Skip to main content
Top
Published in: Cardiovascular Drugs and Therapy 2/2016

01-04-2016 | ORIGINAL ARTICLE

A Moderate Carnitine Deficiency Exacerbates Isoproterenol-Induced Myocardial Injury in Rats

Authors: Pietro Lo Giudice, Mario Bonomini, Arduino Arduini

Published in: Cardiovascular Drugs and Therapy | Issue 2/2016

Login to get access

Abstract

Purpose

The myocardium is largely dependent upon oxidation of fatty acids for the production of ATP. Cardiac contractile abnormalities and failure have been reported after acute emotional stress and there is evidence that catecholamines are responsible for acute stress-induced heart injury. We hypothesized that carnitine deficiency increases the risk of stress-induced heart injury.

Methods

Carnitine deficiency was induced in Wistar rats by adding 20 mmol/L of sodium pivalate to drinking water (P). Controls (C) received equimolar sodium bicarbonate and a third group (P + Cn) received pivalate along with 40 mmol/L carnitine. After 15 days, 6 rats/group were used to evaluate function of isolated hearts under infusion of 0.1 μM isoproterenol and 20 rats/group were submitted to a single subcutaneous administration of 50 mg/kg isoproterenol.

Results

Isoproterenol infusion in C markedly increased the heart rate, left ventricular (LV) systolic pressure and coronary flow rate. In P rats, isoproterenol increased the heart rate and LV systolic pressure but these increases were not paralleled by a rise in the coronary flow rate and LV diastolic pressure progressively increased. Subcutaneous isoproterenol induced 15 % mortality rate in C and 50 % in P (p < 0.05). Hearts of surviving P rats examined 15 days later appeared clearly dilated, presented a marked impairment of LV function and a greater increase in tumor necrosis factor α (TNFα) levels. All these detrimental effects were negligible in P + Cn rats.

