Skip to main content
Top
Published in: Breast Cancer Research and Treatment 2/2011

01-11-2011 | Preclinical study

A non-BRCA1/2 hereditary breast cancer sub-group defined by aCGH profiling of genetically related patients

Authors: M. A. Didraga, E. H. van Beers, S. A. Joosse, K. I. M. Brandwijk, R. A. Oldenburg, L. F. A. Wessels, F. B. L. Hogervorst, M. J. Ligtenberg, N. Hoogerbrugge, S. Verhoef, P. Devilee, P. M. Nederlof

Published in: Breast Cancer Research and Treatment | Issue 2/2011

Login to get access

Abstract

Germline mutations in BRCA1 and BRCA2 explain approximately 25% of all familial breast cancers. Despite intense efforts to find additional high-risk breast cancer genes (BRCAx) using linkage analysis, none have been reported thus far. Here we explore the hypothesis that BRCAx breast tumors from genetically related patients share a somatic genetic etiology that might be revealed by array comparative genomic hybridization (aCGH) profiling. As BRCA1 and BRCA2 tumors can be identified on the basis of specific genomic profiles, the same may be true for a subset of BRCAx families. Analyses used aCGH to compare 58 non-BRCA1/2 familial breast tumors (designated BRCAx) to sporadic (non-familiar) controls, BRCA1 and BRCA2 tumors. The selection criteria for BRCAx families included at least three cases of breast cancer diagnosed before the age of 60 in the family, and the absence of ovarian or male breast cancer. Hierarchical cluster analysis was performed to determine sub-groups within the BRCAx tumor class and family heterogeneity. Analysis of aCGH profiles of BRCAx tumors indicated that they constitute a heterogeneous class, but are distinct from both sporadic and BRCA1/2 tumors. The BRCAx class could be divided into sub-groups. One subgroup was characterized by a gain of chromosome 22. Tumors from family members were classified within the same sub-group in agreement with the hypothesis that tumors from the same family would harbor a similar genetic background. This approach provides a method to target a sub-group of BRCAx families for further linkage analysis studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference World Health Organization (2004) The global burden of disease: 2004 update World Health Organization (2004) The global burden of disease: 2004 update
2.
go back to reference Miki Y, Swensen J, Shattuck-Eidens D et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71PubMedCrossRef Miki Y, Swensen J, Shattuck-Eidens D et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71PubMedCrossRef
3.
go back to reference Wooster R, Neuhausen SL, Mangion J et al (1994) Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12–13. Science 265:2088–2090PubMedCrossRef Wooster R, Neuhausen SL, Mangion J et al (1994) Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12–13. Science 265:2088–2090PubMedCrossRef
4.
go back to reference Wooster R, Bignell G, Lancaster J et al (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792PubMedCrossRef Wooster R, Bignell G, Lancaster J et al (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792PubMedCrossRef
5.
go back to reference Meijers-Heijboer H, van den Ouweland A, Klijn J et al (2002) Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 31:55–59PubMedCrossRef Meijers-Heijboer H, van den Ouweland A, Klijn J et al (2002) Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 31:55–59PubMedCrossRef
6.
go back to reference Thompson D, Duedal S, Kirner J et al (2005) Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst 97:813–822PubMedCrossRef Thompson D, Duedal S, Kirner J et al (2005) Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst 97:813–822PubMedCrossRef
7.
go back to reference Seal S, Thompson D, Renwick A et al (2006) Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 38:1239–1241PubMedCrossRef Seal S, Thompson D, Renwick A et al (2006) Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 38:1239–1241PubMedCrossRef
8.
go back to reference Rahman N, Seal S, Thompson D et al (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39:165–167PubMedCrossRef Rahman N, Seal S, Thompson D et al (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39:165–167PubMedCrossRef
9.
