Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 1/2008

01-03-2008

A new integrative model of cerebral activation, deactivation and default mode function in Alzheimer’s disease

Authors: Marc Wermke, Christian Sorg, Afra M. Wohlschläger, Alexander Drzezga

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Special Issue 1/2008

Login to get access

Abstract

Functional imaging methods such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) allow in vivo assessment of cerebral metabolism at rest and cerebral responses to cognitive stimuli. Activation studies with different cognitive tasks have deepened the understanding of underlying pathology leading to Alzheimer disease (AD) and how the brain reacts to and potentially compensates the imposed damage inflicted by this disease. The aim of this manuscript study was to summarize current findings of activation studies in healthy people at risk for AD, in people with mild cognitive impairment (MCI) as a possible progenitor of AD and finally in patients with manifest AD, adding recent results about impaired deactivation abilities and default mode function in AD. A new comprehensive model will be introduced integrating these heterogeneous findings and explaining their impact on cognitive performance.
Literature
2.
go back to reference Almkvist O, Winblad B. Early diagnosis of Alzheimer dementia based on clinical and biological factors. Eur Arch Psychiatry Clin Neurosci 1999;249(Suppl 3):3–9.PubMed Almkvist O, Winblad B. Early diagnosis of Alzheimer dementia based on clinical and biological factors. Eur Arch Psychiatry Clin Neurosci 1999;249(Suppl 3):3–9.PubMed
3.
go back to reference Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 1991;82:239–59.CrossRef Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 1991;82:239–59.CrossRef
4.
go back to reference Forstl H, Bickel H, Lautenschlager N, Riemenschneider M, Kurz A. Forgetfulness and light cognitive impairment. What can the physician still tolerate. MMW Fortschr Med 2001;143:23–7.PubMed Forstl H, Bickel H, Lautenschlager N, Riemenschneider M, Kurz A. Forgetfulness and light cognitive impairment. What can the physician still tolerate. MMW Fortschr Med 2001;143:23–7.PubMed
5.
go back to reference McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick’s Disease. Arch Neurol 2001;58:1803–9.PubMedCrossRef McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick’s Disease. Arch Neurol 2001;58:1803–9.PubMedCrossRef
6.
go back to reference Davies L, Wolska B, Hilbich C, Multhaup G, Martins R, Simms G, et al. A4 amyloid protein deposition and the diagnosis of Alzheimer’s disease: prevalence in aged brains determined by immunocytochemistry compared with conventional neuropathologic techniques. Neurology 1988;38:1688–93.PubMed Davies L, Wolska B, Hilbich C, Multhaup G, Martins R, Simms G, et al. A4 amyloid protein deposition and the diagnosis of Alzheimer’s disease: prevalence in aged brains determined by immunocytochemistry compared with conventional neuropathologic techniques. Neurology 1988;38:1688–93.PubMed
7.
8.
go back to reference Visser PJ, Scheltens P, Verhey FR. Do MCI criteria in drug trials accurately identify subjects with predementia Alzheimer’s disease? J Neurol Neurosurg Psychiatry 2005;76:1348–54.PubMedCrossRef Visser PJ, Scheltens P, Verhey FR. Do MCI criteria in drug trials accurately identify subjects with predementia Alzheimer’s disease? J Neurol Neurosurg Psychiatry 2005;76:1348–54.PubMedCrossRef
9.
go back to reference Knopman DS, DeKosky ST, Cummings JL, Chui H, Corey-Bloom J, Relkin N, et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology [see comment]. Neurology 2001;56:1143–53.PubMed Knopman DS, DeKosky ST, Cummings JL, Chui H, Corey-Bloom J, Relkin N, et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology [see comment]. Neurology 2001;56:1143–53.PubMed
10.
go back to reference Lopez OL, Becker JT, Kaufer DI, Hamilton RL, Sweet RA, Klunk W, et al. Research evaluation and prospective diagnosis of dementia with Lewy bodies [see comment]. Arch Neurol 2002;59:43–6.PubMedCrossRef Lopez OL, Becker JT, Kaufer DI, Hamilton RL, Sweet RA, Klunk W, et al. Research evaluation and prospective diagnosis of dementia with Lewy bodies [see comment]. Arch Neurol 2002;59:43–6.PubMedCrossRef
11.
go back to reference Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study [see comment]. JAMA 1997;277:813–7.PubMedCrossRef Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study [see comment]. JAMA 1997;277:813–7.PubMedCrossRef
12.
go back to reference Neuropathology Group, Medical Research Council Cognitive Function and Aging Study. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS) [see comment]. Lancet 2001;357:169–75.CrossRef Neuropathology Group, Medical Research Council Cognitive Function and Aging Study. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS) [see comment]. Lancet 2001;357:169–75.CrossRef
13.
go back to reference van der Flier WM, Barkhof F, Scheltens P. Shifting paradigms in dementia: toward stratification of diagnosis and treatment using MRI. Annals of the NY Acad Sci 2007;1097:215–24.CrossRef van der Flier WM, Barkhof F, Scheltens P. Shifting paradigms in dementia: toward stratification of diagnosis and treatment using MRI. Annals of the NY Acad Sci 2007;1097:215–24.CrossRef
14.
go back to reference Villemagne VL, Rowe CC, Macfarlane S, Novakovic KE, Masters CL. Imaginem oblivionis: the prospects of neuroimaging for early detection of Alzheimer’s disease. J Clin Neurosci 2005;12:221–30.PubMedCrossRef Villemagne VL, Rowe CC, Macfarlane S, Novakovic KE, Masters CL. Imaginem oblivionis: the prospects of neuroimaging for early detection of Alzheimer’s disease. J Clin Neurosci 2005;12:221–30.PubMedCrossRef
15.
