, 89 (8): 3290-3294. 10.1073/pnas.89.8.3290.CrossRefPubMedPubMedCentral Prochazka M, Gaskins HR, Shultz LD, Leiter EH: The nonobese diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency. Proc Natl Acad Sci USA. 1992, 89 (8): 3290-3294. 10.1073/pnas.89.8.3290.CrossRefPubMedPubMedCentral
29.
go back to reference Schmalhofer O, Brabletz S, Brabletz T: E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev. 2009, 28 (1-2): 151-166. 10.1007/s10555-008-9179-y.CrossRefPubMed Schmalhofer O, Brabletz S, Brabletz T: E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev. 2009, 28 (1-2): 151-166. 10.1007/s10555-008-9179-y.CrossRefPubMed
30.
go back to reference Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, et al: Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J Cell Physiol. 2007, 213 (2): 374-383. 10.1002/jcp.21223.CrossRefPubMed Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, et al: Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J Cell Physiol. 2007, 213 (2): 374-383. 10.1002/jcp.21223.CrossRefPubMed
31.
go back to reference Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, et al: Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009, 69 (4): 1302-1313. 10.1158/0008-5472.CAN-08-2741.CrossRefPubMedPubMedCentral Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, et al: Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009, 69 (4): 1302-1313. 10.1158/0008-5472.CAN-08-2741.CrossRefPubMedPubMedCentral
32.
go back to reference Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, et al: Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol. 2009, 7 (6): e1000121-10.1371/journal.pbio.1000121.CrossRefPubMedPubMedCentral Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, et al: Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol. 2009, 7 (6): e1000121-10.1371/journal.pbio.1000121.CrossRefPubMedPubMedCentral
33.
go back to reference Fillmore CM, Kuperwasser C: Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 2008, 10 (2): R25-10.1186/bcr1982.CrossRefPubMedPubMedCentral Fillmore CM, Kuperwasser C: Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 2008, 10 (2): R25-10.1186/bcr1982.CrossRefPubMedPubMedCentral
34.
go back to reference Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, et al: Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA. 2000, 97 (26): 14720-14725. 10.1073/pnas.97.26.14720.CrossRefPubMedPubMedCentral Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, et al: Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA. 2000, 97 (26): 14720-14725. 10.1073/pnas.97.26.14720.CrossRefPubMedPubMedCentral
35.
go back to reference Klein SM, Behrstock S, McHugh J, Hoffmann K, Wallace K, Suzuki M, et al: GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum Gene Ther. 2005, 16 (4): 509-521. 10.1089/hum.2005.16.509.CrossRefPubMed Klein SM, Behrstock S, McHugh J, Hoffmann K, Wallace K, Suzuki M, et al: GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum Gene Ther. 2005, 16 (4): 509-521. 10.1089/hum.2005.16.509.CrossRefPubMed
36.
go back to reference Kowalski PJ, Rubin MA, Kleer CG: E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Res. 2003, 5 (6): R217-R222. 10.1186/bcr651.CrossRefPubMedPubMedCentral Kowalski PJ, Rubin MA, Kleer CG: E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Res. 2003, 5 (6): R217-R222. 10.1186/bcr651.CrossRefPubMedPubMedCentral
37.
go back to reference Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L: Brca1 breast tumors contain distinct CD44+/. Breast Cancer Res. 2008, 10 (1): R10-10.1186/bcr1855.CrossRefPubMedPubMedCentral Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L: Brca1 breast tumors contain distinct CD44+/. Breast Cancer Res. 2008, 10 (1): R10-10.1186/bcr1855.CrossRefPubMedPubMedCentral
38.
go back to reference Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007, 1 (5): 555-567. 10.1016/j.stem.2007.08.014.CrossRefPubMedPubMedCentral Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007, 1 (5): 555-567. 10.1016/j.stem.2007.08.014.CrossRefPubMedPubMedCentral
39.
go back to reference Donnenberg VS, Donnenberg AD, Zimmerlin L, Landreneau RJ, Bhargava R, Wetzel RA, et al: Localization of CD44 and CD90 positive cells to the invasive front of breast tumors. Cytometry B Clin Cytom. 2010, 78 (5): 287-301.CrossRefPubMedPubMedCentral Donnenberg VS, Donnenberg AD, Zimmerlin L, Landreneau RJ, Bhargava R, Wetzel RA, et al: Localization of CD44 and CD90 positive cells to the invasive front of breast tumors. Cytometry B Clin Cytom. 2010, 78 (5): 287-301.CrossRefPubMedPubMedCentral
40.