go back to reference Cox A, Dunning AM, Garcia-Closas M et al (2007) A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 39:352–358PubMedCrossRef Cox A, Dunning AM, Garcia-Closas M et al (2007) A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 39:352–358PubMedCrossRef
10.
go back to reference Easton DF, Pooley KA, Dunning AM et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1093PubMedCrossRef Easton DF, Pooley KA, Dunning AM et al (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447:1087–1093PubMedCrossRef
11.
go back to reference Stacey SN, Manolescu A, Sulem P et al (2008) Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 40:703–706PubMedCrossRef Stacey SN, Manolescu A, Sulem P et al (2008) Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 40:703–706PubMedCrossRef
12.
go back to reference Chen J, Lindblom P, Lindblom A (1998) A study of the PTEN/MMAC1 gene in 136 breast cancer families. Hum Genet 102:124–125PubMed Chen J, Lindblom P, Lindblom A (1998) A study of the PTEN/MMAC1 gene in 136 breast cancer families. Hum Genet 102:124–125PubMed
13.
go back to reference Leggett BA, Young JP, Barker M (2003) Peutz-Jeghers syndrome: genetic screening. Expert Rev Anticancer Ther 3:518–524PubMedCrossRef Leggett BA, Young JP, Barker M (2003) Peutz-Jeghers syndrome: genetic screening. Expert Rev Anticancer Ther 3:518–524PubMedCrossRef
14.
go back to reference Pharoah PD, Guilford P, Caldas C (2001) Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology 121:1348–1353PubMedCrossRef Pharoah PD, Guilford P, Caldas C (2001) Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology 121:1348–1353PubMedCrossRef
15.
go back to reference Borresen AL, Andersen TI, Garber J et al (1992) Screening for germ line TP53 mutations in breast cancer patients. Cancer Res 52:3234–3236PubMed Borresen AL, Andersen TI, Garber J et al (1992) Screening for germ line TP53 mutations in breast cancer patients. Cancer Res 52:3234–3236PubMed
16.
go back to reference Evans DG, Birch JM, Thorneycroft M, McGown G, Lalloo F, Varley JM (2002) Low rate of TP53 germline mutations in breast cancer/sarcoma families not fulfilling classical criteria for Li-Fraumeni syndrome. J Med Genet 39:941–944PubMedCrossRef Evans DG, Birch JM, Thorneycroft M, McGown G, Lalloo F, Varley JM (2002) Low rate of TP53 germline mutations in breast cancer/sarcoma families not fulfilling classical criteria for Li-Fraumeni syndrome. J Med Genet 39:941–944PubMedCrossRef
17.
go back to reference Lalloo F, Varley J, Moran A et al (2006) BRCA1, BRCA2 and TP53 mutations in very early-onset breast cancer with associated risks to relatives. Eur J Cancer 42:1143–1150PubMedCrossRef Lalloo F, Varley J, Moran A et al (2006) BRCA1, BRCA2 and TP53 mutations in very early-onset breast cancer with associated risks to relatives. Eur J Cancer 42:1143–1150PubMedCrossRef
18.
go back to reference Malkin D, Li FP, Strong LC et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238PubMedCrossRef Malkin D, Li FP, Strong LC et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238PubMedCrossRef
19.
go back to reference Turnbull C, Rahman N (2008) Genetic predisposition to breast cancer: past, present, and future. Annu Rev Genomics Hum Genet 9:321–345PubMedCrossRef Turnbull C, Rahman N (2008) Genetic predisposition to breast cancer: past, present, and future. Annu Rev Genomics Hum Genet 9:321–345PubMedCrossRef
20.
21.