go back to reference Mayeux R, Saunders AM, Shea S, Mirra S, Evans D, Roses AD, et al. Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer’s disease. Alzheimer’s Disease Centers Consortium on Apolipoprotein E and Alzheimer’s Disease. N Engl J Med 1998;338:506–11.PubMedCrossRef Mayeux R, Saunders AM, Shea S, Mirra S, Evans D, Roses AD, et al. Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer’s disease. Alzheimer’s Disease Centers Consortium on Apolipoprotein E and Alzheimer’s Disease. N Engl J Med 1998;338:506–11.PubMedCrossRef
16.
go back to reference Bertram L, Tanzi RE. Dancing in the dark? The status of late-onset Alzheimer’s disease genetics. J Mol Neurosci. 2001;17:127–36.PubMedCrossRef Bertram L, Tanzi RE. Dancing in the dark? The status of late-onset Alzheimer’s disease genetics. J Mol Neurosci. 2001;17:127–36.PubMedCrossRef
17.
go back to reference Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S, et al. Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med 1996;334:752–8.PubMedCrossRef Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S, et al. Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med 1996;334:752–8.PubMedCrossRef
18.
go back to reference Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D, et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc Nat Acad Sci USA 2004;101:284–9.PubMedCrossRef Reiman EM, Chen K, Alexander GE, Caselli RJ, Bandy D, Osborne D, et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer’s dementia. Proc Nat Acad Sci USA 2004;101:284–9.PubMedCrossRef
19.
go back to reference Trivedi MA, Schmitz TW, Ries ML, Torgerson BM, Sager MA, Hermann BP, et al. Reduced hippocampal activation during episodic encoding in middle-aged individuals at genetic risk of Alzheimer’s disease: a cross-sectional study. BMC Medicine 2006;4:1.PubMedCrossRef Trivedi MA, Schmitz TW, Ries ML, Torgerson BM, Sager MA, Hermann BP, et al. Reduced hippocampal activation during episodic encoding in middle-aged individuals at genetic risk of Alzheimer’s disease: a cross-sectional study. BMC Medicine 2006;4:1.PubMedCrossRef
20.
go back to reference Lind J, Persson J, Ingvar M, Larsson A, Cruts M, Van Broeckhoven C, et al. Reduced functional brain activity response in cognitively intact apolipoprotein E epsilon4 carriers. Brain 2006;129:1240–8.PubMedCrossRef Lind J, Persson J, Ingvar M, Larsson A, Cruts M, Van Broeckhoven C, et al. Reduced functional brain activity response in cognitively intact apolipoprotein E epsilon4 carriers. Brain 2006;129:1240–8.PubMedCrossRef
21.
go back to reference Smith CD, Andersen AH, Kryscio RJ, Schmitt FA, Kindy MS, Blonder LX, et al. Altered brain activation in cognitively intact individuals at high risk for Alzheimer’s disease. Neurology 1999;53:1391–6.PubMed Smith CD, Andersen AH, Kryscio RJ, Schmitt FA, Kindy MS, Blonder LX, et al. Altered brain activation in cognitively intact individuals at high risk for Alzheimer’s disease. Neurology 1999;53:1391–6.PubMed
22.
go back to reference Bassett SS, Yousem DM, Cristinzio C, Kusevic I, Yassa MA, Caffo BS, et al. Familial risk for Alzheimer’s disease alters fMRI activation patterns. Brain 2006;129:1229–39.PubMedCrossRef Bassett SS, Yousem DM, Cristinzio C, Kusevic I, Yassa MA, Caffo BS, et al. Familial risk for Alzheimer’s disease alters fMRI activation patterns. Brain 2006;129:1229–39.PubMedCrossRef
23.
go back to reference Bondi MW, Houston WS, Eyler LT, Brown GG. fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease [see comment]. Neurology 2005;64:501–8.PubMed Bondi MW, Houston WS, Eyler LT, Brown GG. fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease [see comment]. Neurology 2005;64:501–8.PubMed
24.
go back to reference Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, Mazziotta JC, et al. Patterns of brain activation in people at risk for Alzheimer’s disease [see comment]. New England J Med 2000;343:450–6.CrossRef Bookheimer SY, Strojwas MH, Cohen MS, Saunders AM, Pericak-Vance MA, Mazziotta JC, et al. Patterns of brain activation in people at risk for Alzheimer’s disease [see comment]. New England J Med 2000;343:450–6.CrossRef
25.
go back to reference Wishart HA, Saykin AJ, Rabin LA, Santulli RB, Flashman LA, Guerin SJ, et al. Increased brain activation during working memory in cognitively intact adults with the APOE epsilon4 allele. Am J Psychiatry 2006;163:1603–10.PubMedCrossRef Wishart HA, Saykin AJ, Rabin LA, Santulli RB, Flashman LA, Guerin SJ, et al. Increased brain activation during working memory in cognitively intact adults with the APOE epsilon4 allele. Am J Psychiatry 2006;163:1603–10.PubMedCrossRef
26.
go back to reference Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999;56:303–8.PubMedCrossRef Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999;56:303–8.PubMedCrossRef
27.
go back to reference Artero S, Tierney MC, Touchon J, Ritchie K. Prediction of transition from cognitive impairment to senile dementia: a prospective, longitudinal study. Acta Psychiatrica Scandinavica 2003;107:390–3.PubMedCrossRef Artero S, Tierney MC, Touchon J, Ritchie K. Prediction of transition from cognitive impairment to senile dementia: a prospective, longitudinal study. Acta Psychiatrica Scandinavica 2003;107:390–3.PubMedCrossRef
28.
go back to reference Scarmeas N, Stern Y. Cognitive reserve: implications for diagnosis and prevention of Alzheimer’s disease. Curr Neurol Neurosci Rep 2004;4:374–80.PubMedCrossRef Scarmeas N, Stern Y. Cognitive reserve: implications for diagnosis and prevention of Alzheimer’s disease. Curr Neurol Neurosci Rep 2004;4:374–80.PubMedCrossRef
29.