go back to reference Raouf A, Zhao Y, To K, Stingl J, Delaney A, Barbara M, et al: Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell. 2008, 3 (1): 109-118. 10.1016/j.stem.2008.05.018.CrossRefPubMed Raouf A, Zhao Y, To K, Stingl J, Delaney A, Barbara M, et al: Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell. 2008, 3 (1): 109-118. 10.1016/j.stem.2008.05.018.CrossRefPubMed
41.
go back to reference Went PT, Dirnhofer S, Bundi M, Mirlacher M, Schraml P, Mangialaio S, et al: Prevalence of KIT expression in human tumors. J Clin Oncol. 2004, 22 (22): 4514-4522. 10.1200/JCO.2004.10.125.CrossRefPubMed Went PT, Dirnhofer S, Bundi M, Mirlacher M, Schraml P, Mangialaio S, et al: Prevalence of KIT expression in human tumors. J Clin Oncol. 2004, 22 (22): 4514-4522. 10.1200/JCO.2004.10.125.CrossRefPubMed
42.
go back to reference Naumov GN, Akslen LA, Folkman J: Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle. 2006, 5 (16): 1779-1787. 10.4161/cc.5.16.3018.CrossRefPubMed Naumov GN, Akslen LA, Folkman J: Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle. 2006, 5 (16): 1779-1787. 10.4161/cc.5.16.3018.CrossRefPubMed
43.
go back to reference Naumov GN, Bender E, Zurakowski D, Kang SY, Sampson D, Flynn E, et al: A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst. 2006, 98 (5): 316-325. 10.1093/jnci/djj068.CrossRefPubMed Naumov GN, Bender E, Zurakowski D, Kang SY, Sampson D, Flynn E, et al: A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst. 2006, 98 (5): 316-325. 10.1093/jnci/djj068.CrossRefPubMed
44.
go back to reference Agiostratidou G, Hulit J, Phillips GR, Hazan RB: Differential cadherin expression: potential markers for epithelial to mesenchymal transformation during tumor progression. J Mammary Gland Biol Neoplasia. 2007, 12 (2-3): 127-133. 10.1007/s10911-007-9044-6.CrossRefPubMed Agiostratidou G, Hulit J, Phillips GR, Hazan RB: Differential cadherin expression: potential markers for epithelial to mesenchymal transformation during tumor progression. J Mammary Gland Biol Neoplasia. 2007, 12 (2-3): 127-133. 10.1007/s10911-007-9044-6.CrossRefPubMed
45.
go back to reference Deeken JF, Loscher W: The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res. 2007, 13 (6): 1663-1674. 10.1158/1078-0432.CCR-06-2854.CrossRefPubMed Deeken JF, Loscher W: The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res. 2007, 13 (6): 1663-1674. 10.1158/1078-0432.CCR-06-2854.CrossRefPubMed
46.
go back to reference Goldstein RH, Weinberg RA, Rosenblatt M: Of mice and (wo)men: mouse models of breast cancer metastasis to bone. J Bone Miner Res. 2010, 25 (3): 431-436. 10.1002/jbmr.68.CrossRefPubMed Goldstein RH, Weinberg RA, Rosenblatt M: Of mice and (wo)men: mouse models of breast cancer metastasis to bone. J Bone Miner Res. 2010, 25 (3): 431-436. 10.1002/jbmr.68.CrossRefPubMed
47.
go back to reference Valentiner U, Brooks SA, Schumacher U: In vivo xenograft models of breast cancer metastasis. Methods Mol Med. 2006, 120: 479-488.PubMed Valentiner U, Brooks SA, Schumacher U: In vivo xenograft models of breast cancer metastasis. Methods Mol Med. 2006, 120: 479-488.PubMed
48.
go back to reference Polyak K, Weinberg RA: Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009, 9 (4): 265-273. 10.1038/nrc2620.CrossRefPubMed Polyak K, Weinberg RA: Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009, 9 (4): 265-273. 10.1038/nrc2620.CrossRefPubMed
49.