22.
go back to reference Kainu T, Juo SH, Desper R et al (2000) Somatic deletions in hereditary breast cancers implicate 13q21 as a putative novel breast cancer susceptibility locus. Proc Natl Acad Sci USA 97:9603–9608PubMedCrossRef Kainu T, Juo SH, Desper R et al (2000) Somatic deletions in hereditary breast cancers implicate 13q21 as a putative novel breast cancer susceptibility locus. Proc Natl Acad Sci USA 97:9603–9608PubMedCrossRef
23.
go back to reference Huusko P, Juo SH, Gillanders E et al (2004) Genome-wide scanning for linkage in Finnish breast cancer families. Eur J Hum Genet 12:98–104PubMedCrossRef Huusko P, Juo SH, Gillanders E et al (2004) Genome-wide scanning for linkage in Finnish breast cancer families. Eur J Hum Genet 12:98–104PubMedCrossRef
24.
go back to reference Thompson D, Szabo CI, Mangion J et al (2002) Evaluation of linkage of breast cancer to the putative BRCA3 locus on chromosome 13q21 in 128 multiple case families from the Breast Cancer Linkage Consortium. Proc Natl Acad Sci USA 99:827–831PubMedCrossRef Thompson D, Szabo CI, Mangion J et al (2002) Evaluation of linkage of breast cancer to the putative BRCA3 locus on chromosome 13q21 in 128 multiple case families from the Breast Cancer Linkage Consortium. Proc Natl Acad Sci USA 99:827–831PubMedCrossRef
25.
go back to reference Smith P, McGuffog L, Easton DF et al (2006) A genome wide linkage search for breast cancer susceptibility genes. Genes Chromosomes Cancer 45:646–655PubMedCrossRef Smith P, McGuffog L, Easton DF et al (2006) A genome wide linkage search for breast cancer susceptibility genes. Genes Chromosomes Cancer 45:646–655PubMedCrossRef
26.
go back to reference Burwinkel B, Shanmugam KS, Hemminki K et al (2006) Transcription factor 7-like 2 (TCF7L2) variant is associated with familial breast cancer risk: a case-control study. BMC Cancer 6:268–272PubMedCrossRef Burwinkel B, Shanmugam KS, Hemminki K et al (2006) Transcription factor 7-like 2 (TCF7L2) variant is associated with familial breast cancer risk: a case-control study. BMC Cancer 6:268–272PubMedCrossRef
27.
go back to reference Pharoah PD, Tyrer J, Dunning AM, Easton DF, Ponder BA (2007) Association between common variation in 120 candidate genes and breast cancer risk. PLoS Genet 3:e42–e47PubMedCrossRef Pharoah PD, Tyrer J, Dunning AM, Easton DF, Ponder BA (2007) Association between common variation in 120 candidate genes and breast cancer risk. PLoS Genet 3:e42–e47PubMedCrossRef
28.
go back to reference Ponder BA, Antoniou A, Dunning A, Easton DF, Pharoah PD (2005) Polygenic inherited predisposition to breast cancer. Cold Spring Harb Symp Quant Biol 70:35–41PubMedCrossRef Ponder BA, Antoniou A, Dunning A, Easton DF, Pharoah PD (2005) Polygenic inherited predisposition to breast cancer. Cold Spring Harb Symp Quant Biol 70:35–41PubMedCrossRef
29.
go back to reference Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517PubMedCrossRef Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517PubMedCrossRef
30.
go back to reference Oldenburg RA, Kroeze-Jansema KH, Houwing-Duistermaat JJ et al (2008) Genome-wide linkage scan in Dutch hereditary non-BRCA1/2 breast cancer families identifies 9q21–22 as a putative breast cancer susceptibility locus. Genes Chromosomes Cancer 47:947–956PubMedCrossRef Oldenburg RA, Kroeze-Jansema KH, Houwing-Duistermaat JJ et al (2008) Genome-wide linkage scan in Dutch hereditary non-BRCA1/2 breast cancer families identifies 9q21–22 as a putative breast cancer susceptibility locus. Genes Chromosomes Cancer 47:947–956PubMedCrossRef
31.