go back to reference Stern Y, Zarahn E, Hilton HJ, Flynn J, DeLaPaz R, Rakitin B. Exploring the neural basis of cognitive reserve. J Clin ExpNeuropsychol 2003;25:691–701.CrossRef Stern Y, Zarahn E, Hilton HJ, Flynn J, DeLaPaz R, Rakitin B. Exploring the neural basis of cognitive reserve. J Clin ExpNeuropsychol 2003;25:691–701.CrossRef
30.
go back to reference Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 2002;8:448–60.PubMedCrossRef Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 2002;8:448–60.PubMedCrossRef
31.
go back to reference Perneczky R, Drzezga A, Diehl-Schmid J, Schmid G, Wohlschlager A, Kars S, et al. Schooling mediates brain reserve in Alzheimer’s disease: findings of fluoro-deoxy-glucose-positron emission tomography. J Neurol Neurosurg Psychiatry 2006;77:1060–3.PubMedCrossRef Perneczky R, Drzezga A, Diehl-Schmid J, Schmid G, Wohlschlager A, Kars S, et al. Schooling mediates brain reserve in Alzheimer’s disease: findings of fluoro-deoxy-glucose-positron emission tomography. J Neurol Neurosurg Psychiatry 2006;77:1060–3.PubMedCrossRef
32.
go back to reference Celone KA, Calhoun VD, Dickerson BC, Atri A, Chua EF, Miller SL, et al. Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. J Neurosci 2006;26:10222–31.PubMedCrossRef Celone KA, Calhoun VD, Dickerson BC, Atri A, Chua EF, Miller SL, et al. Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. J Neurosci 2006;26:10222–31.PubMedCrossRef
33.
go back to reference Sperling R. Functional MRI studies of associative encoding in normal aging, mild cognitive impairment, and Alzheimer’s disease. Ann NY Acad Sci 2007;1097:146–55.PubMedCrossRef Sperling R. Functional MRI studies of associative encoding in normal aging, mild cognitive impairment, and Alzheimer’s disease. Ann NY Acad Sci 2007;1097:146–55.PubMedCrossRef
34.
go back to reference Dickerson BC, Salat DH, Bates JF, Atiya M, Killiany RJ, Greve DN, et al. Medial temporal lobe function and structure in mild cognitive impairment [see comment]. Ann Neurol 2004;56:27–35.PubMedCrossRef Dickerson BC, Salat DH, Bates JF, Atiya M, Killiany RJ, Greve DN, et al. Medial temporal lobe function and structure in mild cognitive impairment [see comment]. Ann Neurol 2004;56:27–35.PubMedCrossRef
35.
go back to reference Dickerson BC, Salat DH, Greve DN, Chua EF, Rand-Giovannetti E, Rentz DM, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 2005;65:404–11.PubMedCrossRef Dickerson BC, Salat DH, Greve DN, Chua EF, Rand-Giovannetti E, Rentz DM, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 2005;65:404–11.PubMedCrossRef
36.
go back to reference Kircher TT, Weis S, Freymann K, Erb M, Jessen F, Grodd W, et al. Hippocampal activation in patients with mild cognitive impairment is necessary for successful memory encoding. J Neurol Neurosurg Psychiatry 2007;78:812–8.PubMedCrossRef Kircher TT, Weis S, Freymann K, Erb M, Jessen F, Grodd W, et al. Hippocampal activation in patients with mild cognitive impairment is necessary for successful memory encoding. J Neurol Neurosurg Psychiatry 2007;78:812–8.PubMedCrossRef
37.
go back to reference Gronholm P, Rinne JO, Vorobyev VA, Laine M. Neural correlates of naming newly learned objects in MCI. Neuropsychologia 2007;45:2355–68.PubMedCrossRef Gronholm P, Rinne JO, Vorobyev VA, Laine M. Neural correlates of naming newly learned objects in MCI. Neuropsychologia 2007;45:2355–68.PubMedCrossRef
38.
go back to reference Small SA, Perera GM, DeLaPaz R, Mayeux R, Stern Y. Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer’s disease. Annals Neurol 1999;45:466–72.CrossRef Small SA, Perera GM, DeLaPaz R, Mayeux R, Stern Y. Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer’s disease. Annals Neurol 1999;45:466–72.CrossRef
39.
go back to reference Johnson SC, Schmitz TW, Moritz CH, Meyerand ME, Rowley HA, Alexander AL, et al. Activation of brain regions vulnerable to Alzheimer’s disease: the effect of mild cognitive impairment. Neurobiol Aging 2006;27:1604–12.PubMedCrossRef Johnson SC, Schmitz TW, Moritz CH, Meyerand ME, Rowley HA, Alexander AL, et al. Activation of brain regions vulnerable to Alzheimer’s disease: the effect of mild cognitive impairment. Neurobiol Aging 2006;27:1604–12.PubMedCrossRef
40.
go back to reference Machulda MM, Ward HA, Borowski B, Gunter JL, Cha RH, O’Brien PC, et al. Comparison of memory fMRI response among normal, MCI, and Alzheimer’s patients. Neurology 2003;61:500–6.PubMed Machulda MM, Ward HA, Borowski B, Gunter JL, Cha RH, O’Brien PC, et al. Comparison of memory fMRI response among normal, MCI, and Alzheimer’s patients. Neurology 2003;61:500–6.PubMed
41.
go back to reference Bokde AL, Lopez-Bayo P, Meindl T, Pechler S, Born C, Faltraco F, et al. Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment. Brain 2006;129:1113–24.PubMedCrossRef Bokde AL, Lopez-Bayo P, Meindl T, Pechler S, Born C, Faltraco F, et al. Functional connectivity of the fusiform gyrus during a face-matching task in subjects with mild cognitive impairment. Brain 2006;129:1113–24.PubMedCrossRef
42.
