Skip to main content
Top
Published in: Annals of Nuclear Medicine 1/2013

01-01-2013 | Technical note

A heuristic statistical stopping rule for iterative reconstruction in emission tomography

Authors: F. Ben Bouallègue, J. F. Crouzet, D. Mariano-Goulart

Published in: Annals of Nuclear Medicine | Issue 1/2013

Login to get access

Abstract

Objective

We propose a statistical stopping criterion for iterative reconstruction in emission tomography based on a heuristic statistical description of the reconstruction process.

Methods

The method was assessed for MLEM reconstruction. Based on Monte-Carlo numerical simulations and using a perfectly modeled system matrix, our method was compared with classical iterative reconstruction followed by low-pass filtering in terms of Euclidian distance to the exact object, noise, and resolution. The stopping criterion was then evaluated with realistic PET data of a Hoffman brain phantom produced using the GATE platform for different count levels.

Results

The numerical experiments showed that compared with the classical method, our technique yielded significant improvement of the noise-resolution tradeoff for a wide range of counting statistics compatible with routine clinical settings. When working with realistic data, the stopping rule allowed a qualitatively and quantitatively efficient determination of the optimal image.

Conclusions

Our method appears to give a reliable estimation of the optimal stopping point for iterative reconstruction. It should thus be of practical interest as it produces images with similar or better quality than classical post-filtered iterative reconstruction with a mastered computation time.
Literature
1.
go back to reference Gordon R, Bender R, Herman GT. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J Theor Biol. 1970;29:471–81.PubMedCrossRef Gordon R, Bender R, Herman GT. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J Theor Biol. 1970;29:471–81.PubMedCrossRef
2.
go back to reference Brooks RA, Di Chiro G. Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Phys Med Biol. 1976;21:689–732.PubMedCrossRef Brooks RA, Di Chiro G. Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging. Phys Med Biol. 1976;21:689–732.PubMedCrossRef
3.
go back to reference Goitein M. Three-dimensional density reconstruction from a series of twodimensional projections. Nucl Instrum Methods. 1972;101:509–18.CrossRef Goitein M. Three-dimensional density reconstruction from a series of twodimensional projections. Nucl Instrum Methods. 1972;101:509–18.CrossRef
4.
go back to reference Gilbert PFC. Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biol. 1972;36:105–17.PubMedCrossRef Gilbert PFC. Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biol. 1972;36:105–17.PubMedCrossRef
5.
go back to reference Xu XL, Liow JS, Strother SC. Iterative algebraic reconstruction algorithms for emission computed tomography: a unified framework and its application to positron emission tomography. Med Phys. 1993;20:1675–84.PubMedCrossRef Xu XL, Liow JS, Strother SC. Iterative algebraic reconstruction algorithms for emission computed tomography: a unified framework and its application to positron emission tomography. Med Phys. 1993;20:1675–84.PubMedCrossRef
6.
go back to reference Schmidlin P. Iterative separation of sections in tomographic scintigrams. Nucl Med. 1972;11(1):1–16. Schmidlin P. Iterative separation of sections in tomographic scintigrams. Nucl Med. 1972;11(1):1–16.
7.
go back to reference Darroch JN, Ratcliff D. Generalized iterative scaling for log-linear models. Ann Math Stat. 1972;43:1470–80.CrossRef Darroch JN, Ratcliff D. Generalized iterative scaling for log-linear models. Ann Math Stat. 1972;43:1470–80.CrossRef
8.
go back to reference Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc. 1977;39:1–38. Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc. 1977;39:1–38.
9.
go back to reference Barrett HH, Swindell W. Radiological imaging—the theory of image formation, detection, and processing. New York: Academic Press; 1981. Barrett HH, Swindell W. Radiological imaging—the theory of image formation, detection, and processing. New York: Academic Press; 1981.
10.
go back to reference Shepp VA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging. 1982;1:113–22.PubMedCrossRef Shepp VA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging. 1982;1:113–22.PubMedCrossRef
11.
go back to reference Byrne CL. Block-iterative methods for image reconstruction from projections. IEEE Trans Image Proc. 1996;5:792–4.CrossRef Byrne CL. Block-iterative methods for image reconstruction from projections. IEEE Trans Image Proc. 1996;5:792–4.CrossRef
12.
go back to reference Byrne CL. Accelerating the EMML algorithm and related iterative algorithms by rescaled block-iterative methods. IEEE Trans Image Proc. 1998;7:100–9.CrossRef Byrne CL. Accelerating the EMML algorithm and related iterative algorithms by rescaled block-iterative methods. IEEE Trans Image Proc. 1998;7:100–9.CrossRef
13.
go back to reference Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9.PubMedCrossRef Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging. 1994;13:601–9.PubMedCrossRef
14.
go back to reference Browne J, de Pierro AB. A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography. IEEE Trans Med Imaging. 1996;15:687–99.PubMedCrossRef Browne J, de Pierro AB. A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography. IEEE Trans Med Imaging. 1996;15:687–99.PubMedCrossRef
15.
go back to reference Mesina CT, Boellaard R, Jongbloed G, Van der Vaart AW, Lammertsma AA. Experimental evaluation of iterative reconstruction versus filtered backprojection for 3D [15O]water PET activation studies using statistical parametric mapping analysis. Neuroimage. 2003;19:1170–9.PubMedCrossRef Mesina CT, Boellaard R, Jongbloed G, Van der Vaart AW, Lammertsma AA. Experimental evaluation of iterative reconstruction versus filtered backprojection for 3D [15O]water PET activation studies using statistical parametric mapping analysis. Neuroimage. 2003;19:1170–9.PubMedCrossRef
16.
go back to reference Lubberink M, Boellaard R, Van der Weerdt AP, Visser AC, Lammertsma AA. Quantitative comparison of analytic and iterative reconstruction methods in 2- and 3-dimensional dynamic cardiac 18F-FDG PET. J Nucl Med. 2004;45:2008–15.PubMed Lubberink M, Boellaard R, Van der Weerdt AP, Visser AC, Lammertsma AA. Quantitative comparison of analytic and iterative reconstruction methods in 2- and 3-dimensional dynamic cardiac 18F-FDG PET. J Nucl Med. 2004;45:2008–15.PubMed
17.
go back to reference Razifar P, Lubberink M, Schneider H, Lâgström B, Bengtsson E, Bergström M. Non-isotropic noise correlation in PET data reconstructed by FBP but not by OSEM demonstrated using auto-correlation function. BMC Med Imaging. 2005;5(1):3.PubMedCrossRef Razifar P, Lubberink M, Schneider H, Lâgström B, Bengtsson E, Bergström M. Non-isotropic noise correlation in PET data reconstructed by FBP but not by OSEM demonstrated using auto-correlation function. BMC Med Imaging. 2005;5(1):3.PubMedCrossRef
18.
go back to reference Liew SC, Hasegawa BH, Brown JK, Lang TF. Noise propagation in SPECT images reconstructed using an iterative maximum likelihood algorithm. Phys Med Biol. 1993;38:1713–27.PubMedCrossRef Liew SC, Hasegawa BH, Brown JK, Lang TF. Noise propagation in SPECT images reconstructed using an iterative maximum likelihood algorithm. Phys Med Biol. 1993;38:1713–27.PubMedCrossRef
19.
go back to reference Mariano-Goulart D, Fourcade M, Bernon JL, Rossi M, Zanca M. Experimental study of stochastic noise propagation in SPECT images reconstructed using the conjugate gradient algorithm. Comput Med Imaging Graph. 2003;27:53–63.PubMedCrossRef Mariano-Goulart D, Fourcade M, Bernon JL, Rossi M, Zanca M. Experimental study of stochastic noise propagation in SPECT images reconstructed using the conjugate gradient algorithm. Comput Med Imaging Graph. 2003;27:53–63.PubMedCrossRef
20.
go back to reference Hebert TJ. Statistical stopping criteria for iterative maximum likelihood reconstruction of emission images. Phys Med Biol. 1990;35:1221–32.CrossRef Hebert TJ. Statistical stopping criteria for iterative maximum likelihood reconstruction of emission images. Phys Med Biol. 1990;35:1221–32.CrossRef
21.
go back to reference Snyder DL, Miller MI, Thomas LJ, Politte DG. Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography. IEEE Trans Med Imaging. 1987;6:228–38.PubMedCrossRef Snyder DL, Miller MI, Thomas LJ, Politte DG. Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography. IEEE Trans Med Imaging. 1987;6:228–38.PubMedCrossRef
22.
go back to reference Falcon C, Juvells I, Pavia J, Ros D. Evaluation of a cross-validation stopping rule in MLE SPECT reconstruction. Phys Med Biol. 1998;43:1271–85.PubMedCrossRef Falcon C, Juvells I, Pavia J, Ros D. Evaluation of a cross-validation stopping rule in MLE SPECT reconstruction. Phys Med Biol. 1998;43:1271–85.PubMedCrossRef
23.
go back to reference Liang Z, Jaszczak R, Greer K. On Bayesian image reconstruction from projections: uniform and nonuniform a priori source information. IEEE Trans Med Imaging. 1989;8:227–35.PubMedCrossRef Liang Z, Jaszczak R, Greer K. On Bayesian image reconstruction from projections: uniform and nonuniform a priori source information. IEEE Trans Med Imaging. 1989;8:227–35.PubMedCrossRef
24.
go back to reference Fessler JA, Hero AO. Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithms. IEEE Trans Image Proc. 1995;4:1417–29.CrossRef Fessler JA, Hero AO. Penalized maximum-likelihood image reconstruction using space-alternating generalized EM algorithms. IEEE Trans Image Proc. 1995;4:1417–29.CrossRef
25.
go back to reference Tanaka E, Kudo H. Subset-dependent relaxation in block-iterative algorithms for image reconstruction in emission tomography. Phys Med Biol. 2003;48:1405–22.PubMedCrossRef Tanaka E, Kudo H. Subset-dependent relaxation in block-iterative algorithms for image reconstruction in emission tomography. Phys Med Biol. 2003;48:1405–22.PubMedCrossRef
26.
go back to reference Slijpen ETP, Beekman FJ. Comparison of post-filtering and filtering between iterations for SPECT reconstruction. IEEE Trans Nucl Sci. 1999;46:2233–8.CrossRef Slijpen ETP, Beekman FJ. Comparison of post-filtering and filtering between iterations for SPECT reconstruction. IEEE Trans Nucl Sci. 1999;46:2233–8.CrossRef
27.
go back to reference Knuth DE. Seminumerical algorithms. The art of computer programming, vol 2. Boston: Addison Wesley; 1969. Knuth DE. Seminumerical algorithms. The art of computer programming, vol 2. Boston: Addison Wesley; 1969.
28.
go back to reference Jan S et al. for the OpenGATE collaboration, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49:4543–61.PubMedCrossRef Jan S et al. for the OpenGATE collaboration, et al. GATE: a simulation toolkit for PET and SPECT. Phys Med Biol. 2004;49:4543–61.PubMedCrossRef
29.
go back to reference Lamare F, Turzo A, Bizais Y, Le Rest CC, Visvikis D. Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE. Phys Med Biol. 2006;51:943–62.PubMedCrossRef Lamare F, Turzo A, Bizais Y, Le Rest CC, Visvikis D. Validation of a Monte Carlo simulation of the Philips Allegro/GEMINI PET systems using GATE. Phys Med Biol. 2006;51:943–62.PubMedCrossRef
30.
go back to reference Bailey DL, Meikle SR. A convolution-subtraction scatter correction method for 3D PET. Phys Med Biol. 1994;39:411–24.PubMedCrossRef Bailey DL, Meikle SR. A convolution-subtraction scatter correction method for 3D PET. Phys Med Biol. 1994;39:411–24.PubMedCrossRef
31.
go back to reference Kadrmas DJ. LOR-OSEM: statistical PET reconstruction from raw line-of-response histograms. Phys Med Biol. 2004;49:4731–44.PubMedCrossRef Kadrmas DJ. LOR-OSEM: statistical PET reconstruction from raw line-of-response histograms. Phys Med Biol. 2004;49:4731–44.PubMedCrossRef
Metadata
Title
A heuristic statistical stopping rule for iterative reconstruction in emission tomography
Authors
F. Ben Bouallègue
J. F. Crouzet
D. Mariano-Goulart
Publication date
01-01-2013
Publisher
Springer Japan
Published in
Annals of Nuclear Medicine / Issue 1/2013
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-012-0657-5

Other articles of this Issue 1/2013

Annals of Nuclear Medicine 1/2013 Go to the issue