go back to reference Cui J, Antoniou AC, Dite GS et al (2001) After BRCA1 and BRCA2-what next? Multifactorial segregation analyses of three-generation, population-based Australian families affected by female breast cancer. Am J Hum Genet 68:420–431PubMedCrossRef Cui J, Antoniou AC, Dite GS et al (2001) After BRCA1 and BRCA2-what next? Multifactorial segregation analyses of three-generation, population-based Australian families affected by female breast cancer. Am J Hum Genet 68:420–431PubMedCrossRef
32.
go back to reference Antoniou AC, Pharoah PD, McMullan G et al (2002) A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes. Br J Cancer 86:76–83PubMedCrossRef Antoniou AC, Pharoah PD, McMullan G et al (2002) A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes. Br J Cancer 86:76–83PubMedCrossRef
33.
go back to reference Pinkel D, Segraves R, Sudar D et al (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20:207–211PubMedCrossRef Pinkel D, Segraves R, Sudar D et al (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20:207–211PubMedCrossRef
34.
go back to reference Curtis C, Lynch AG, Dunning MJ et al (2009) The pitfalls of platform comparison: DNA copy number array technologies assessed. BMC Genomics 10:588–610PubMedCrossRef Curtis C, Lynch AG, Dunning MJ et al (2009) The pitfalls of platform comparison: DNA copy number array technologies assessed. BMC Genomics 10:588–610PubMedCrossRef
35.
go back to reference Wessels LF, van Welsem T, Hart AA, Van’t Veer LJ, Reinders MJ, Nederlof PM (2002) Molecular classification of breast carcinomas by comparative genomic hybridization: a specific somatic genetic profile for BRCA1 tumors. Cancer Res 62:7110–7117PubMed Wessels LF, van Welsem T, Hart AA, Van’t Veer LJ, Reinders MJ, Nederlof PM (2002) Molecular classification of breast carcinomas by comparative genomic hybridization: a specific somatic genetic profile for BRCA1 tumors. Cancer Res 62:7110–7117PubMed
36.
go back to reference van Beers EH, van Welsem T, Wessels LF et al (2005) Comparative genomic hybridization profiles in human BRCA1 and BRCA2 breast tumors highlight differential sets of genomic aberrations. Cancer Res 65:822–827PubMed van Beers EH, van Welsem T, Wessels LF et al (2005) Comparative genomic hybridization profiles in human BRCA1 and BRCA2 breast tumors highlight differential sets of genomic aberrations. Cancer Res 65:822–827PubMed
37.
go back to reference Jonsson G, Naylor TL, Vallon-Christersson J et al (2005) Distinct genomic profiles in hereditary breast tumors identified by array-based comparative genomic hybridization. Cancer Res 65:7612–7621PubMed Jonsson G, Naylor TL, Vallon-Christersson J et al (2005) Distinct genomic profiles in hereditary breast tumors identified by array-based comparative genomic hybridization. Cancer Res 65:7612–7621PubMed
38.
go back to reference Alvarez S, Diaz-Uriarte R, Osorio A et al (2005) A predictor based on the somatic genomic changes of the BRCA1/BRCA2 breast cancer tumors identifies the non-BRCA1/BRCA2 tumors with BRCA1 promoter hypermethylation. Clin Cancer Res 11:1146–1153PubMed Alvarez S, Diaz-Uriarte R, Osorio A et al (2005) A predictor based on the somatic genomic changes of the BRCA1/BRCA2 breast cancer tumors identifies the non-BRCA1/BRCA2 tumors with BRCA1 promoter hypermethylation. Clin Cancer Res 11:1146–1153PubMed
39.
go back to reference Gronwald J, Jauch A, Cybulski C et al (2005) Comparison of genomic abnormalities between BRCAX and sporadic breast cancers studied by comparative genomic hybridization. Int J Cancer 114:230–236PubMedCrossRef Gronwald J, Jauch A, Cybulski C et al (2005) Comparison of genomic abnormalities between BRCAX and sporadic breast cancers studied by comparative genomic hybridization. Int J Cancer 114:230–236PubMedCrossRef
40.