go back to reference Ries ML, Schmitz TW, Kawahara TN, Torgerson BM, Trivedi MA, Johnson SC. Task-dependent posterior cingulate activation in mild cognitive impairment. Neuroimage 2006;29:485–92.PubMedCrossRef Ries ML, Schmitz TW, Kawahara TN, Torgerson BM, Trivedi MA, Johnson SC. Task-dependent posterior cingulate activation in mild cognitive impairment. Neuroimage 2006;29:485–92.PubMedCrossRef
43.
go back to reference Sperling RA, Bates JF, Chua EF, Cocchiarella AJ, Rentz DM, Rosen BR, et al. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2003;74:44–50.PubMedCrossRef Sperling RA, Bates JF, Chua EF, Cocchiarella AJ, Rentz DM, Rosen BR, et al. fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2003;74:44–50.PubMedCrossRef
44.
go back to reference Backman L, Andersson JL, Nyberg L, Winblad B, Nordberg A, Almkvist O. Brain regions associated with episodic retrieval in normal aging and Alzheimer’s disease. Neurology 1999;52:1861–70.PubMed Backman L, Andersson JL, Nyberg L, Winblad B, Nordberg A, Almkvist O. Brain regions associated with episodic retrieval in normal aging and Alzheimer’s disease. Neurology 1999;52:1861–70.PubMed
45.
go back to reference Remy F, Mirrashed F, Campbell B, Richter W. Verbal episodic memory impairment in Alzheimer’s disease: a combined structural and functional MRI study. Neuroimage 2005;25:253–66.PubMedCrossRef Remy F, Mirrashed F, Campbell B, Richter W. Verbal episodic memory impairment in Alzheimer’s disease: a combined structural and functional MRI study. Neuroimage 2005;25:253–66.PubMedCrossRef
46.
go back to reference Gron G, Bittner D, Schmitz B, Wunderlich AP, Riepe MW. Subjective memory complaints: objective neural markers in patients with Alzheimer’s disease and major depressive disorder. Ann Neurol 2002;51:491–8.PubMedCrossRef Gron G, Bittner D, Schmitz B, Wunderlich AP, Riepe MW. Subjective memory complaints: objective neural markers in patients with Alzheimer’s disease and major depressive disorder. Ann Neurol 2002;51:491–8.PubMedCrossRef
47.
go back to reference Kessler J, Herholz K, Grond M, Heiss WD. Impaired metabolic activation in Alzheimer’s disease: a PET study during continuous visual recognition. Neuropsychologia 1991;29:229–43.PubMedCrossRef Kessler J, Herholz K, Grond M, Heiss WD. Impaired metabolic activation in Alzheimer’s disease: a PET study during continuous visual recognition. Neuropsychologia 1991;29:229–43.PubMedCrossRef
48.
go back to reference Drzezga A, Grimmer T, Peller M, Wermke M, Siebner H, Rauschecker JP, et al. Impaired cross-modal inhibition in Alzheimer disease. PLoS Med 2005;2:e288.PubMedCrossRef Drzezga A, Grimmer T, Peller M, Wermke M, Siebner H, Rauschecker JP, et al. Impaired cross-modal inhibition in Alzheimer disease. PLoS Med 2005;2:e288.PubMedCrossRef
49.
go back to reference Rombouts SA, Barkhof F, Veltman DJ, Machielsen WC, Witter MP, Bierlaagh MA, et al. Functional MR imaging in Alzheimer’s disease during memory encoding. AJNR Am J Neuroradiol 2000;21:1869–75.PubMed Rombouts SA, Barkhof F, Veltman DJ, Machielsen WC, Witter MP, Bierlaagh MA, et al. Functional MR imaging in Alzheimer’s disease during memory encoding. AJNR Am J Neuroradiol 2000;21:1869–75.PubMed
50.
go back to reference Gould RL, Arroyo B, Brown RG, Owen AM, Bullmore ET, Howard RJ. Brain mechanisms of successful compensation during learning in Alzheimer disease. Neurology 2006;67:1011–7.PubMedCrossRef Gould RL, Arroyo B, Brown RG, Owen AM, Bullmore ET, Howard RJ. Brain mechanisms of successful compensation during learning in Alzheimer disease. Neurology 2006;67:1011–7.PubMedCrossRef
51.
go back to reference Pariente J, Cole S, Henson R, Clare L, Kennedy A, Rossor M, et al. Alzheimer’s patients engage an alternative network during a memory task. Ann Neurol 2005;58:870–9.PubMedCrossRef Pariente J, Cole S, Henson R, Clare L, Kennedy A, Rossor M, et al. Alzheimer’s patients engage an alternative network during a memory task. Ann Neurol 2005;58:870–9.PubMedCrossRef
52.
go back to reference Grady CL, McIntosh AR, Beig S, Keightley ML, Burian H, Black SE. Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. J Neurosci 2003;23:986–93.PubMed Grady CL, McIntosh AR, Beig S, Keightley ML, Burian H, Black SE. Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. J Neurosci 2003;23:986–93.PubMed
53.
go back to reference Yetkin FZ, Rosenberg RN, Weiner MF, Purdy PD, Cullum CM. FMRI of working memory in patients with mild cognitive impairment and probable Alzheimer’s disease. Eur Radiol 2006;16:193–206.PubMedCrossRef Yetkin FZ, Rosenberg RN, Weiner MF, Purdy PD, Cullum CM. FMRI of working memory in patients with mild cognitive impairment and probable Alzheimer’s disease. Eur Radiol 2006;16:193–206.PubMedCrossRef
54.
go back to reference Becker JT, Mintun MA, Aleva K, Wiseman MB, Nichols T, DeKosky ST. Compensatory reallocation of brain resources supporting verbal episodic memory in Alzheimer’s disease. Neurology 1996;46:692–700.PubMed Becker JT, Mintun MA, Aleva K, Wiseman MB, Nichols T, DeKosky ST. Compensatory reallocation of brain resources supporting verbal episodic memory in Alzheimer’s disease. Neurology 1996;46:692–700.PubMed
55.