Conclusions

Our study suggests that carnitine deficiency exposes the heart to a greater risk of injury when sympathetic nerve activity is greatly stimulated, for example during emotional, mental or physical stress.
Literature
1.
go back to reference Rebouche CJ. Carnitine function and requirements during life cycle. Faseb j. 1992;6:3379–86.PubMed Rebouche CJ. Carnitine function and requirements during life cycle. Faseb j. 1992;6:3379–86.PubMed
2.
go back to reference Pons R, De Vivo DC. Primary and secondary carnitine deficiency syndromes. J Child Neurol. 1995;10:S8–S24.CrossRefPubMed Pons R, De Vivo DC. Primary and secondary carnitine deficiency syndromes. J Child Neurol. 1995;10:S8–S24.CrossRefPubMed
3.
go back to reference Longo N, Amat di San Filippo C, Pasquali M. Disorders of carnitine transport and the carnitine cycle. Am J Med Genet C Semin Med Genet. 2006;142:77–85.CrossRef Longo N, Amat di San Filippo C, Pasquali M. Disorders of carnitine transport and the carnitine cycle. Am J Med Genet C Semin Med Genet. 2006;142:77–85.CrossRef
4.
go back to reference Magoulas PL, El-Hattab AW. Systemic primary carnitine deficiency: an overview of clinical manifestations, diagnosis, and management. Orphanet J Rare Dis. 2012;7:68.CrossRefPubMedPubMedCentral Magoulas PL, El-Hattab AW. Systemic primary carnitine deficiency: an overview of clinical manifestations, diagnosis, and management. Orphanet J Rare Dis. 2012;7:68.CrossRefPubMedPubMedCentral
5.
6.
go back to reference Brass EP. Pivalate-generating prodrugs and carnitine homeostasis in man. Pharmacol Rev. 2002;54:589–98.CrossRefPubMed Brass EP. Pivalate-generating prodrugs and carnitine homeostasis in man. Pharmacol Rev. 2002;54:589–98.CrossRefPubMed
7.
go back to reference Jia YY, Lu CT, Feng J, et al. Impact on L-carnitine homeostasis of short-term treatment with the pivalate prodrug tenofovir dipivoxil. Basic Clin Pharmacol Toxicol. 2013;113:431–5.CrossRefPubMed Jia YY, Lu CT, Feng J, et al. Impact on L-carnitine homeostasis of short-term treatment with the pivalate prodrug tenofovir dipivoxil. Basic Clin Pharmacol Toxicol. 2013;113:431–5.CrossRefPubMed
8.
go back to reference Boemer F, Schoos R, de Halleux V, Kalenga M, Debray FG. Surprising causes of C5-carnitine false positive results in newborn screening. Mol Genet Metab. 2014;111:52–4.CrossRefPubMed Boemer F, Schoos R, de Halleux V, Kalenga M, Debray FG. Surprising causes of C5-carnitine false positive results in newborn screening. Mol Genet Metab. 2014;111:52–4.CrossRefPubMed
9.
go back to reference Ricciolini R, Scalibastri M, Carminati P, Arduini A. The effect of pivalate treatment of pregnant rats on body mass and insulin levels in the adult offspring. Life Sci. 2001;69:1733–8.CrossRefPubMed Ricciolini R, Scalibastri M, Carminati P, Arduini A. The effect of pivalate treatment of pregnant rats on body mass and insulin levels in the adult offspring. Life Sci. 2001;69:1733–8.CrossRefPubMed
10.
go back to reference Broderick TL. Hypocarnitinaemia induced by sodium pivalate in the rat is associated with left ventricular dysfunction and impaired energy metabolism. Drugs R&D. 2006;7:153–61.CrossRef Broderick TL. Hypocarnitinaemia induced by sodium pivalate in the rat is associated with left ventricular dysfunction and impaired energy metabolism. Drugs R&D. 2006;7:153–61.CrossRef
11.
go back to reference Rasmussen J, Nielsen OW, Lund AM, Køber L, Djurhuus H. Primary carnitine deficiency and pivalic acid exposure causing encephalopathy and fatal cardiac events. J Inherit Metab Dis. 2013;36:35–41.CrossRefPubMed Rasmussen J, Nielsen OW, Lund AM, Køber L, Djurhuus H. Primary carnitine deficiency and pivalic acid exposure causing encephalopathy and fatal cardiac events. J Inherit Metab Dis. 2013;36:35–41.CrossRefPubMed
13.
go back to reference Wittstein IS, Thiemann DR, Lima JAC, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005;352:539–48.CrossRefPubMed Wittstein IS, Thiemann DR, Lima JAC, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005;352:539–48.CrossRefPubMed
14.
15.
go back to reference Templin C, Ghadri JR, Diekmann J, et al. Clinical features and outcomes of takotsubo (stress) cardiomyopathy. N Engl J Med. 2015;373:929–38.CrossRefPubMed Templin C, Ghadri JR, Diekmann J, et al. Clinical features and outcomes of takotsubo (stress) cardiomyopathy. N Engl J Med. 2015;373:929–38.CrossRefPubMed
16.
go back to reference Analóczy Z Role of catecholamines in stress-induced heart disease. In: Beamish RE, Panagia V, Dhalla NS, editors. Pathogenesis of stress-induced heart disease. Boston: Martinus Nijhoff; 1985. p. 213–27.CrossRef Analóczy Z Role of catecholamines in stress-induced heart disease. In: Beamish RE, Panagia V, Dhalla NS, editors. Pathogenesis of stress-induced heart disease. Boston: Martinus Nijhoff; 1985. p. 213–27.CrossRef
17.
go back to reference Downing SE, Chen V. Myocardial injury following endogenous catecholamine release in rabbits. J Mol Cell Cardiol. 1985;17:377–87.CrossRefPubMed Downing SE, Chen V. Myocardial injury following endogenous catecholamine release in rabbits. J Mol Cell Cardiol. 1985;17:377–87.CrossRefPubMed
18.
go back to reference Rona G Involvement of catecholamines in the development of myocardial cell damage. In: Beamish RE, Panagia V, Dhalla NS, editors. Pathogenesis of stress-induced heart disease. Boston: Martinus Nijhoff; 1985. p. 228–36.CrossRef Rona G Involvement of catecholamines in the development of myocardial cell damage. In: Beamish RE, Panagia V, Dhalla NS, editors. Pathogenesis of stress-induced heart disease. Boston: Martinus Nijhoff; 1985. p. 228–36.CrossRef
19.
go back to reference Arakawa H, Kodama H, Matsuoka N, Yamaguchi I. Stress increases plasma enzyme activities in rats: differential effects of adrenergic and cholinergic blockades. J Pharmacol Exp Ther. 1997;280:1296–303.PubMed Arakawa H, Kodama H, Matsuoka N, Yamaguchi I. Stress increases plasma enzyme activities in rats: differential effects of adrenergic and cholinergic blockades. J Pharmacol Exp Ther. 1997;280:1296–303.PubMed
20.
go back to reference Willis BC, Salazar-Cantú A, Silva-Platas C, et al. Impaired oxidative metabolism and calcium mishandling underlie cardiac dysfunction in a rat model of post-acute isoproterenol-induced cardiomyopathy. Am J Physiol Heart Circ Physiol. 2015;308:H467–77.CrossRefPubMed Willis BC, Salazar-Cantú A, Silva-Platas C, et al. Impaired oxidative metabolism and calcium mishandling underlie cardiac dysfunction in a rat model of post-acute isoproterenol-induced cardiomyopathy. Am J Physiol Heart Circ Physiol. 2015;308:H467–77.CrossRefPubMed
21.
go back to reference Costoli T, Bartolomucci A, Graiani G, Stilli D, Laviola G, Sgoifo A. Effects of chronic psycho-social stress on cardiac autonomic responsiveness and myocardial structure in mice. Am J Physiol Heart Circ Physiol. 2004;286:H2133–40.CrossRefPubMed Costoli T, Bartolomucci A, Graiani G, Stilli D, Laviola G, Sgoifo A. Effects of chronic psycho-social stress on cardiac autonomic responsiveness and myocardial structure in mice. Am J Physiol Heart Circ Physiol. 2004;286:H2133–40.CrossRefPubMed
22.
go back to reference Bianchi PB, Davis AT. Sodium pivalate treatment reduces tissue carnitines and enhances ketosis in rats. J Nutr. 1991;121:2029–36.PubMed Bianchi PB, Davis AT. Sodium pivalate treatment reduces tissue carnitines and enhances ketosis in rats. J Nutr. 1991;121:2029–36.PubMed
23.
go back to reference Bergmeyer HU. Methoden der enzymatischen analyse. Verlag Chemie: Weinheim; 1974. Bergmeyer HU. Methoden der enzymatischen analyse. Verlag Chemie: Weinheim; 1974.
24.
go back to reference Pace JA, Wannemacher RW, Neufeld HA Improved radiochemical assay for carnitine and its derivatives in plasma and tissue extracts. Clin Chem. 1978;24:32–5.PubMed Pace JA, Wannemacher RW, Neufeld HA Improved radiochemical assay for carnitine and its derivatives in plasma and tissue extracts. Clin Chem. 1978;24:32–5.PubMed
25.
go back to reference Ramesh CV, Malarvannan P, Jayakumar R, Jayasundar S, Puvanakrishnan R. Effect of a novel tetrapeptide derivative in a rat model of isoproterenol induced myocardial necrosis. Mol Cell Biochem. 1998;187:173–82.CrossRefPubMed Ramesh CV, Malarvannan P, Jayakumar R, Jayasundar S, Puvanakrishnan R. Effect of a novel tetrapeptide derivative in a rat model of isoproterenol induced myocardial necrosis. Mol Cell Biochem. 1998;187:173–82.CrossRefPubMed
26.
go back to reference Rasmussen J, Thomsen JA, Olesen JH, Lund TM, Mohr M, Clementsen J, Nielsen OW, Lund AM. Carnitine levels in skeletal muscle, blood, and urine in patients with primary carnitine deficiency during intermission of L-carnitine supplementation. JIMD Rep. 2015;20:103–11.CrossRefPubMedPubMedCentral Rasmussen J, Thomsen JA, Olesen JH, Lund TM, Mohr M, Clementsen J, Nielsen OW, Lund AM. Carnitine levels in skeletal muscle, blood, and urine in patients with primary carnitine deficiency during intermission of L-carnitine supplementation. JIMD Rep. 2015;20:103–11.CrossRefPubMedPubMedCentral
27.
go back to reference Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90:207–58.CrossRefPubMed Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90:207–58.CrossRefPubMed
28.
go back to reference Dennis SC, Gevers W, Opie LH. Protons in ischemia: where do they come from; where do they go to? J Mol Cell Cardiol. 1991;23:1077–86.CrossRefPubMed Dennis SC, Gevers W, Opie LH. Protons in ischemia: where do they come from; where do they go to? J Mol Cell Cardiol. 1991;23:1077–86.CrossRefPubMed
29.
go back to reference Liu Q, Docherty JC, Rendell JC, Clanachan AS, Lopaschuk GD. High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation. J Am Coll Cardiol. 2002;39:718–25.CrossRefPubMed Liu Q, Docherty JC, Rendell JC, Clanachan AS, Lopaschuk GD. High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation. J Am Coll Cardiol. 2002;39:718–25.CrossRefPubMed
30.
go back to reference Hool LC. What cardiologists should know about calcium ion channels and their regulation by reactive oxygen species. Heart Lung Circ. 2007;16:361–72.CrossRefPubMed Hool LC. What cardiologists should know about calcium ion channels and their regulation by reactive oxygen species. Heart Lung Circ. 2007;16:361–72.CrossRefPubMed
31.
go back to reference Garcia-Dorado D, Ruiz-Meana M, Inserte J, Rodriguez-Sinovas A, Piper HM. Calcium-mediated cell death during myocardial reperfusion. Cardiovasc Res. 2012;94:168–80.CrossRefPubMed Garcia-Dorado D, Ruiz-Meana M, Inserte J, Rodriguez-Sinovas A, Piper HM. Calcium-mediated cell death during myocardial reperfusion. Cardiovasc Res. 2012;94:168–80.CrossRefPubMed
32.
go back to reference Betgem RP, de Waard GA, Nijveldt R, Beek AM, Escaned J, van Royen N. Intramyocardial haemorrhage after acute myocardial infarction. Nat Rev Cardiol. 2015;12:156–67.CrossRefPubMed Betgem RP, de Waard GA, Nijveldt R, Beek AM, Escaned J, van Royen N. Intramyocardial haemorrhage after acute myocardial infarction. Nat Rev Cardiol. 2015;12:156–67.CrossRefPubMed
33.
go back to reference Burnstock G, Ralevic V. Purinergic signaling and blood vessels in health and disease. Pharmacol Rev. 2013;66:102–92.CrossRefPubMed Burnstock G, Ralevic V. Purinergic signaling and blood vessels in health and disease. Pharmacol Rev. 2013;66:102–92.CrossRefPubMed
34.
go back to reference Broderick TM, Christos SC, Wolf BA, et al. Fatty acid oxidation and cardiac function in the sodium pivalate model of secondary carnitine deficiency. Metabolism. 1995;44:499–505.CrossRefPubMed Broderick TM, Christos SC, Wolf BA, et al. Fatty acid oxidation and cardiac function in the sodium pivalate model of secondary carnitine deficiency. Metabolism. 1995;44:499–505.CrossRefPubMed
35.
go back to reference Sushamakumari S, Jayadeep A, Kumar JS, Menon VP. Effect of carnitine on malondialdehyde, taurine and glutathione levels in heart of rats subjected to myocardial stress by isoproterenol. Indian J Exp Biol. 1989;27:134–7.PubMed Sushamakumari S, Jayadeep A, Kumar JS, Menon VP. Effect of carnitine on malondialdehyde, taurine and glutathione levels in heart of rats subjected to myocardial stress by isoproterenol. Indian J Exp Biol. 1989;27:134–7.PubMed
36.
go back to reference Mathew S, Menon PV, Kurup PA. Effect of administration of carnitine on the severity of myocardial infarction induced by isoproterenol in rats. Aust J Exp Biol Med Sci. 1986;64:79–87.CrossRefPubMed Mathew S, Menon PV, Kurup PA. Effect of administration of carnitine on the severity of myocardial infarction induced by isoproterenol in rats. Aust J Exp Biol Med Sci. 1986;64:79–87.CrossRefPubMed
37.
go back to reference Morris GS, Zhou Q, Wolf BA, et al. Sodium pivalate reduces cardiac carnitine content and increases glucose oxidation without affecting cardiac functional capacity. Life Sci. 1995;57:2237–44.CrossRefPubMed Morris GS, Zhou Q, Wolf BA, et al. Sodium pivalate reduces cardiac carnitine content and increases glucose oxidation without affecting cardiac functional capacity. Life Sci. 1995;57:2237–44.CrossRefPubMed
38.
go back to reference Takahashi R, Asai T, Murakami H, et al. Pressure overload-induced cardiomyopathy in heterozygous carrier mice of carnitine transporter gene mutation. Hypertension. 2007;50:497–502.CrossRefPubMed Takahashi R, Asai T, Murakami H, et al. Pressure overload-induced cardiomyopathy in heterozygous carrier mice of carnitine transporter gene mutation. Hypertension. 2007;50:497–502.CrossRefPubMed
39.
go back to reference Kuwajima M, Lu K, Sei M, et al. Characteristics of cardiac hypertrophy in the juvenile visceral steatosis mouse with systemic carnitine deficiency. J Mol Cell Cardiol. 1998;30:773–81.CrossRefPubMed Kuwajima M, Lu K, Sei M, et al. Characteristics of cardiac hypertrophy in the juvenile visceral steatosis mouse with systemic carnitine deficiency. J Mol Cell Cardiol. 1998;30:773–81.CrossRefPubMed
40.
go back to reference Lahjouji K, Elimrani I, Wu J, Mitchell GA, Qureshi IA. A heterozygote phenotype is present in the jvs +/− mutant mouse livers. Mol Genet Metab. 2002;76:76–80.CrossRefPubMed Lahjouji K, Elimrani I, Wu J, Mitchell GA, Qureshi IA. A heterozygote phenotype is present in the jvs +/− mutant mouse livers. Mol Genet Metab. 2002;76:76–80.CrossRefPubMed
41.
go back to reference Koizumi A, Nozaki J, Ohura T, et al. Genetic epidemiology of the carnitine transporter OCTN2 gene in a Japanese population and phenotypic characterization in Japanese pedigrees with primary systemic carnitine deficiency. Hum Mol Genet. 1999;8:2247–54.CrossRefPubMed Koizumi A, Nozaki J, Ohura T, et al. Genetic epidemiology of the carnitine transporter OCTN2 gene in a Japanese population and phenotypic characterization in Japanese pedigrees with primary systemic carnitine deficiency. Hum Mol Genet. 1999;8:2247–54.CrossRefPubMed
42.
go back to reference Amat di San Filippo C, MR T, Mestroni L, LD B, Longo N. Cardiomyopathy and carnitine deficiency. Mol Genet Metab. 2008;94:162–6.CrossRefPubMed Amat di San Filippo C, MR T, Mestroni L, LD B, Longo N. Cardiomyopathy and carnitine deficiency. Mol Genet Metab. 2008;94:162–6.CrossRefPubMed
43.
go back to reference Scaglia F, Wang Y, Singh RH, et al. Defective urinary carnitine transport in heterozygotes for primary carnitine deficiency. Genet Med. 1998;1:34–9.CrossRefPubMed Scaglia F, Wang Y, Singh RH, et al. Defective urinary carnitine transport in heterozygotes for primary carnitine deficiency. Genet Med. 1998;1:34–9.CrossRefPubMed
44.
go back to reference Di Liberato L, Arduini A, Rossi C, Di Castelnuovo A, et al. L-Carnitine status in end-stage renal disease patients on automated peritoneal dialysis. J Nephrol. 2014;27:699–706.CrossRefPubMed Di Liberato L, Arduini A, Rossi C, Di Castelnuovo A, et al. L-Carnitine status in end-stage renal disease patients on automated peritoneal dialysis. J Nephrol. 2014;27:699–706.CrossRefPubMed
45.
go back to reference Converse Jr RL, Jacobsen TN, Toto RD, et al. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327:1912–8.CrossRefPubMed Converse Jr RL, Jacobsen TN, Toto RD, et al. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327:1912–8.CrossRefPubMed
46.
go back to reference Abrahamsson K, Mellander M, Eriksson BO, et al. Transient reduction of human left ventricular mass in carnitine depletion induced by antibiotics containing pivalic acid. Br Heart J. 1995;74:656–9.CrossRefPubMedPubMedCentral Abrahamsson K, Mellander M, Eriksson BO, et al. Transient reduction of human left ventricular mass in carnitine depletion induced by antibiotics containing pivalic acid. Br Heart J. 1995;74:656–9.CrossRefPubMedPubMedCentral
47.
go back to reference Burke AP, Virmani R. Pathophysiology of acute myocardial infarction. Med Clin North Am. 2007;91:553–72.CrossRefPubMed Burke AP, Virmani R. Pathophysiology of acute myocardial infarction. Med Clin North Am. 2007;91:553–72.CrossRefPubMed
48.
go back to reference Willerson JT, Ridker PM Inflammation as a cardiovascular risk factor. Circulation. 2004;109:II2–II10.CrossRefPubMed Willerson JT, Ridker PM Inflammation as a cardiovascular risk factor. Circulation. 2004;109:II2–II10.CrossRefPubMed
49.
go back to reference Gasparyan AY Cardiovascular risk and inflammation: pathophysiological mechanisms, drug design, and targets. Curr Pharm Des. 2012;18:1447–9.CrossRefPubMed Gasparyan AY Cardiovascular risk and inflammation: pathophysiological mechanisms, drug design, and targets. Curr Pharm Des. 2012;18:1447–9.CrossRefPubMed
50.
go back to reference Lee BJ, Lin JS, Lin YC, Lin PT. Antiinflammatory effects of L-carnitine supplementation (1000 mg/d) in coronary artery disease patients. Nutrition. 2015;31:475–9.CrossRefPubMed Lee BJ, Lin JS, Lin YC, Lin PT. Antiinflammatory effects of L-carnitine supplementation (1000 mg/d) in coronary artery disease patients. Nutrition. 2015;31:475–9.CrossRefPubMed
51.
go back to reference Vescovo G, Ravara B, Gobbo V, et al. L-carnitine: a potential treatment for blocking apoptosis and preventing skeletal muscle myopathy in heart failure. Am J Physiol Cell Physiol. 2002;283:C802–10.CrossRefPubMed Vescovo G, Ravara B, Gobbo V, et al. L-carnitine: a potential treatment for blocking apoptosis and preventing skeletal muscle myopathy in heart failure. Am J Physiol Cell Physiol. 2002;283:C802–10.CrossRefPubMed
52.
go back to reference Jiang F, Zhang Z, Zhang Y, Wu J, Yu L, Liu S. L-carnitine ameliorates the liver inflammatory response by regulating carnitine palmitoyltransferase I-dependent PPARγ signaling. Mol Med Rep 2015 Jiang F, Zhang Z, Zhang Y, Wu J, Yu L, Liu S. L-carnitine ameliorates the liver inflammatory response by regulating carnitine palmitoyltransferase I-dependent PPARγ signaling. Mol Med Rep 2015
53.
go back to reference Hua X, Su Z, Deng R, Lin J, Li DQ, Pflugfelder SC. Effects of L-carnitine, erythritol and betaine on pro-inflammatory markers in primary human corneal epithelial cells exposed to hyperosmotic stress. Curr Eye Res. 2015;40:657–67.CrossRefPubMed Hua X, Su Z, Deng R, Lin J, Li DQ, Pflugfelder SC. Effects of L-carnitine, erythritol and betaine on pro-inflammatory markers in primary human corneal epithelial cells exposed to hyperosmotic stress. Curr Eye Res. 2015;40:657–67.CrossRefPubMed
54.
go back to reference Ussher JR, Wang W, Gandhi M, Keung W, et al. Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. Cardiovasc Res. 2012;94:359–69.CrossRefPubMed Ussher JR, Wang W, Gandhi M, Keung W, et al. Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. Cardiovasc Res. 2012;94:359–69.CrossRefPubMed
56.
go back to reference Arduini A, Bonomini M, Savica V, Amato A, Zammit V. Carnitine in metabolic disease: potential for pharmacological intervention. Pharmacol Ther. 2008;120:149–56.CrossRefPubMed Arduini A, Bonomini M, Savica V, Amato A, Zammit V. Carnitine in metabolic disease: potential for pharmacological intervention. Pharmacol Ther. 2008;120:149–56.CrossRefPubMed
Metadata
Title
A Moderate Carnitine Deficiency Exacerbates Isoproterenol-Induced Myocardial Injury in Rats
Authors
Pietro Lo Giudice
Mario Bonomini
Arduino Arduini
Publication date
01-04-2016
Publisher
Springer US
Published in
Cardiovascular Drugs and Therapy / Issue 2/2016
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-016-6647-4

Other articles of this Issue 2/2016

Cardiovascular Drugs and Therapy 2/2016 Go to the issue