go back to reference Hu X, Stern HM, Ge L et al (2009) Genetic alterations and oncogenic pathways associated with breast cancer subtypes. Mol Cancer Res 7:511–522PubMedCrossRef Hu X, Stern HM, Ge L et al (2009) Genetic alterations and oncogenic pathways associated with breast cancer subtypes. Mol Cancer Res 7:511–522PubMedCrossRef
41.
go back to reference Joosse SA, van Beers EH, Tielen IH et al (2009) Prediction of BRCA1-association in hereditary non-BRCA1/2 breast carcinomas with array-CGH. Breast Cancer Res Treat 116:479–489PubMedCrossRef Joosse SA, van Beers EH, Tielen IH et al (2009) Prediction of BRCA1-association in hereditary non-BRCA1/2 breast carcinomas with array-CGH. Breast Cancer Res Treat 116:479–489PubMedCrossRef
42.
go back to reference Joosse SA, Brandwijk KIM, Devilee P, Wesseling J, Hogervorst FB, Verhoef S, Nederlof PM (2010) Prediction of BRCA2-association in hereditary breast carcinomas using array-CGH. Breast Cancer Res Treat. PMID: 20614180 Joosse SA, Brandwijk KIM, Devilee P, Wesseling J, Hogervorst FB, Verhoef S, Nederlof PM (2010) Prediction of BRCA2-association in hereditary breast carcinomas using array-CGH. Breast Cancer Res Treat. PMID: 20614180
43.
go back to reference van Beers EH, Joosse SA, Ligtenberg MJ et al (2006) A multiplex PCR predictor for aCGH success of FFPE samples. Br J Cancer 94:333–337PubMedCrossRef van Beers EH, Joosse SA, Ligtenberg MJ et al (2006) A multiplex PCR predictor for aCGH success of FFPE samples. Br J Cancer 94:333–337PubMedCrossRef
44.
go back to reference Oldenburg RA, Kroeze-Jansema K, Meijers-Heijboer H et al (2006) Characterization of familial non-BRCA1/2 breast tumors by loss of heterozygosity and immunophenotyping. Clin Cancer Res 12:1693–1700PubMedCrossRef Oldenburg RA, Kroeze-Jansema K, Meijers-Heijboer H et al (2006) Characterization of familial non-BRCA1/2 breast tumors by loss of heterozygosity and immunophenotyping. Clin Cancer Res 12:1693–1700PubMedCrossRef
45.
go back to reference Oldenburg RA, Kroeze-Jansema K, Kraan J et al (2003) The CHEK2*1100delC variant acts as a breast cancer risk modifier in non-BRCA1/BRCA2 multiple-case families. Cancer Res 63:8153–8157PubMed Oldenburg RA, Kroeze-Jansema K, Kraan J et al (2003) The CHEK2*1100delC variant acts as a breast cancer risk modifier in non-BRCA1/BRCA2 multiple-case families. Cancer Res 63:8153–8157PubMed
46.
go back to reference Joosse SA, van Beers EH, Nederlof PM (2007) Automated array-CGH optimized for archival formalin-fixed, paraffin-embedded tumor material. BMC Cancer 7:43–53PubMedCrossRef Joosse SA, van Beers EH, Nederlof PM (2007) Automated array-CGH optimized for archival formalin-fixed, paraffin-embedded tumor material. BMC Cancer 7:43–53PubMedCrossRef
47.
go back to reference Picard F, Robin S, Lavielle M, Vaisse C, Daudin JJ (2005) A statistical approach for array CGH data analysis. BMC Bioinformatics 6:27–40PubMedCrossRef Picard F, Robin S, Lavielle M, Vaisse C, Daudin JJ (2005) A statistical approach for array CGH data analysis. BMC Bioinformatics 6:27–40PubMedCrossRef
48.