go back to reference Woodard JL, Grafton ST, Votaw JR, Green RC, Dobraski ME, Hoffman JM. Compensatory recruitment of neural resources during overt rehearsal of word lists in Alzheimer’s disease. Neuropsychology 1998;12:491–504.PubMedCrossRef Woodard JL, Grafton ST, Votaw JR, Green RC, Dobraski ME, Hoffman JM. Compensatory recruitment of neural resources during overt rehearsal of word lists in Alzheimer’s disease. Neuropsychology 1998;12:491–504.PubMedCrossRef
56.
go back to reference Grady CL, Furey ML, Pietrini P, Horwitz B, Rapoport SI. Altered brain functional connectivity and impaired short-term memory in Alzheimer’s disease. Brain 2001;124:739–56.PubMedCrossRef Grady CL, Furey ML, Pietrini P, Horwitz B, Rapoport SI. Altered brain functional connectivity and impaired short-term memory in Alzheimer’s disease. Brain 2001;124:739–56.PubMedCrossRef
57.
go back to reference Price CJ, Crinion J, Friston KJ. Design and analysis of fMRI studies with neurologically impaired patients. J Magn Reson Imaging 2006;23:816–26.PubMedCrossRef Price CJ, Crinion J, Friston KJ. Design and analysis of fMRI studies with neurologically impaired patients. J Magn Reson Imaging 2006;23:816–26.PubMedCrossRef
58.
go back to reference Hao J, Li K, Zhang D, Wang W, Yang Y, Yan B, et al. Visual attention deficits in Alzheimer’s disease: an fMRI study. Neurosci Lett 2005;385:18–23.PubMedCrossRef Hao J, Li K, Zhang D, Wang W, Yang Y, Yan B, et al. Visual attention deficits in Alzheimer’s disease: an fMRI study. Neurosci Lett 2005;385:18–23.PubMedCrossRef
59.
go back to reference Buck BH, Black SE, Behrmann M, Caldwell C, Bronskill MJ. Spatial- and object-based attentional deficits in Alzheimer’s disease. Relationship to HMPAO-SPECT measures of parietal perfusion. Brain 1997;120:1229–44.PubMedCrossRef Buck BH, Black SE, Behrmann M, Caldwell C, Bronskill MJ. Spatial- and object-based attentional deficits in Alzheimer’s disease. Relationship to HMPAO-SPECT measures of parietal perfusion. Brain 1997;120:1229–44.PubMedCrossRef
60.
go back to reference Johannsen P, Jakobsen J, Bruhn P, Gjedde A. Cortical responses to sustained and divided attention in Alzheimer’s disease. Neuroimage 1999;10:269–81.PubMedCrossRef Johannsen P, Jakobsen J, Bruhn P, Gjedde A. Cortical responses to sustained and divided attention in Alzheimer’s disease. Neuroimage 1999;10:269–81.PubMedCrossRef
61.
go back to reference Prvulovic D, Hubl D, Sack AT, Melillo L, Maurer K, Frolich L, et al. Functional imaging of visuospatial processing in Alzheimer’s disease. Neuroimage 2002;17:1403–14.PubMedCrossRef Prvulovic D, Hubl D, Sack AT, Melillo L, Maurer K, Frolich L, et al. Functional imaging of visuospatial processing in Alzheimer’s disease. Neuroimage 2002;17:1403–14.PubMedCrossRef
62.
go back to reference Bokde AL, Teipel SJ, Drzezga A, Thissen J, Bartenstein P, Dong W, et al. Association between cognitive performance and cortical glucose metabolism in patients with mild Alzheimer’s disease. Dement Geriatr Cogn Disord 2005;20:352–7.PubMedCrossRef Bokde AL, Teipel SJ, Drzezga A, Thissen J, Bartenstein P, Dong W, et al. Association between cognitive performance and cortical glucose metabolism in patients with mild Alzheimer’s disease. Dement Geriatr Cogn Disord 2005;20:352–7.PubMedCrossRef
63.
go back to reference Pietrini P, Alexander GE, Furey ML, Hampel H, Guazzelli M. The neurometabolic landscape of cognitive decline: in vivo studies with positron emission tomography in Alzheimer’s disease. Int J Psychophysiol 2000;37:87–98.PubMedCrossRef Pietrini P, Alexander GE, Furey ML, Hampel H, Guazzelli M. The neurometabolic landscape of cognitive decline: in vivo studies with positron emission tomography in Alzheimer’s disease. Int J Psychophysiol 2000;37:87–98.PubMedCrossRef
64.
go back to reference Pietrini P, Furey ML, Alexander GE, Mentis MJ, Dani A, Guazzelli M, et al. Association between brain functional failure and dementia severity in Alzheimer’s disease: resting versus stimulation PET study. Am J Psychiatry 1999;156:470–3.PubMed Pietrini P, Furey ML, Alexander GE, Mentis MJ, Dani A, Guazzelli M, et al. Association between brain functional failure and dementia severity in Alzheimer’s disease: resting versus stimulation PET study. Am J Psychiatry 1999;156:470–3.PubMed
65.
go back to reference Pietrini P, Dani A, Furey ML, Alexander GE, Freo U, Grady CL, et al. Low glucose metabolism during brain stimulation in older Down’s syndrome subjects at risk for Alzheimer’s disease prior to dementia. Am J Psychiatry 1997;154:1063–9.PubMed Pietrini P, Dani A, Furey ML, Alexander GE, Freo U, Grady CL, et al. Low glucose metabolism during brain stimulation in older Down’s syndrome subjects at risk for Alzheimer’s disease prior to dementia. Am J Psychiatry 1997;154:1063–9.PubMed
66.
go back to reference Pietrini P, Alexander GE, Furey ML, Dani A, Mentis MJ, Horwitz B, et al. Cerebral metabolic response to passive audiovisual stimulation in patients with Alzheimer’s disease and healthy volunteers assessed by PET. J Nuclear Med 2000;41:575–83. Pietrini P, Alexander GE, Furey ML, Dani A, Mentis MJ, Horwitz B, et al. Cerebral metabolic response to passive audiovisual stimulation in patients with Alzheimer’s disease and healthy volunteers assessed by PET. J Nuclear Med 2000;41:575–83.
67.
go back to reference Kavcic V, Zhong J, Yoshiura T, Doty RW. Frontal cortex, laterality, and memory: encoding versus retrieval. Acta Neurobiol Exp 2003;63:337–50. Kavcic V, Zhong J, Yoshiura T, Doty RW. Frontal cortex, laterality, and memory: encoding versus retrieval. Acta Neurobiol Exp 2003;63:337–50.
68.
go back to reference Monacelli AM, Cushman LA, Kavcic V, Duffy CJ. Spatial disorientation in Alzheimer’s disease: the remembrance of things passed [see comment]. Neurology 2003;61:1491–7.PubMed Monacelli AM, Cushman LA, Kavcic V, Duffy CJ. Spatial disorientation in Alzheimer’s disease: the remembrance of things passed [see comment]. Neurology 2003;61:1491–7.PubMed
69.
go back to reference Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci USA 2001;98:676–82.PubMedCrossRef Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci USA 2001;98:676–82.PubMedCrossRef
70.
go back to reference Gusnard DA, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2001;2:685–94.PubMedCrossRef Gusnard DA, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2001;2:685–94.PubMedCrossRef
71.
go back to reference Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 2005;26:15–29.PubMedCrossRef Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 2005;26:15–29.PubMedCrossRef
72.
go back to reference Esposito F, Bertolino A, Scarabino T, Latorre V, Blasi G, Popolizio T, et al. Independent component model of the default-mode brain function: assessing the impact of active thinking. Brain Res Bull 2006;70:263–9.PubMedCrossRef Esposito F, Bertolino A, Scarabino T, Latorre V, Blasi G, Popolizio T, et al. Independent component model of the default-mode brain function: assessing the impact of active thinking. Brain Res Bull 2006;70:263–9.PubMedCrossRef
73.
74.
go back to reference Sauer J, ffytche DH, Ballard C, Brown RG, Howard R. Differences between Alzheimer’s disease and dementia with Lewy bodies: an fMRI study of task-related brain activity. Brain 2006;129:1780–8.PubMedCrossRef Sauer J, ffytche DH, Ballard C, Brown RG, Howard R. Differences between Alzheimer’s disease and dementia with Lewy bodies: an fMRI study of task-related brain activity. Brain 2006;129:1780–8.PubMedCrossRef
75.
go back to reference Laurienti PJ, Burdette JH, Wallace MT, Yen YF, Field AS, Stein BE. Deactivation of sensory-specific cortex by cross-modal stimuli. J Cogn Neurosci 2002;14:420–9.PubMedCrossRef Laurienti PJ, Burdette JH, Wallace MT, Yen YF, Field AS, Stein BE. Deactivation of sensory-specific cortex by cross-modal stimuli. J Cogn Neurosci 2002;14:420–9.PubMedCrossRef
76.
go back to reference Kawashima R, O’Sullivan BT, Roland PE. Positron-emission tomography studies of cross-modality inhibition in selective attentional tasks: closing the “mind’s eye”. Proc Natl Acad Sci USA 1995;92:5969–72.PubMedCrossRef Kawashima R, O’Sullivan BT, Roland PE. Positron-emission tomography studies of cross-modality inhibition in selective attentional tasks: closing the “mind’s eye”. Proc Natl Acad Sci USA 1995;92:5969–72.PubMedCrossRef
77.
go back to reference Grady CL, Springer MV, Hongwanishkul D, McIntosh AR, Winocur G. Age-related changes in brain activity across the adult lifespan. J Cogn Neurosci 2006;18:227–41.PubMedCrossRef Grady CL, Springer MV, Hongwanishkul D, McIntosh AR, Winocur G. Age-related changes in brain activity across the adult lifespan. J Cogn Neurosci 2006;18:227–41.PubMedCrossRef
78.
go back to reference Lustig C, Snyder AZ, Bhakta M, O’Brien KC, McAvoy M, Raichle ME, et al. Functional deactivations: change with age and dementia of the Alzheimer type. Proc Natl Acad Sci USA 2003;100:14504–9.PubMedCrossRef Lustig C, Snyder AZ, Bhakta M, O’Brien KC, McAvoy M, Raichle ME, et al. Functional deactivations: change with age and dementia of the Alzheimer type. Proc Natl Acad Sci USA 2003;100:14504–9.PubMedCrossRef
79.
go back to reference Gould RL, Brown RG, Owen AM, Bullmore ET, Howard RJ. Task-induced deactivations during successful paired associates learning: an effect of age but not Alzheimer’s disease. Neuroimage 2006;31:818–31.PubMedCrossRef Gould RL, Brown RG, Owen AM, Bullmore ET, Howard RJ. Task-induced deactivations during successful paired associates learning: an effect of age but not Alzheimer’s disease. Neuroimage 2006;31:818–31.PubMedCrossRef
80.
go back to reference Phelps ME, Schelbert HR, Mazziotta JC. Positron computed tomography for studies of myocardial and cerebral function. Ann Intern Med 1983;98:339–59.PubMed Phelps ME, Schelbert HR, Mazziotta JC. Positron computed tomography for studies of myocardial and cerebral function. Ann Intern Med 1983;98:339–59.PubMed
81.
go back to reference Magistretti PJ, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci 1999;354:1155–63.PubMedCrossRef Magistretti PJ, Pellerin L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci 1999;354:1155–63.PubMedCrossRef
82.
