Skip to main content
Top
Published in: European Radiology 1/2015

01-01-2015 | Cardiac

A new technique for noise reduction at coronary CT angiography with multi-phase data-averaging and non-rigid image registration

Authors: Fuminari Tatsugami, Toru Higaki, Yuko Nakamura, Takuji Yamagami, Shuji Date, Chikako Fujioka, Masao Kiguchi, Yasuki Kihara, Kazuo Awai

Published in: European Radiology | Issue 1/2015

Login to get access

Abstract

Objectives

To investigate the feasibility of a newly developed noise reduction technique at coronary CT angiography (CTA) that uses multi-phase data-averaging and non-rigid image registration.

Methods

Sixty-five patients underwent coronary CTA with prospective ECG-triggering. The range of the phase window was set at 70–80 % of the R–R interval. First, three sets of consecutive volume data at 70 %, 75 % and 80 % of the R–R interval were prepared. Second, we applied non-rigid registration to align the 70 % and 80 % images to the 75 % image. Finally, we performed weighted averaging of the three images and generated a de-noised image. The image noise and contrast-to-noise ratio (CNR) in the proximal coronary arteries between the conventional 75 % and the de-noised images were compared. Two radiologists evaluated the image quality using a 5-point scale (1, poor; 5, excellent).

Results

On de-noised images, mean image noise was significantly lower than on conventional 75 % images (18.3 HU ± 2.6 vs. 23.0 HU ± 3.3, P < 0.01) and the CNR was significantly higher (P < 0.01). The mean image quality score for conventional 75 % and de-noised images was 3.9 and 4.4, respectively (P < 0.01).

Conclusions

Our method reduces image noise and improves image quality at coronary CTA.

Key Points

We introduce a new method for image noise reduction at cardiac CT.
Multiple data acquisitions of an object and their averaging yield lower noise.
Our method uses multi-phase images reconstructed from unused redundant imaging data.
It reduces image noise by averaging multi-phase images transformed by non-rigid registration.
This method achieves a 20 % image noise reduction at cardiac CT.
Literature
1.
go back to reference Raff GL, Gallagher MJ, O'Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557PubMedCrossRef Raff GL, Gallagher MJ, O'Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557PubMedCrossRef
2.
go back to reference Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487PubMedCrossRef Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487PubMedCrossRef
3.
go back to reference Nikolaou K, Knez A, Rist C et al (2006) Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. AJR Am J Roentgenol 187:111–117PubMedCrossRef Nikolaou K, Knez A, Rist C et al (2006) Accuracy of 64-MDCT in the diagnosis of ischemic heart disease. AJR Am J Roentgenol 187:111–117PubMedCrossRef
4.
go back to reference Herzog C, Zwerner PL, Doll JR et al (2007) Significant coronary artery stenosis: comparison on per-patient and per-vessel or per-segment basis at 64-section CT angiography. Radiology 244:112–120PubMedCrossRef Herzog C, Zwerner PL, Doll JR et al (2007) Significant coronary artery stenosis: comparison on per-patient and per-vessel or per-segment basis at 64-section CT angiography. Radiology 244:112–120PubMedCrossRef
5.
go back to reference Hausleiter J, Meyer T, Hadamitzky M et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310PubMedCrossRef Hausleiter J, Meyer T, Hadamitzky M et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310PubMedCrossRef
6.
go back to reference Hausleiter J, Meyer T, Hermann F et al (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301:500–507PubMedCrossRef Hausleiter J, Meyer T, Hermann F et al (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301:500–507PubMedCrossRef
7.
go back to reference Leschka S, Stolzmann P, Schmid FT et al (2008) Low kilovoltage cardiac dual-source CT: attenuation, noise, and radiation dose. Eur Radiol 18:1809–1817PubMedCrossRef Leschka S, Stolzmann P, Schmid FT et al (2008) Low kilovoltage cardiac dual-source CT: attenuation, noise, and radiation dose. Eur Radiol 18:1809–1817PubMedCrossRef
8.
go back to reference Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298:317–323PubMedCrossRef Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298:317–323PubMedCrossRef
9.
go back to reference Einstein AJ, Elliston CD, Arai AE et al (2010) Radiation dose from single-heartbeat coronary CT angiography performed with a 320-detector row volume scanner. Radiology 254:698–706PubMedCentralPubMedCrossRef Einstein AJ, Elliston CD, Arai AE et al (2010) Radiation dose from single-heartbeat coronary CT angiography performed with a 320-detector row volume scanner. Radiology 254:698–706PubMedCentralPubMedCrossRef
10.
go back to reference Earls JP, Berman EL, Urban BA et al (2008) Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 246:742–753PubMedCrossRef Earls JP, Berman EL, Urban BA et al (2008) Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 246:742–753PubMedCrossRef
11.
go back to reference Tatsugami F, Matsuki M, Nakai G et al (2012) The effect of adaptive iterative dose reduction on image quality in 320-detector row CT coronary angiography. Br J Radiol 85:e378–e382PubMedCentralPubMedCrossRef Tatsugami F, Matsuki M, Nakai G et al (2012) The effect of adaptive iterative dose reduction on image quality in 320-detector row CT coronary angiography. Br J Radiol 85:e378–e382PubMedCentralPubMedCrossRef
12.
go back to reference Utsunomiya D, Weigold WG, Weissman G, Taylor AJ (2012) Effect of hybrid iterative reconstruction technique on quantitative and qualitative image analysis at 256-slice prospective gating cardiac CT. Eur Radiol 22:1287–1294PubMedCrossRef Utsunomiya D, Weigold WG, Weissman G, Taylor AJ (2012) Effect of hybrid iterative reconstruction technique on quantitative and qualitative image analysis at 256-slice prospective gating cardiac CT. Eur Radiol 22:1287–1294PubMedCrossRef
13.
go back to reference Husmann L, Valenta I, Gaemperli O et al (2008) Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J 29:191–197PubMedCrossRef Husmann L, Valenta I, Gaemperli O et al (2008) Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J 29:191–197PubMedCrossRef
14.
go back to reference Herzog BA, Husmann L, Burkhard N et al (2008) Accuracy of low-dose computed tomography coronary angiography using prospective electrocardiogram-triggering: first clinical experience. Eur Heart J 29:3037–3042PubMedCrossRef Herzog BA, Husmann L, Burkhard N et al (2008) Accuracy of low-dose computed tomography coronary angiography using prospective electrocardiogram-triggering: first clinical experience. Eur Heart J 29:3037–3042PubMedCrossRef
15.
go back to reference Roobottom CA, Mitchell G, Morgan-Hughes G (2010) Radiation-reduction strategies in cardiac computed tomographic angiography. Clin Radiol 65:859–867PubMedCrossRef Roobottom CA, Mitchell G, Morgan-Hughes G (2010) Radiation-reduction strategies in cardiac computed tomographic angiography. Clin Radiol 65:859–867PubMedCrossRef
16.
go back to reference Tatsugami F, Matsuki M, Inada Y et al (2010) Feasibility of low-volume injections of contrast material with a body weight-adapted iodine-dose protocol in 320-detector row coronary CT angiography. Acad Radiol 17:207–211PubMedCrossRef Tatsugami F, Matsuki M, Inada Y et al (2010) Feasibility of low-volume injections of contrast material with a body weight-adapted iodine-dose protocol in 320-detector row coronary CT angiography. Acad Radiol 17:207–211PubMedCrossRef
17.
go back to reference Hulme KW, Rong J, Chasen B et al (2011) A CT acquisition technique to generate images at various dose levels for prospective dose reduction studies. AJR Am J Roentgenol 196:W144–W151PubMedCrossRef Hulme KW, Rong J, Chasen B et al (2011) A CT acquisition technique to generate images at various dose levels for prospective dose reduction studies. AJR Am J Roentgenol 196:W144–W151PubMedCrossRef
18.
go back to reference Li T, Schreibmann E, Thorndyke B et al (2005) Radiation dose reduction in four-dimensional computed tomography. Med Phys 32:3650–3660PubMedCrossRef Li T, Schreibmann E, Thorndyke B et al (2005) Radiation dose reduction in four-dimensional computed tomography. Med Phys 32:3650–3660PubMedCrossRef
19.
go back to reference Hirai N, Horiguchi J, Fujioka C et al (2008) Prospective versus retrospective ECG-gated 64-detector coronary CT angiography: assessment of image quality, stenosis, and radiation dose. Radiology 248:424–430PubMedCrossRef Hirai N, Horiguchi J, Fujioka C et al (2008) Prospective versus retrospective ECG-gated 64-detector coronary CT angiography: assessment of image quality, stenosis, and radiation dose. Radiology 248:424–430PubMedCrossRef
20.
go back to reference Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ (2007) Radiation dose to patients from cardiac diagnostic imaging. Circulation 116:1290–1305PubMedCrossRef Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ (2007) Radiation dose to patients from cardiac diagnostic imaging. Circulation 116:1290–1305PubMedCrossRef
21.
go back to reference Lembcke A, Wiese TH, Schnorr J et al (2004) Image quality of noninvasive coronary angiography using multislice spiral computed tomography and electron-beam computed tomography: intraindividual comparison in an animal model. Investig Radiol 39:357–364CrossRef Lembcke A, Wiese TH, Schnorr J et al (2004) Image quality of noninvasive coronary angiography using multislice spiral computed tomography and electron-beam computed tomography: intraindividual comparison in an animal model. Investig Radiol 39:357–364CrossRef
22.
go back to reference Achenbach S, Giesler T, Ropers D et al (2003) Comparison of image quality in contrast-enhanced coronary-artery visualization by electron beam tomography and retrospectively electrocardiogram-gated multislice spiral computed tomography. Investig Radiol 38:119–128CrossRef Achenbach S, Giesler T, Ropers D et al (2003) Comparison of image quality in contrast-enhanced coronary-artery visualization by electron beam tomography and retrospectively electrocardiogram-gated multislice spiral computed tomography. Investig Radiol 38:119–128CrossRef
23.
go back to reference Achenbach S, Manolopoulos M, Schuhbäck A et al (2012) Influence of heart rate and phase of the cardiac cycle on the occurrence of motion artifact in dual-source CT angiography of the coronary arteries. J Cardiovasc Comput Tomogr 6:91–98PubMedCrossRef Achenbach S, Manolopoulos M, Schuhbäck A et al (2012) Influence of heart rate and phase of the cardiac cycle on the occurrence of motion artifact in dual-source CT angiography of the coronary arteries. J Cardiovasc Comput Tomogr 6:91–98PubMedCrossRef
24.
go back to reference Birnbaum BA, Hindman N, Lee J, Babb JS (2007) Multi-detector row CT attenuation measurements: assessment of intra- and interscanner variability with an anthropomorphic body CT phantom. Radiology 242:109–119PubMedCrossRef Birnbaum BA, Hindman N, Lee J, Babb JS (2007) Multi-detector row CT attenuation measurements: assessment of intra- and interscanner variability with an anthropomorphic body CT phantom. Radiology 242:109–119PubMedCrossRef
Metadata
Title
A new technique for noise reduction at coronary CT angiography with multi-phase data-averaging and non-rigid image registration
Authors
Fuminari Tatsugami
Toru Higaki
Yuko Nakamura
Takuji Yamagami
Shuji Date
Chikako Fujioka
Masao Kiguchi
Yasuki Kihara
Kazuo Awai
Publication date
01-01-2015
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 1/2015
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-014-3381-9

Other articles of this Issue 1/2015

European Radiology 1/2015 Go to the issue