go back to reference Tibshirani R, Hastie T, Narasimhan B, Chu G (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A 99:6567–6572PubMedCrossRef Tibshirani R, Hastie T, Narasimhan B, Chu G (2002) Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A 99:6567–6572PubMedCrossRef
49.
go back to reference Meindl A, Hellebrand H, Wiek C et al (2010) Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 42:410–414PubMedCrossRef Meindl A, Hellebrand H, Wiek C et al (2010) Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 42:410–414PubMedCrossRef
50.
go back to reference Stratton MR, Ford D, Neuhasen S et al (1994) Familial male breast cancer is not linked to the BRCA1 locus on chromosome 17q. Nat Genet 7:103–107PubMedCrossRef Stratton MR, Ford D, Neuhasen S et al (1994) Familial male breast cancer is not linked to the BRCA1 locus on chromosome 17q. Nat Genet 7:103–107PubMedCrossRef
51.
go back to reference Oldenburg RA, Meijers-Heijboer H, Cornelisse CJ, Devilee P (2007) Genetic susceptibility for breast cancer: how many more genes to be found? Crit Rev Oncol Hematol 63:125–149PubMedCrossRef Oldenburg RA, Meijers-Heijboer H, Cornelisse CJ, Devilee P (2007) Genetic susceptibility for breast cancer: how many more genes to be found? Crit Rev Oncol Hematol 63:125–149PubMedCrossRef
52.
go back to reference Rouleau E, Lefol C, Tozlu S et al (2007) High-resolution oligonucleotide array-CGH applied to the detection and characterization of large rearrangements in the hereditary breast cancer gene BRCA1. Clin Genet 72:199–207PubMedCrossRef Rouleau E, Lefol C, Tozlu S et al (2007) High-resolution oligonucleotide array-CGH applied to the detection and characterization of large rearrangements in the hereditary breast cancer gene BRCA1. Clin Genet 72:199–207PubMedCrossRef
53.
go back to reference Tirkkonen M, Kainu T, Loman N et al (1999) Somatic genetic alterations in BRCA2-associated and sporadic male breast cancer. Genes Chromosomes Cancer 24:56–61PubMedCrossRef Tirkkonen M, Kainu T, Loman N et al (1999) Somatic genetic alterations in BRCA2-associated and sporadic male breast cancer. Genes Chromosomes Cancer 24:56–61PubMedCrossRef
54.
go back to reference Melchor L, Honrado E, Huang J et al (2007) Estrogen receptor status could modulate the genomic pattern in familial and sporadic breast cancer. Clin Cancer Res 13:7305–7313PubMedCrossRef Melchor L, Honrado E, Huang J et al (2007) Estrogen receptor status could modulate the genomic pattern in familial and sporadic breast cancer. Clin Cancer Res 13:7305–7313PubMedCrossRef
55.
go back to reference Rosa-Rosa JM, Pita G, Gonzalez-Neira A et al (2009) A 7 Mb region within 11q13 may contain a high penetrance gene for breast cancer. Breast Cancer Res Treat 118:151–159PubMedCrossRef Rosa-Rosa JM, Pita G, Gonzalez-Neira A et al (2009) A 7 Mb region within 11q13 may contain a high penetrance gene for breast cancer. Breast Cancer Res Treat 118:151–159PubMedCrossRef
Metadata
Title
A non-BRCA1/2 hereditary breast cancer sub-group defined by aCGH profiling of genetically related patients
Authors
M. A. Didraga
E. H. van Beers
S. A. Joosse
K. I. M. Brandwijk
R. A. Oldenburg
L. F. A. Wessels
F. B. L. Hogervorst
M. J. Ligtenberg
N. Hoogerbrugge
S. Verhoef
P. Devilee
P. M. Nederlof
Publication date
01-11-2011
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 2/2011
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-011-1357-x

Other articles of this Issue 2/2011

Breast Cancer Research and Treatment 2/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine