Skip to main content
Top
Published in: Journal of Cardiothoracic Surgery 1/2014

Open Access 01-12-2014 | Research article

A new human heart vessel identification, segmentation and 3D reconstruction mechanism

Authors: Aqeel Al-Surmi, Rahmita Wirza, Ramlan Mahmod, Fatimah Khalid, Mohd Zamrin Dimon

Published in: Journal of Cardiothoracic Surgery | Issue 1/2014

Login to get access

Abstract

Background

The identification and segmentation of inhomogeneous image regions is one of the most challenging issues nowadays. The surface vessels of the human heart are important for the surgeons to locate the region where to perform the surgery and to avoid surgical injuries. In addition, such identification, segmentation, and visualisation helps novice surgeons in the training phase of cardiac surgery.

Methods

This article introduces a new mechanism for identifying the position of vessels leading to the performance of surgery by enhancement of the input image. In addition, develop a 3D vessel reconstruction out of a single-view of a real human heart colour image obtained during open-heart surgery.

Results

Reduces the time required for locating the vessel region of interest (ROI). The vessel ROI must appear clearly for the surgeons. Furthermore, reduces the time required for training cardiac surgery of the novice surgeons. The 94.42% accuracy rate of the proposed vessel segmentation method using RGB colour space compares to other colour spaces.

Conclusions

The advantage of this mechanism is to help the surgeons to perform surgery in less time, avoid surgical errors, and to reduce surgical effort. Moreover, the proposed technique can reconstruct the 3D vessel model from a single image to facilitate learning of the heart anatomy as well as training of cardiac surgery for the novice surgeons. Furthermore, extensive experiments have been conducted which reveal the superior performance of the proposed mechanism compared to the state of the art methods.
Appendix
Available only for authorised users
Literature
2.
go back to reference Wyszecki G, Stiles WS: Color Science. 1982, Wiley, New York Wyszecki G, Stiles WS: Color Science. 1982, Wiley, New York
3.
go back to reference Travis D: Effective Color Displays: Theory and Practice. 1991, Academic, London Travis D: Effective Color Displays: Theory and Practice. 1991, Academic, London
4.
go back to reference Ford A, Roberts A: Colour Space Conversions. 1998, Westminster University, London, UK Ford A, Roberts A: Colour Space Conversions. 1998, Westminster University, London, UK
5.
go back to reference Pohle R, Toennies KD: Segmentation of medical images using adaptive region growing. Proc SPIE Medical Imaging. 2001, 1337-1346. Pohle R, Toennies KD: Segmentation of medical images using adaptive region growing. Proc SPIE Medical Imaging. 2001, 1337-1346.
6.
go back to reference Eiho S, Sekiguchi H, Sugimoto N, Hanakawa T, Urayama S: Branch-based region growing method for blood vessel segmentation. Proceedings of International Society for Photogrammetry and Remote Sensing Congress. 2004, 796-801. Eiho S, Sekiguchi H, Sugimoto N, Hanakawa T, Urayama S: Branch-based region growing method for blood vessel segmentation. Proceedings of International Society for Photogrammetry and Remote Sensing Congress. 2004, 796-801.
7.
go back to reference Kittler J, Illingworth J, Föglein J: Threshold selection based on a simple image statistic. Comput Vis Graph Image Proc. 1985, 30: 125-147. 10.1016/0734-189X(85)90093-3.CrossRef Kittler J, Illingworth J, Föglein J: Threshold selection based on a simple image statistic. Comput Vis Graph Image Proc. 1985, 30: 125-147. 10.1016/0734-189X(85)90093-3.CrossRef
8.
go back to reference Davies ER: Computer and Machine Vision, Fourth Edition: Theory, Algorithms, Practicalities. 2012, Academic Press, USA Davies ER: Computer and Machine Vision, Fourth Edition: Theory, Algorithms, Practicalities. 2012, Academic Press, USA
9.
go back to reference Galic S, Loncaric S: Spatio-temporal image segmentation using optical flow and clustering algorithm. Image and Signal Processing and Analysis, 2000 IWISPA 2000 Proceedings of the First International Workshop on; 2000. 2000, 63-68. Galic S, Loncaric S: Spatio-temporal image segmentation using optical flow and clustering algorithm. Image and Signal Processing and Analysis, 2000 IWISPA 2000 Proceedings of the First International Workshop on; 2000. 2000, 63-68.
10.
go back to reference Ilea DE, Ghita O, Robinson K, Sadleir R, Lynch M, Brennan D, Whelan PF: Identification of Body Fat Tissues in MRI Data. 2004 Ilea DE, Ghita O, Robinson K, Sadleir R, Lynch M, Brennan D, Whelan PF: Identification of Body Fat Tissues in MRI Data. 2004
11.
go back to reference Gonzalez RC, Woods RE: Digital Image Processing. 2008, Prentice Hall, USA Gonzalez RC, Woods RE: Digital Image Processing. 2008, Prentice Hall, USA
12.
go back to reference Haris K, Efstratiadis SN, Maglaveras N, Katsaggelos AK: Hybrid image segmentation using watersheds and fast region merging. IEEE Trans Image Process. 1998, 7: 1684-1699. 10.1109/83.730380.CrossRefPubMed Haris K, Efstratiadis SN, Maglaveras N, Katsaggelos AK: Hybrid image segmentation using watersheds and fast region merging. IEEE Trans Image Process. 1998, 7: 1684-1699. 10.1109/83.730380.CrossRefPubMed
13.
go back to reference Felkel P, Wegenkittl R, Kanitsar A: Vessel tracking in peripheral CTA datasets-an overview. In Computer Graphics, Spring Conference on; Budmerice. IEEE; 2001:232-239. Felkel P, Wegenkittl R, Kanitsar A: Vessel tracking in peripheral CTA datasets-an overview. In Computer Graphics, Spring Conference on; Budmerice. IEEE; 2001:232-239.
14.
go back to reference Suri JS, Liu K, Reden L, Laxminarayan S: A review on MR vascular image processing algorithms: acquisition and prefiltering: part I. IEEE Trans Inform Technol Biomed. 2002, 6: 324-10.1109/TITB.2002.804139.CrossRef Suri JS, Liu K, Reden L, Laxminarayan S: A review on MR vascular image processing algorithms: acquisition and prefiltering: part I. IEEE Trans Inform Technol Biomed. 2002, 6: 324-10.1109/TITB.2002.804139.CrossRef
15.
go back to reference Suri JS, Liu K, Reden L, Laxminarayan S: A review on MR vascular image processing: skeleton versus nonskeleton approaches: part II. IEEE Trans Inform Technol Biomed. 2002, 6: 338-350. 10.1109/TITB.2002.804136.CrossRef Suri JS, Liu K, Reden L, Laxminarayan S: A review on MR vascular image processing: skeleton versus nonskeleton approaches: part II. IEEE Trans Inform Technol Biomed. 2002, 6: 338-350. 10.1109/TITB.2002.804136.CrossRef
16.
go back to reference Bühler K, Felkel P, La Cruz A: Geometric Methods for Vessel Visualization and Quantification—A Survey. 2004, Springer, Berlin HeidelbergCrossRef Bühler K, Felkel P, La Cruz A: Geometric Methods for Vessel Visualization and Quantification—A Survey. 2004, Springer, Berlin HeidelbergCrossRef
17.
go back to reference Kirbas C, Quek F: A review of vessel extraction techniques and algorithms. ACM Comput Surv (CSUR). 2004, 36: 81-121. 10.1145/1031120.1031121.CrossRef Kirbas C, Quek F: A review of vessel extraction techniques and algorithms. ACM Comput Surv (CSUR). 2004, 36: 81-121. 10.1145/1031120.1031121.CrossRef
18.
go back to reference Lesage D, Angelini ED, Bloch I, Funka-Lea G: A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Med Image Anal. 2009, 13: 819-845. 10.1016/j.media.2009.07.011.CrossRefPubMed Lesage D, Angelini ED, Bloch I, Funka-Lea G: A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Med Image Anal. 2009, 13: 819-845. 10.1016/j.media.2009.07.011.CrossRefPubMed
19.
go back to reference Al-Surmi A, Wirza R, Dimon MZ, Mahmod R, Khalid F: Three Dimensional Reconstruction of Human Heart Surface from Single Image-View under Different Illumination Conditions. Am J Appl Sci. 2013, 10 (7): 669-680. 10.3844/ajassp.2013.669.680.CrossRef Al-Surmi A, Wirza R, Dimon MZ, Mahmod R, Khalid F: Three Dimensional Reconstruction of Human Heart Surface from Single Image-View under Different Illumination Conditions. Am J Appl Sci. 2013, 10 (7): 669-680. 10.3844/ajassp.2013.669.680.CrossRef
20.
go back to reference Stretch D: Algorithm Theoretical Basis Document. 1996 Stretch D: Algorithm Theoretical Basis Document. 1996
21.
go back to reference Buss SR: 3D Computer Graphics: A Mathematical Introduction with OpenGL. 2003, Cambridge University Press, UKCrossRef Buss SR: 3D Computer Graphics: A Mathematical Introduction with OpenGL. 2003, Cambridge University Press, UKCrossRef
22.
go back to reference Han J, Kamber M, Pei J: Data Mining: Concepts and Techniques. 2011, Morgan Kaufmann Publishers, USA Han J, Kamber M, Pei J: Data Mining: Concepts and Techniques. 2011, Morgan Kaufmann Publishers, USA
23.
go back to reference Higgins W, Spyra W, Ritman E: Automatic extraction of the arterial tree from 3-D angiograms. In Engineering in Medicine and Biology Society. Images of the Twenty-First Century, Proceedings of the Annual International Conference of the IEEE Engineering in; Seattle, WA. IEEE; 1989:563-564. Higgins W, Spyra W, Ritman E: Automatic extraction of the arterial tree from 3-D angiograms. In Engineering in Medicine and Biology Society. Images of the Twenty-First Century, Proceedings of the Annual International Conference of the IEEE Engineering in; Seattle, WA. IEEE; 1989:563-564.
24.
go back to reference Niki N, Kawata Y, Satoh H, Kumazaki T: 3D imaging of blood vessels using x-ray rotational angiographic system. In Nuclear Science Symposium and Medical Imaging Conference IEEE Conference Record; San Francisco, CA. IEEE; 1993:1873-1877. Niki N, Kawata Y, Satoh H, Kumazaki T: 3D imaging of blood vessels using x-ray rotational angiographic system. In Nuclear Science Symposium and Medical Imaging Conference IEEE Conference Record; San Francisco, CA. IEEE; 1993:1873-1877.
25.
go back to reference Guo D, Richardson P: Automatic vessel extraction from angiogram images. In Computers in Cardiology; Cleveland, OH. IEEE; 1998:441-444. Guo D, Richardson P: Automatic vessel extraction from angiogram images. In Computers in Cardiology; Cleveland, OH. IEEE; 1998:441-444.
26.
go back to reference Sato Y, Nakajima S, Shiraga N, Atsumi H, Yoshida S, Koller T, Gerig G, Kikinis R: Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med Image Anal. 1998, 2: 143-168. 10.1016/S1361-8415(98)80009-1.CrossRefPubMed Sato Y, Nakajima S, Shiraga N, Atsumi H, Yoshida S, Koller T, Gerig G, Kikinis R: Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med Image Anal. 1998, 2: 143-168. 10.1016/S1361-8415(98)80009-1.CrossRefPubMed
27.
go back to reference Sarwal A, Dhawan AP: 3-d reconstruction of coronary arteries. In Engineering in Medicine and Biology Society Engineering Advances: New Opportunities for Biomedical Engineers Proceedings of the 16th Annual International Conference of the IEEE; Baltimore, MD. : IEEE; 1994:504-505. Sarwal A, Dhawan AP: 3-d reconstruction of coronary arteries. In Engineering in Medicine and Biology Society Engineering Advances: New Opportunities for Biomedical Engineers Proceedings of the 16th Annual International Conference of the IEEE; Baltimore, MD. : IEEE; 1994:504-505.
28.
go back to reference Frangi AF, Niessen WJ, Viergever MA: Three-dimensional modeling for functional analysis of cardiac images, a review. IEEE Trans Med Imaging. 2001, 20: 2-5. 10.1109/42.906421.CrossRefPubMed Frangi AF, Niessen WJ, Viergever MA: Three-dimensional modeling for functional analysis of cardiac images, a review. IEEE Trans Med Imaging. 2001, 20: 2-5. 10.1109/42.906421.CrossRefPubMed
29.
go back to reference Petitjean C, Dacher J-N: A review of segmentation methods in short axis cardiac MR images. Med Image Anal. 2011, 15: 169-184. 10.1016/j.media.2010.12.004.CrossRefPubMed Petitjean C, Dacher J-N: A review of segmentation methods in short axis cardiac MR images. Med Image Anal. 2011, 15: 169-184. 10.1016/j.media.2010.12.004.CrossRefPubMed
30.
go back to reference Bankhead P, Scholfield CN, McGeown JG, Curtis TM: Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLoS One. 2012, 7: e32435-10.1371/journal.pone.0032435.CrossRefPubMedPubMedCentral Bankhead P, Scholfield CN, McGeown JG, Curtis TM: Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLoS One. 2012, 7: e32435-10.1371/journal.pone.0032435.CrossRefPubMedPubMedCentral
31.
go back to reference Vermes E, Childs H, Carbone I, Barckow P, Friedrich MG: Auto-Threshold quantification of late gadolinium enhancement in patients with acute heart disease. J Magn Reson Imaging. 2013, 37: 382-390. 10.1002/jmri.23814.CrossRefPubMed Vermes E, Childs H, Carbone I, Barckow P, Friedrich MG: Auto-Threshold quantification of late gadolinium enhancement in patients with acute heart disease. J Magn Reson Imaging. 2013, 37: 382-390. 10.1002/jmri.23814.CrossRefPubMed
Metadata
Title
A new human heart vessel identification, segmentation and 3D reconstruction mechanism
Authors
Aqeel Al-Surmi
Rahmita Wirza
Ramlan Mahmod
Fatimah Khalid
Mohd Zamrin Dimon
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Journal of Cardiothoracic Surgery / Issue 1/2014
Electronic ISSN: 1749-8090
DOI
https://doi.org/10.1186/s13019-014-0161-1

Other articles of this Issue 1/2014

Journal of Cardiothoracic Surgery 1/2014 Go to the issue