go back to reference Rocher AB, Chapon F, Blaizot X, Baron JC, Chavoix C. Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons. Neuroimage 2003;20:1894–8.PubMedCrossRef Rocher AB, Chapon F, Blaizot X, Baron JC, Chavoix C. Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons. Neuroimage 2003;20:1894–8.PubMedCrossRef
83.
go back to reference Herholz K. FDG PET and differential diagnosis of dementia. Alzheimer Dis Assoc Disord 1995;9:6–16.PubMedCrossRef Herholz K. FDG PET and differential diagnosis of dementia. Alzheimer Dis Assoc Disord 1995;9:6–16.PubMedCrossRef
84.
go back to reference Minoshima S. Imaging Alzheimer’s disease: clinical applications. Neuroimaging Clin N Am 2003;13:769–80.PubMedCrossRef Minoshima S. Imaging Alzheimer’s disease: clinical applications. Neuroimaging Clin N Am 2003;13:769–80.PubMedCrossRef
85.
go back to reference Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W, et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome [see comment]. JAMA 2001;286:2120–7.PubMedCrossRef Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W, et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome [see comment]. JAMA 2001;286:2120–7.PubMedCrossRef
86.
go back to reference Mazziotta JC, Frackowiak RS, Phelps ME. The use of positron emission tomography in the clinical assessment of dementia. Semin Nucl Med 1992;22:233–46.PubMedCrossRef Mazziotta JC, Frackowiak RS, Phelps ME. The use of positron emission tomography in the clinical assessment of dementia. Semin Nucl Med 1992;22:233–46.PubMedCrossRef
87.
go back to reference Salmon E, Sadzot B, Maquet P, Degueldre C, Lemaire C, Rigo P, et al. Differential diagnosis of Alzheimer’s disease with PET. J Nuclear Med 1994;35:391–8. Salmon E, Sadzot B, Maquet P, Degueldre C, Lemaire C, Rigo P, et al. Differential diagnosis of Alzheimer’s disease with PET. J Nuclear Med 1994;35:391–8.
88.
go back to reference Small GW. Positron emission tomography scanning for the early diagnosis of dementia. Western J Med 1999;171:293–4. Small GW. Positron emission tomography scanning for the early diagnosis of dementia. Western J Med 1999;171:293–4.
89.
go back to reference Drzezga A, Grimmer T, Riemenschneider M, Lautenschlager N, Siebner H, Alexopoulus P, et al. Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F-FDG PET. J Nuclear Med 2005;46:1625–32. Drzezga A, Grimmer T, Riemenschneider M, Lautenschlager N, Siebner H, Alexopoulus P, et al. Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F-FDG PET. J Nuclear Med 2005;46:1625–32.
90.
go back to reference Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997;42:85–94.PubMedCrossRef Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997;42:85–94.PubMedCrossRef
91.
go back to reference Mosconi L, Tsui WH, De Santi S, Li J, Rusinek H, Convit A, et al. Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology. 2005;64:1860–7.PubMedCrossRef Mosconi L, Tsui WH, De Santi S, Li J, Rusinek H, Convit A, et al. Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology. 2005;64:1860–7.PubMedCrossRef
92.
go back to reference Sokoloff L, Mangold R, Wechsler RL, Kenney C, Kety SS. The effect of mental arithmetic on cerebral circulation and metabolism. J Clin Invest 1955;34:1101–8.PubMedCrossRef Sokoloff L, Mangold R, Wechsler RL, Kenney C, Kety SS. The effect of mental arithmetic on cerebral circulation and metabolism. J Clin Invest 1955;34:1101–8.PubMedCrossRef
93.
go back to reference Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8:700–11.PubMedCrossRef Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8:700–11.PubMedCrossRef
94.
go back to reference Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995;34:537–41.PubMedCrossRef Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995;34:537–41.PubMedCrossRef
95.
go back to reference Xiong J, Parsons LM, Gao JH, Fox PT. Interregional connectivity to primary motor cortex revealed using MRI resting state images. Hum Brain Mapp 1999;8:151–6.PubMedCrossRef Xiong J, Parsons LM, Gao JH, Fox PT. Interregional connectivity to primary motor cortex revealed using MRI resting state images. Hum Brain Mapp 1999;8:151–6.PubMedCrossRef
96.
go back to reference Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, et al. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol 2000;21:1636–44.PubMed Cordes D, Haughton VM, Arfanakis K, Wendt GJ, Turski PA, Moritz CH, et al. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol 2000;21:1636–44.PubMed
97.
go back to reference Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 2005;102:9673–8.PubMedCrossRef Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 2005;102:9673–8.PubMedCrossRef
98.
go back to reference Wise RG, Ide K, Poulin MJ, Tracey I. Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. Neuroimage 2004;21:1652–64.PubMedCrossRef Wise RG, Ide K, Poulin MJ, Tracey I. Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. Neuroimage 2004;21:1652–64.PubMedCrossRef
99.
go back to reference Birn RM, Diamond JB, Smith MA, Bandettini PA. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage 2006;31:1536–48.PubMedCrossRef Birn RM, Diamond JB, Smith MA, Bandettini PA. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage 2006;31:1536–48.PubMedCrossRef
100.
go back to reference Lowe MJ, Phillips MD, Lurito JT, Mattson D, Dzemidzic M, Mathews VP. Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results. Radiology 2002;224:184–92.PubMedCrossRef Lowe MJ, Phillips MD, Lurito JT, Mattson D, Dzemidzic M, Mathews VP. Multiple sclerosis: low-frequency temporal blood oxygen level-dependent fluctuations indicate reduced functional connectivity initial results. Radiology 2002;224:184–92.PubMedCrossRef
101.
go back to reference Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 2004;101:4637–42.PubMedCrossRef Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 2004;101:4637–42.PubMedCrossRef
102.
go back to reference Martinez-Montes E, Valdes-Sosa PA, Miwakeichi F, Goldman RI, Cohen MS. Concurrent EEG/fMRI analysis by multiway partial least squares [erratum appears in Neuroimage. 2005 Jul 1;26(3):973]. Neuroimage 2004;22:1023–34.PubMedCrossRef Martinez-Montes E, Valdes-Sosa PA, Miwakeichi F, Goldman RI, Cohen MS. Concurrent EEG/fMRI analysis by multiway partial least squares [erratum appears in Neuroimage. 2005 Jul 1;26(3):973]. Neuroimage 2004;22:1023–34.PubMedCrossRef
103.
go back to reference Melloni L, Molina C, Pena M, Torres D, Singer W, Rodriguez E. Synchronization of neural activity across cortical areas correlates with conscious perception. J Neurosci 2007;27:2858–65.PubMedCrossRef Melloni L, Molina C, Pena M, Torres D, Singer W, Rodriguez E. Synchronization of neural activity across cortical areas correlates with conscious perception. J Neurosci 2007;27:2858–65.PubMedCrossRef
104.
go back to reference Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, et al. Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 1997;9:648–63.CrossRef Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, et al. Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 1997;9:648–63.CrossRef
105.
go back to reference Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 2003;100:253–8.PubMedCrossRef Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 2003;100:253–8.PubMedCrossRef
106.
go back to reference Llinas RR. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 1988;242:1654–64.PubMedCrossRef Llinas RR. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 1988;242:1654–64.PubMedCrossRef
107.
go back to reference Fiser J, Chiu C, Weliky M. Small modulation of ongoing cortical dynamics by sensory input during natural vision. Nature 2004;431:573–8.PubMedCrossRef Fiser J, Chiu C, Weliky M. Small modulation of ongoing cortical dynamics by sensory input during natural vision. Nature 2004;431:573–8.PubMedCrossRef
108.
go back to reference Rombouts SA, Barkhof F, Goekoop R, Stam CJ, Scheltens P. Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum Brain Mapp 2005;26:231–9.PubMedCrossRef Rombouts SA, Barkhof F, Goekoop R, Stam CJ, Scheltens P. Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum Brain Mapp 2005;26:231–9.PubMedCrossRef
109.
go back to reference Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, et al. Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage 2006;31:496–504.PubMedCrossRef Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, et al. Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage 2006;31:496–504.PubMedCrossRef
110.
go back to reference Sorg CRV, Mühlau M, Calhoun VD, Eichele T, Läer L, Drzezga A, et al. Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci USA 2007;104(47):18760–5.PubMedCrossRef Sorg CRV, Mühlau M, Calhoun VD, Eichele T, Läer L, Drzezga A, et al. Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci USA 2007;104(47):18760–5.PubMedCrossRef
111.
go back to reference Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 2006;52:155–68.PubMedCrossRef Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 2006;52:155–68.PubMedCrossRef
112.
go back to reference Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neuroscience 2005;25:7709–17.CrossRef Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neuroscience 2005;25:7709–17.CrossRef
113.
go back to reference Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR, May PC, et al. Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo [see comment]. Neuron 2005;48:913–22.PubMedCrossRef Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR, May PC, et al. Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo [see comment]. Neuron 2005;48:913–22.PubMedCrossRef
114.
go back to reference Selkoe DJ. Amyloid beta-peptide is produced by cultured cells during normal metabolism: a reprise. J Alzheimer’s Dis 2006;9:163–8. Selkoe DJ. Amyloid beta-peptide is produced by cultured cells during normal metabolism: a reprise. J Alzheimer’s Dis 2006;9:163–8.
115.
go back to reference Scahill RI, Schott JM, Stevens JM, Rossor MN, Fox NC. Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI [see comment]. Proc Natl Acad Sci USA 2002;99:4703–7.PubMedCrossRef Scahill RI, Schott JM, Stevens JM, Rossor MN, Fox NC. Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI [see comment]. Proc Natl Acad Sci USA 2002;99:4703–7.PubMedCrossRef
116.
go back to reference Vincent JL, Snyder AZ, Fox MD, Shannon BJ, Andrews JR, Raichle ME, et al. Coherent spontaneous activity identifies a hippocampal–parietal memory network. J Neurophysiol. 2006;96:3517–31.PubMedCrossRef Vincent JL, Snyder AZ, Fox MD, Shannon BJ, Andrews JR, Raichle ME, et al. Coherent spontaneous activity identifies a hippocampal–parietal memory network. J Neurophysiol. 2006;96:3517–31.PubMedCrossRef
117.
go back to reference Prvulovic D, Van de Ven V, Sack AT, Maurer K, Linden DE. Functional activation imaging in aging and dementia. Psychiatry Res 2005;140:97–113.PubMed Prvulovic D, Van de Ven V, Sack AT, Maurer K, Linden DE. Functional activation imaging in aging and dementia. Psychiatry Res 2005;140:97–113.PubMed
118.
go back to reference Buckner RL, Vincent JL. Unrest at rest: default activity and spontaneous network correlations. Neuroimage 2007;37(4):1091–6, Oct 1.PubMedCrossRef Buckner RL, Vincent JL. Unrest at rest: default activity and spontaneous network correlations. Neuroimage 2007;37(4):1091–6, Oct 1.PubMedCrossRef
119.
go back to reference Morcom AM, Fletcher PC. Does the brain have a baseline? Why we should be resisting a rest. Neuroimage 2007;37(4):1073–82, Oct 1.CrossRef Morcom AM, Fletcher PC. Does the brain have a baseline? Why we should be resisting a rest. Neuroimage 2007;37(4):1073–82, Oct 1.CrossRef
Metadata
Title
A new integrative model of cerebral activation, deactivation and default mode function in Alzheimer’s disease
Authors
Marc Wermke
Christian Sorg
Afra M. Wohlschläger
Alexander Drzezga
Publication date
01-03-2008
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue Special Issue 1/2008
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-007-0698-5

Other articles of this Special Issue 1/2008

European Journal of Nuclear Medicine and Molecular Imaging 1/2008 Go to the issue