go back to reference Chao YL, Shepard CR, Wells A: Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol Cancer. 2010, 9: 179-10.1186/1476-4598-9-179.CrossRefPubMedPubMedCentral Chao YL, Shepard CR, Wells A: Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol Cancer. 2010, 9: 179-10.1186/1476-4598-9-179.CrossRefPubMedPubMedCentral
50.
go back to reference Yates C, Shepard CR, Papworth G, Dash A, Beer SD, Tannenbaum S, et al: Novel three-dimensional organotypic liver bioreactor to directly visualize early events in metastatic progression. Adv Cancer Res. 2007, 97: 225-246.CrossRefPubMed Yates C, Shepard CR, Papworth G, Dash A, Beer SD, Tannenbaum S, et al: Novel three-dimensional organotypic liver bioreactor to directly visualize early events in metastatic progression. Adv Cancer Res. 2007, 97: 225-246.CrossRefPubMed
51.
go back to reference Yates CC, Shepard CR, Stolz DB, Wells A: Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. Br J Cancer. 2007, 96 (8): 1246-1252. 10.1038/sj.bjc.6603700.CrossRefPubMedPubMedCentral Yates CC, Shepard CR, Stolz DB, Wells A: Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. Br J Cancer. 2007, 96 (8): 1246-1252. 10.1038/sj.bjc.6603700.CrossRefPubMedPubMedCentral
52.
go back to reference Barkan D, Kleinman H, Simmons JL, Asmussen H, Kamaraju AK, Hoenorhoff MJ, et al: Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res. 2008, 68 (15): 6241-6250. 10.1158/0008-5472.CAN-07-6849.CrossRefPubMedPubMedCentral Barkan D, Kleinman H, Simmons JL, Asmussen H, Kamaraju AK, Hoenorhoff MJ, et al: Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res. 2008, 68 (15): 6241-6250. 10.1158/0008-5472.CAN-07-6849.CrossRefPubMedPubMedCentral
53.
go back to reference Allgayer H, Aguirre-Ghiso JA: The urokinase receptor (u-PAR)--a link between tumor cell dormancy and minimal residual disease in bone marrow?. APMIS. 2008, 116 (7-8): 602-614. 10.1111/j.1600-0463.2008.00997.x.CrossRefPubMedPubMedCentral Allgayer H, Aguirre-Ghiso JA: The urokinase receptor (u-PAR)--a link between tumor cell dormancy and minimal residual disease in bone marrow?. APMIS. 2008, 116 (7-8): 602-614. 10.1111/j.1600-0463.2008.00997.x.CrossRefPubMedPubMedCentral
54.
go back to reference Fehm T, Krawczyk N, Solomayer EF, Becker-Pergola G, Durr-Storzer S, Neubauer H, et al: ERalpha-status of disseminated tumour cells in bone marrow of primary breast cancer patients. Breast Cancer Res. 2008, 10 (5): R76-10.1186/bcr2143.CrossRefPubMedPubMedCentral Fehm T, Krawczyk N, Solomayer EF, Becker-Pergola G, Durr-Storzer S, Neubauer H, et al: ERalpha-status of disseminated tumour cells in bone marrow of primary breast cancer patients. Breast Cancer Res. 2008, 10 (5): R76-10.1186/bcr2143.CrossRefPubMedPubMedCentral
55.
go back to reference Fehm T, Hoffmann O, Aktas B, Becker S, Solomayer EF, Wallwiener D, et al: Detection and characterization of circulating tumor cells in blood of primary breast cancer patients by RT-PCR and comparison to status of bone marrow disseminated cells. Breast Cancer Res. 2009, 11 (4): R59-10.1186/bcr2349.CrossRefPubMedPubMedCentral Fehm T, Hoffmann O, Aktas B, Becker S, Solomayer EF, Wallwiener D, et al: Detection and characterization of circulating tumor cells in blood of primary breast cancer patients by RT-PCR and comparison to status of bone marrow disseminated cells. Breast Cancer Res. 2009, 11 (4): R59-10.1186/bcr2349.CrossRefPubMedPubMedCentral
Metadata
Title
"A novel in vivo model for the study of human breast cancer metastasis using primary breast tumor-initiating cells from patient biopsies"
Authors
Carolyn G Marsden
Mary Jo Wright
Latonya Carrier
Krzysztof Moroz
Radhika Pochampally
Brian G Rowan
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2012
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-12-10

Other articles of this Issue 1/2012

BMC Cancer 1/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine